Improving Wang–Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithm

The generation of fuzzy rules from samples for fuzzy modeling and control is significant. If samples contain noise and outliers, the Wang–Mendel (WM) method may lead to the extraction of invalid rules resulting in low confidence of the rules. The scale of the samples also affects the efficiency of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 151; s. 1293 - 1304
Hlavní autoři: Gou, Jin, Hou, Feng, Chen, Wenyu, Wang, Cheng, Luo, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 03.03.2015
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The generation of fuzzy rules from samples for fuzzy modeling and control is significant. If samples contain noise and outliers, the Wang–Mendel (WM) method may lead to the extraction of invalid rules resulting in low confidence of the rules. The scale of the samples also affects the efficiency of the WM method. Interaction among input variables can help the WM method achieve high completeness and robustness. The fuzzy C-means clustering (FCM) algorithm can reduce the scale of samples and undo noisy data to some degree. This paper aims to develop an FCM-based improved WM method that adopts a modified FCM algorithm to preprocess the original samples and compute the interaction among the samples. Then, the optimized samples are used to generate fuzzy rules, thereby building a complete rule set through extrapolation. Experimental results from two nonlinear functions and short-term load forecasting case study show that the proposed method not only has high completeness and robustness, but also ensures better prediction accuracy of the fuzzy system. •The WM method for fuzzy rule generation is lack of completeness and robustness.•Some problems of traditional FCM algorithm may be caused by sample set.•The FCM algorithm improved by affinity (AFCM algorithm) is proposed.•Improved WM method by AFCM algorithm for fuzzy rule generation is proposed.•The performance of the fuzzy system is enhanced by the proposed method.
AbstractList The generation of fuzzy rules from samples for fuzzy modeling and control is significant. If samples contain noise and outliers, the Wang–Mendel (WM) method may lead to the extraction of invalid rules resulting in low confidence of the rules. The scale of the samples also affects the efficiency of the WM method. Interaction among input variables can help the WM method achieve high completeness and robustness. The fuzzy C-means clustering (FCM) algorithm can reduce the scale of samples and undo noisy data to some degree. This paper aims to develop an FCM-based improved WM method that adopts a modified FCM algorithm to preprocess the original samples and compute the interaction among the samples. Then, the optimized samples are used to generate fuzzy rules, thereby building a complete rule set through extrapolation. Experimental results from two nonlinear functions and short-term load forecasting case study show that the proposed method not only has high completeness and robustness, but also ensures better prediction accuracy of the fuzzy system. •The WM method for fuzzy rule generation is lack of completeness and robustness.•Some problems of traditional FCM algorithm may be caused by sample set.•The FCM algorithm improved by affinity (AFCM algorithm) is proposed.•Improved WM method by AFCM algorithm for fuzzy rule generation is proposed.•The performance of the fuzzy system is enhanced by the proposed method.
The generation of fuzzy rules from samples for fuzzy modeling and control is significant. If samples contain noise and outliers, the Wang-Mendel (WM) method may lead to the extraction of invalid rules resulting in low confidence of the rules. The scale of the samples also affects the efficiency of the WM method. Interaction among input variables can help the WM method achieve high completeness and robustness. The fuzzy C-means clustering (FCM) algorithm can reduce the scale of samples and undo noisy data to some degree. This paper aims to develop an FCM-based improved WM method that adopts a modified FCM algorithm to preprocess the original samples and compute the interaction among the samples. Then, the optimized samples are used to generate fuzzy rules, thereby building a complete rule set through extrapolation. Experimental results from two nonlinear functions and short-term load forecasting case study show that the proposed method not only has high completeness and robustness, but also ensures better prediction accuracy of the fuzzy system.
Author Wang, Cheng
Luo, Wei
Chen, Wenyu
Hou, Feng
Gou, Jin
Author_xml – sequence: 1
  givenname: Jin
  surname: Gou
  fullname: Gou, Jin
  email: goujin@gmail.com
– sequence: 2
  givenname: Feng
  surname: Hou
  fullname: Hou, Feng
  email: houfeng0205@gmail.com
– sequence: 3
  givenname: Wenyu
  surname: Chen
  fullname: Chen, Wenyu
  email: huiyu100@hqu.edn.cn
– sequence: 4
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  email: wangcheng@hqu.edu.cn
– sequence: 5
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
  email: luowei.qinghua@gmail.com
BookMark eNqFkL1u2zAURonCBeo4eYMOHLPI5Y9EkR0CFEbSBEjRJUVGgqGubBoSaZNUAHvKO_QN-ySR6kwdmukC937nA-45QzMfPCD0mZIlJVR82S49DDb0S0ZoOa6WpK4_oDmVNSskk2KG5kSxqmCcsk_oLKUtIbSmTM3R_q7fxfDs_Bo_Gr_-8_L7B_gGOtxD3oQG7yC2IfbGW8DO43Y4Hg84Dh0kvAYP0WQXPB7SVJA38BZYFT0Yn7DthpQhTkfTrUN0edOfo4-t6RJcvM0F-nVz_bC6Le5_fr9bfbsvLOcqF1ALUBWpQBnTUCpB8ko1zZNqwYiG2ZIIwSjnXIpaVEJwJYhkilBTlk-ytnyBLk-943_7AVLWvUsWus54CEPSVAglS0WJHKPlKWpjSClCq3fR9SYeNCV6Mqy3-mRYT4an7Wh4xL7-g1mX_wrJ0bjuPfjqBMPo4NlB1Mk6GDU3LoLNugnu_wWvc3Wedw
CitedBy_id crossref_primary_10_1002_clen_201700162
crossref_primary_10_1016_j_ces_2017_09_048
crossref_primary_10_1007_s11432_018_9545_8
crossref_primary_10_1016_j_heliyon_2024_e37293
crossref_primary_10_1016_j_ins_2020_10_018
crossref_primary_10_1016_j_neucom_2015_03_068
crossref_primary_10_1016_j_bspc_2020_101953
crossref_primary_10_1038_s41598_023_47812_3
crossref_primary_10_1080_0952813X_2022_2135614
crossref_primary_10_3233_JIFS_17227
crossref_primary_10_1016_j_ifacol_2017_08_1504
crossref_primary_10_1016_j_neucom_2020_04_031
crossref_primary_10_1016_j_asoc_2024_112257
crossref_primary_10_1016_j_neucom_2020_02_124
crossref_primary_10_1088_1742_6596_3102_1_012044
crossref_primary_10_3233_JIFS_182518
crossref_primary_10_1002_cpe_6913
crossref_primary_10_1109_TFUZZ_2021_3098339
crossref_primary_10_1016_j_neucom_2022_09_053
crossref_primary_10_1038_s41598_024_75830_2
crossref_primary_10_1007_s10489_021_02421_3
crossref_primary_10_1016_j_epsr_2023_109967
crossref_primary_10_1016_j_neucom_2018_10_010
crossref_primary_10_1007_s00521_017_3181_7
crossref_primary_10_1049_joe_2019_0938
crossref_primary_10_1109_TCE_2025_3541440
crossref_primary_10_3233_JIFS_169166
crossref_primary_10_1016_j_neucom_2015_10_089
crossref_primary_10_1002_ima_22608
crossref_primary_10_1007_s40815_022_01329_5
crossref_primary_10_1016_j_eswa_2025_127342
crossref_primary_10_1016_j_ins_2020_06_064
crossref_primary_10_1080_17457300_2019_1690002
crossref_primary_10_1007_s00500_016_2226_7
crossref_primary_10_3233_JIFS_231050
crossref_primary_10_1016_j_jhydrol_2021_125967
Cites_doi 10.1016/j.camwa.2011.07.005
10.1109/ICIEA.2010.5514696
10.1109/TCE.2010.5681159
10.1109/TFUZZ.2004.836065
10.1080/01969727308546046
10.1109/CDC.2007.4434426
10.1007/s00500-011-0748-6
10.1016/j.neucom.2011.05.029
10.1109/91.928739
10.1109/21.199466
10.3724/SP.J.1004.2010.01337
10.1016/j.eswa.2010.05.085
10.1016/0031-3203(94)90134-1
10.1109/iFUZZY.2012.6409738
10.1109/ICSMC.2009.5346036
10.1109/3477.790443
10.1016/0895-7177(93)90202-A
10.1109/TFUZZ.2003.819839
10.1109/TSMC.1987.6499296
10.1016/0098-3004(84)90020-7
10.1016/j.ins.2012.06.021
10.1109/TFUZZ.2004.841738
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2014.10.077
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 1304
ExternalDocumentID 10_1016_j_neucom_2014_10_077
S0925231214014738
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-e76e9505e9aad118e8359ddb9fea6d2c4066213338676566396082901a44b87c3
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347753600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Sep 27 23:20:44 EDT 2025
Sat Nov 29 07:54:43 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 23 02:28:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy C-means clustering algorithm
Fuzzy system
Robustness
Wang–Mendel method
Completeness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-e76e9505e9aad118e8359ddb9fea6d2c4066213338676566396082901a44b87c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669849108
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1669849108
crossref_primary_10_1016_j_neucom_2014_10_077
crossref_citationtrail_10_1016_j_neucom_2014_10_077
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_10_077
PublicationCentury 2000
PublicationDate 2015-03-03
PublicationDateYYYYMMDD 2015-03-03
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-03
  day: 03
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Yuan, Yuan, Mao (bib14) 2010; 37
S. Chen, Y. Chen, W. Zhang, W. Yan, A method of extracting fuzzy control rules of structural vibration using fcm algorithm, in: 2010 The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), Taichung, 2010, pp. 1550–1555.
J. Casillas, O. Cordon, F. Herrera, Improving the Wang and Mendel׳s fuzzy rule learning method by inducing cooperation among rules, in: The 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference, Madrid, Spain, 2000, pp. 1682–1688.
Wang, Chai (bib8) 2005; 20
Chakraborty, Pal (bib2) 2004; 15
Sulaiman, Isa (bib33) 2010; 56
Wang, Mendel (bib6) 1992; 22
Wang (bib12) 1994
Wang, Wang, Chai (bib9) 2010; 36
Guillaume (bib4) 2001; 9
Yu, Yang (bib30) 2005; 13
Yang (bib21) 1993; 18
Bezdek, Hathaway, Sabin, Tucker (bib28) 1987; 17
Yu, Yang, Lee (bib27) 2011; 62
Galende-Hernandez, Sainz-Palmero, Fuente-Aparicio (bib15) 2012; 16
Cox, O׳Hagan (bib11) 1998
Chen, Gou (bib17) 2012; 7
Hou, Gou (bib23) 2013; 45
(bib24) 2003
Tang, Chen, Hu, Yu (bib31) 2012; 217
Bezdek, Ehrlich, Full (bib20) 1984; 10
Ishibuchi, Nakashima, Murata (bib3) 1999; 29
C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines
Dan, Zheng (bib32) 2012; 78
Y. Bai, T. Li, Robust fuzzy inference system for prediction of time series with outliers, in: 2012 International Conference on Fuzzy Theory and it׳s Applications (iFUZZY), Taichung, 2012, pp. 394–399.
Wang (bib7) 2003; 11
Dunn (bib19) 1973; 3
Ishibuchi, Yamamoto (bib1) 2005; 13
Wei, Mendel (bib29) 1994; 27
W. Zhang, W. Liu, IFCM: fuzzy clustering for rule extraction of interval type-2 fuzzy logic system, in: 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, 2007, pp. 5318–5322.
Oliveira, Pedrycz (bib26) 2007
[Online], 2001.
(bib25) 2003
E.R.R. Kato, O. Morandin Jr., M. Sgavioli, B.D. Muniz, Genetic tuning for improving Wang and Mendel׳s fuzzy database, in: IEEE International Conference on Systems, Man and Cybernetics, 2009, SMC 2009, San Antonio, TX, 2009, pp. 1015–1020.
Zhu (bib18) 1992; 6
Hou (10.1016/j.neucom.2014.10.077_bib23) 2013; 45
Zhu (10.1016/j.neucom.2014.10.077_bib18) 1992; 6
Dunn (10.1016/j.neucom.2014.10.077_bib19) 1973; 3
Wang (10.1016/j.neucom.2014.10.077_bib7) 2003; 11
Galende-Hernandez (10.1016/j.neucom.2014.10.077_bib15) 2012; 16
Wang (10.1016/j.neucom.2014.10.077_bib6) 1992; 22
Yang (10.1016/j.neucom.2014.10.077_bib14) 2010; 37
Wang (10.1016/j.neucom.2014.10.077_bib9) 2010; 36
Wei (10.1016/j.neucom.2014.10.077_bib29) 1994; 27
10.1016/j.neucom.2014.10.077_bib10
Ishibuchi (10.1016/j.neucom.2014.10.077_bib1) 2005; 13
Guillaume (10.1016/j.neucom.2014.10.077_bib4) 2001; 9
Sulaiman (10.1016/j.neucom.2014.10.077_bib33) 2010; 56
Dan (10.1016/j.neucom.2014.10.077_bib32) 2012; 78
Yang (10.1016/j.neucom.2014.10.077_bib21) 1993; 18
Bezdek (10.1016/j.neucom.2014.10.077_bib28) 1987; 17
(10.1016/j.neucom.2014.10.077_bib24) 2003
Cox (10.1016/j.neucom.2014.10.077_bib11) 1998
Chen (10.1016/j.neucom.2014.10.077_bib17) 2012; 7
Yu (10.1016/j.neucom.2014.10.077_bib30) 2005; 13
Oliveira (10.1016/j.neucom.2014.10.077_bib26) 2007
Wang (10.1016/j.neucom.2014.10.077_bib12) 1994
10.1016/j.neucom.2014.10.077_bib22
Ishibuchi (10.1016/j.neucom.2014.10.077_bib3) 1999; 29
10.1016/j.neucom.2014.10.077_bib5
Chakraborty (10.1016/j.neucom.2014.10.077_bib2) 2004; 15
Yu (10.1016/j.neucom.2014.10.077_bib27) 2011; 62
Tang (10.1016/j.neucom.2014.10.077_bib31) 2012; 217
10.1016/j.neucom.2014.10.077_bib34
10.1016/j.neucom.2014.10.077_bib13
10.1016/j.neucom.2014.10.077_bib16
Bezdek (10.1016/j.neucom.2014.10.077_bib20) 1984; 10
Wang (10.1016/j.neucom.2014.10.077_bib8) 2005; 20
(10.1016/j.neucom.2014.10.077_bib25) 2003
References_xml – volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: bib19
  article-title: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– reference: Y. Bai, T. Li, Robust fuzzy inference system for prediction of time series with outliers, in: 2012 International Conference on Fuzzy Theory and it׳s Applications (iFUZZY), Taichung, 2012, pp. 394–399.
– volume: 29
  start-page: 601
  year: 1999
  end-page: 618
  ident: bib3
  article-title: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
  publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybern.
– year: 2003
  ident: bib24
  publication-title: Accuracy Improvements in Linguistic Fuzzy Modeling
– volume: 15
  start-page: 110
  year: 2004
  end-page: 123
  ident: bib2
  article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
  publication-title: J. Spacecr. Rockets
– reference: C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines 〈
– year: 1994
  ident: bib12
  article-title: Adaptive Fuzzy Systems and Control: Design and Stability Analysis
– reference: J. Casillas, O. Cordon, F. Herrera, Improving the Wang and Mendel׳s fuzzy rule learning method by inducing cooperation among rules, in: The 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference, Madrid, Spain, 2000, pp. 1682–1688.
– volume: 16
  start-page: 451
  year: 2012
  end-page: 470
  ident: bib15
  article-title: Complexity reduction and interpretability improvement for fuzzy rule systems based on simple interpretability measures and indices by bi-objective evolutionary rule selection
  publication-title: Soft Comput.
– volume: 20
  start-page: 497
  year: 2005
  end-page: 503
  ident: bib8
  article-title: Mining fuzzy rules from data and its system implementation
  publication-title: J. Syst. Eng.
– volume: 6
  start-page: 57
  year: 1992
  end-page: 63
  ident: bib18
  article-title: Some common key problems and their dealing methods in the application of fuzzy mathematical methods
  publication-title: Fuzzy Syst. Math.
– reference: W. Zhang, W. Liu, IFCM: fuzzy clustering for rule extraction of interval type-2 fuzzy logic system, in: 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, 2007, pp. 5318–5322.
– volume: 13
  start-page: 164
  year: 2005
  end-page: 176
  ident: bib30
  article-title: Optimality test for generalized fcm and its application to parameter selection
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 9
  start-page: 426
  year: 2001
  end-page: 443
  ident: bib4
  article-title: Designing fuzzy inference systems from data
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bib20
  article-title: FCM
  publication-title: Comput. Geosci.
– volume: 62
  start-page: 2200
  year: 2011
  end-page: 2208
  ident: bib27
  article-title: Sample-weighted clustering methods
  publication-title: Comput. Math. Appl.
– volume: 27
  start-page: 1567
  year: 1994
  end-page: 1573
  ident: bib29
  article-title: Optimality tests for the fuzzy c-means algorithms
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 8036
  year: 2010
  end-page: 8041
  ident: bib14
  article-title: An improved wm method based on pso for electric load forecasting
  publication-title: Expert Syst. Appl.
– year: 2007
  ident: bib26
  article-title: Advances in Fuzzy Clustering and its Applications
– volume: 17
  start-page: 873
  year: 1987
  end-page: 877
  ident: bib28
  article-title: Convergence theory for fuzzy c-means
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 18
  start-page: 1
  year: 1993
  end-page: 16
  ident: bib21
  article-title: A survey of fuzzy clustering
  publication-title: Math. Comput. Modell.
– reference: 〉 [Online], 2001.
– volume: 11
  start-page: 768
  year: 2003
  end-page: 782
  ident: bib7
  article-title: The wm method completed
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 45
  start-page: 20
  year: 2013
  end-page: 27
  ident: bib23
  article-title: Fuzzy rule generation based on cowm and fcm algorithm
  publication-title: Int. J. Appl. Math. Stat.
– volume: 56
  start-page: 2702
  year: 2010
  end-page: 2710
  ident: bib33
  article-title: Denoising-based clustering algorithms for segmentation of low level salt-and-pepper noise-corrupted images
  publication-title: IEEE Trans. Consumer Electron.
– year: 1998
  ident: bib11
  publication-title: The Fuzzy Systems Handbook, A Practitioner׳s Guide to Building, Using, and Maintaining Fuzzy Systems
– reference: S. Chen, Y. Chen, W. Zhang, W. Yan, A method of extracting fuzzy control rules of structural vibration using fcm algorithm, in: 2010 The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), Taichung, 2010, pp. 1550–1555.
– reference: E.R.R. Kato, O. Morandin Jr., M. Sgavioli, B.D. Muniz, Genetic tuning for improving Wang and Mendel׳s fuzzy database, in: IEEE International Conference on Systems, Man and Cybernetics, 2009, SMC 2009, San Antonio, TX, 2009, pp. 1015–1020.
– volume: 7
  start-page: 2685
  year: 2012
  end-page: 2689
  ident: bib17
  article-title: Improved Wang–Mendel scheme based on cooperation among input variables
  publication-title: Int. Rev. Comput. Softw.
– volume: 13
  start-page: 428
  year: 2005
  end-page: 435
  ident: bib1
  article-title: Rule weight specification in fuzzy rule-based classification systems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 22
  start-page: 1414
  year: 1992
  end-page: 1427
  ident: bib6
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2003
  ident: bib25
  publication-title: Interpretability Issues in Fuzzy Modeling
– volume: 217
  start-page: 21
  year: 2012
  end-page: 30
  ident: bib31
  article-title: Generation of a probabilistic fuzzy rule base by learning from examples
  publication-title: Inf. Sci.
– volume: 36
  start-page: 1337
  year: 2010
  end-page: 1342
  ident: bib9
  article-title: Extract of fuzzy rules with completeness and robustness
  publication-title: Acta Autom. Sin.
– volume: 78
  start-page: 48
  year: 2012
  end-page: 54
  ident: bib32
  article-title: Extracting linguistic rules from data sets using fuzzy logic and genetic algorithms
  publication-title: Neurocomputing
– volume: 15
  start-page: 110
  issue: 1
  year: 2004
  ident: 10.1016/j.neucom.2014.10.077_bib2
  article-title: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
  publication-title: J. Spacecr. Rockets
– volume: 62
  start-page: 2200
  issue: 5
  year: 2011
  ident: 10.1016/j.neucom.2014.10.077_bib27
  article-title: Sample-weighted clustering methods
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.07.005
– ident: 10.1016/j.neucom.2014.10.077_bib22
  doi: 10.1109/ICIEA.2010.5514696
– volume: 20
  start-page: 497
  issue: 5
  year: 2005
  ident: 10.1016/j.neucom.2014.10.077_bib8
  article-title: Mining fuzzy rules from data and its system implementation
  publication-title: J. Syst. Eng.
– volume: 56
  start-page: 2702
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2014.10.077_bib33
  article-title: Denoising-based clustering algorithms for segmentation of low level salt-and-pepper noise-corrupted images
  publication-title: IEEE Trans. Consumer Electron.
  doi: 10.1109/TCE.2010.5681159
– volume: 13
  start-page: 164
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2014.10.077_bib30
  article-title: Optimality test for generalized fcm and its application to parameter selection
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.836065
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.neucom.2014.10.077_bib19
  article-title: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– ident: 10.1016/j.neucom.2014.10.077_bib5
  doi: 10.1109/CDC.2007.4434426
– volume: 16
  start-page: 451
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2014.10.077_bib15
  article-title: Complexity reduction and interpretability improvement for fuzzy rule systems based on simple interpretability measures and indices by bi-objective evolutionary rule selection
  publication-title: Soft Comput.
  doi: 10.1007/s00500-011-0748-6
– year: 1994
  ident: 10.1016/j.neucom.2014.10.077_bib12
– volume: 78
  start-page: 48
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2014.10.077_bib32
  article-title: Extracting linguistic rules from data sets using fuzzy logic and genetic algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.029
– volume: 9
  start-page: 426
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2014.10.077_bib4
  article-title: Designing fuzzy inference systems from data
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.928739
– ident: 10.1016/j.neucom.2014.10.077_bib34
– volume: 22
  start-page: 1414
  issue: 6
  year: 1992
  ident: 10.1016/j.neucom.2014.10.077_bib6
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.199466
– year: 1998
  ident: 10.1016/j.neucom.2014.10.077_bib11
– volume: 36
  start-page: 1337
  issue: 9
  year: 2010
  ident: 10.1016/j.neucom.2014.10.077_bib9
  article-title: Extract of fuzzy rules with completeness and robustness
  publication-title: Acta Autom. Sin.
  doi: 10.3724/SP.J.1004.2010.01337
– volume: 37
  start-page: 8036
  issue: 12
  year: 2010
  ident: 10.1016/j.neucom.2014.10.077_bib14
  article-title: An improved wm method based on pso for electric load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.085
– year: 2003
  ident: 10.1016/j.neucom.2014.10.077_bib24
– volume: 27
  start-page: 1567
  issue: 11
  year: 1994
  ident: 10.1016/j.neucom.2014.10.077_bib29
  article-title: Optimality tests for the fuzzy c-means algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(94)90134-1
– ident: 10.1016/j.neucom.2014.10.077_bib10
  doi: 10.1109/iFUZZY.2012.6409738
– ident: 10.1016/j.neucom.2014.10.077_bib13
  doi: 10.1109/ICSMC.2009.5346036
– year: 2003
  ident: 10.1016/j.neucom.2014.10.077_bib25
– volume: 6
  start-page: 57
  issue: 2
  year: 1992
  ident: 10.1016/j.neucom.2014.10.077_bib18
  article-title: Some common key problems and their dealing methods in the application of fuzzy mathematical methods
  publication-title: Fuzzy Syst. Math.
– year: 2007
  ident: 10.1016/j.neucom.2014.10.077_bib26
– volume: 29
  start-page: 601
  issue: 5
  year: 1999
  ident: 10.1016/j.neucom.2014.10.077_bib3
  article-title: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
  publication-title: IEEE Trans. Syst. Man Cybern.—Part B: Cybern.
  doi: 10.1109/3477.790443
– volume: 18
  start-page: 1
  issue: 11
  year: 1993
  ident: 10.1016/j.neucom.2014.10.077_bib21
  article-title: A survey of fuzzy clustering
  publication-title: Math. Comput. Modell.
  doi: 10.1016/0895-7177(93)90202-A
– volume: 11
  start-page: 768
  issue: 6
  year: 2003
  ident: 10.1016/j.neucom.2014.10.077_bib7
  article-title: The wm method completed
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2003.819839
– volume: 17
  start-page: 873
  issue: 5
  year: 1987
  ident: 10.1016/j.neucom.2014.10.077_bib28
  article-title: Convergence theory for fuzzy c-means
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1987.6499296
– volume: 45
  start-page: 20
  issue: 15
  year: 2013
  ident: 10.1016/j.neucom.2014.10.077_bib23
  article-title: Fuzzy rule generation based on cowm and fcm algorithm
  publication-title: Int. J. Appl. Math. Stat.
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.neucom.2014.10.077_bib20
  article-title: FCM
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: 10.1016/j.neucom.2014.10.077_bib16
– volume: 217
  start-page: 21
  issue: 25
  year: 2012
  ident: 10.1016/j.neucom.2014.10.077_bib31
  article-title: Generation of a probabilistic fuzzy rule base by learning from examples
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.06.021
– volume: 13
  start-page: 428
  issue: 4
  year: 2005
  ident: 10.1016/j.neucom.2014.10.077_bib1
  article-title: Rule weight specification in fuzzy rule-based classification systems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.841738
– volume: 7
  start-page: 2685
  issue: 5
  year: 2012
  ident: 10.1016/j.neucom.2014.10.077_bib17
  article-title: Improved Wang–Mendel scheme based on cooperation among input variables
  publication-title: Int. Rev. Comput. Softw.
SSID ssj0017129
Score 2.3370414
Snippet The generation of fuzzy rules from samples for fuzzy modeling and control is significant. If samples contain noise and outliers, the Wang–Mendel (WM) method...
The generation of fuzzy rules from samples for fuzzy modeling and control is significant. If samples contain noise and outliers, the Wang-Mendel (WM) method...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1293
SubjectTerms Algorithms
Clustering
Completeness
Construction
Fuzzy
Fuzzy C-means clustering algorithm
Fuzzy logic
Fuzzy set theory
Fuzzy system
Mathematical models
Robustness
Wang–Mendel method
Title Improving Wang–Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithm
URI https://dx.doi.org/10.1016/j.neucom.2014.10.077
https://www.proquest.com/docview/1669849108
Volume 151
WOSCitedRecordID wos000347753600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbKxgU3_CPGn4zEXZWJxk4cX1bTYCCYkBiid5ETOyVTmo62mbZd8Q68Ak_Gk3CO7SQdAw2QuIkq10mtnK_nfD4-P4Q8ey6U5lKZQEdaBZyFoyCLQxGoCLhFVMgky2zXkjdifz-ZTOS7weBbmwtzXIm6Tk5O5NF_FTWMgbAxdfYvxN09FAbgMwgdriB2uP6R4Hs3ge1874MZ2Fv0dVe-YzRWK-7yBcp6WDRnZ6fDRVOZJfZUNh4WzbJNpnITdoKZAdM2zKsG6yvY_MZqOl-Uq0-zdZZrK37ktl-E90SMZ3iDRvR1noeX88ZiqOzwuedG4HVO-7ADpxc_mvq06b3_TkPhl9N1v8UosoFbrHemXUiocV7JMAqAcjoFbZxOTkRos93PKW1fptapXSQtayYc7DL_pXlwnorD7do0GCsEy-LbGNvnO8mcL7z9HheDa8E9KBcsuUI2QxFJ0J2b41e7k9fdaZUYha6mo198m6Jp4wgv_tbvKNBPZMAynIOb5LrfmtCxg9QtMjD1bXKjbftBvRW4Qz53CKMoiO9fvjpsUYctuoYtWtbUQodabNEeW9RiiwK2_ASPLdpji3bYuks-vNg92NkLfOeOIGdMrgIjYiOBWxuplIYtrAGeL7XOZGFUrMOcY9-BEWMsiQVuKBjso-2JvuI8S0TO7pGNel6b-4SGhY7CiCktdMTzTCrNNMvAMhVxlBWF2iKsfZlp7svaY3eVKm3jFw9TJ4IURYCjIIItEnR3HbmyLpfMF62cUk9NHeVMAVqX3Pm0FWsKmhuP41Rt5s0yHcWxTDjQ9eTBPz_9IbnW_7cekY3VojGPydX8eFUuF088Tn8ATO7D7g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Wang%E2%80%93Mendel+method+performance+in+fuzzy+rules+generation+using+the+fuzzy+C-means+clustering+algorithm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gou%2C+Jin&rft.au=Hou%2C+Feng&rft.au=Chen%2C+Wenyu&rft.au=Wang%2C+Cheng&rft.date=2015-03-03&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=151&rft.spage=1293&rft.epage=1304&rft_id=info:doi/10.1016%2Fj.neucom.2014.10.077&rft.externalDocID=S0925231214014738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon