Neural Network Renormalization Group

We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 121; číslo 26; s. 260601
Hlavní autoři: Li, Shuo-Hui, Wang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society 28.12.2018
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.
AbstractList We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.
We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.
We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.
ArticleNumber 260601
Author Li, Shuo-Hui
Wang, Lei
Author_xml – sequence: 1
  givenname: Shuo-Hui
  surname: Li
  fullname: Li, Shuo-Hui
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30636161$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1Lw0AQhhep2A_9C6WgBy-pM7vpbgJepGgVSpWi52Wz2WBqkq27iVJ_valtQbx4msvzzsz79EmnspUhZIgwRgR29fS68UvzMTd1PUaKY8qBAx6RHoKIA4EYdkgPgGEQA4gu6Xu_AgCkPDohXQacceTYIxcL0zhVjBam_rTubbQ0lXWlKvIvVee2Gs2cbdan5DhThTdn-zkgL3e3z9P7YP44e5jezAPNWFwHqeFMxWGmmYBQJYInLFE6yZTmXMCEU0aFzqjChLEUTYrUUBNiqDREQscJG5DL3d61s--N8bUsc69NUajK2MZLiiJmE4g4tuj5H3RlG1e1320pFoUYC9ZSwz3VJKVJ5drlpXIbeejfAtc7QDvrvTOZ1Hn907x2Ki8kgtzqlr90y1a33Olu4_xP_HDhn-A39hGGMQ
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_043322
crossref_primary_10_1140_epja_s10050_023_01154_w
crossref_primary_10_1103_PhysRevX_10_021020
crossref_primary_10_1134_S1063779624702162
crossref_primary_10_1016_j_physd_2024_134505
crossref_primary_10_1103_PhysRevResearch_6_033041
crossref_primary_10_3390_e22050587
crossref_primary_10_3390_sym14030486
crossref_primary_10_1088_2632_2153_ad0101
crossref_primary_10_7566_JPSJ_93_064002
crossref_primary_10_1088_0256_307X_39_5_050701
crossref_primary_10_1080_23746149_2020_1797528
crossref_primary_10_1016_j_ppnp_2023_104084
crossref_primary_10_1103_PhysRevX_13_041038
crossref_primary_10_1088_1361_648X_abb895
crossref_primary_10_1016_j_jcp_2025_113806
crossref_primary_10_1088_1742_5468_ad5c5c
crossref_primary_10_1038_s41524_022_00736_4
crossref_primary_10_1088_0256_307X_40_2_020501
crossref_primary_10_1007_JHEP07_2022_015
crossref_primary_10_1088_0256_307X_40_12_120201
crossref_primary_10_1002_esp_5984
crossref_primary_10_1103_PRXQuantum_2_040201
crossref_primary_10_1007_s10255_025_0001_1
crossref_primary_10_1103_PhysRevResearch_2_023369
crossref_primary_10_1088_1367_2630_acef4e
crossref_primary_10_1002_ett_4865
crossref_primary_10_1088_1751_8121_ad72ba
crossref_primary_10_1103_rbsg_r7hx
crossref_primary_10_1038_s41598_021_85683_8
crossref_primary_10_1007_s10489_019_01546_w
crossref_primary_10_1007_s11633_022_1340_5
crossref_primary_10_1088_2632_2153_acb488
crossref_primary_10_3389_frai_2020_00030
crossref_primary_10_1103_PhysRevResearch_3_L042024
crossref_primary_10_1103_PhysRevResearch_4_L042005
crossref_primary_10_1109_TGRS_2023_3304297
crossref_primary_10_7566_JPSJ_91_062001
crossref_primary_10_1088_2632_2153_ac48a2
crossref_primary_10_1088_2632_2153_ac4f69
crossref_primary_10_1103_PhysRevX_10_011037
crossref_primary_10_1088_2632_2153_acbe91
crossref_primary_10_1103_PhysRevB_105_205139
crossref_primary_10_3390_e25010026
crossref_primary_10_1016_j_commatsci_2022_111634
crossref_primary_10_1103_8wx7_kyx8
crossref_primary_10_1063_5_0018903
crossref_primary_10_7566_JPSJ_88_054002
crossref_primary_10_3390_e23010123
crossref_primary_10_1103_PhysRevE_101_023304
crossref_primary_10_34133_icomputing_0123
crossref_primary_10_1016_j_physa_2022_128276
crossref_primary_10_1103_PhysRevResearch_2_023266
crossref_primary_10_1103_PhysRevResearch_2_023300
crossref_primary_10_1103_PhysRevX_11_031059
crossref_primary_10_1038_s42005_025_02261_4
crossref_primary_10_1088_2632_2153_ac8393
crossref_primary_10_1145_3654662
crossref_primary_10_7566_JPSJ_89_022001
crossref_primary_10_1137_24M1666628
crossref_primary_10_1103_PhysRevResearch_3_013134
crossref_primary_10_1016_j_neunet_2025_108126
crossref_primary_10_1038_s41598_021_88605_w
Cites_doi 10.1007/s10955-017-1770-6
10.1063/1.1543581
10.1103/RevModPhys.47.773
10.1103/PhysRevLett.116.140403
10.1016/0370-2693(87)91197-X
10.1103/PhysRevLett.118.110504
10.1063/1.1543582
10.1103/PhysRevB.80.155131
10.1103/PhysRevB.95.041101
10.1103/PhysRevLett.101.110501
10.1103/PhysRevLett.103.160601
10.1103/RevModPhys.86.647
10.1103/PhysRevLett.105.010502
10.1103/PhysRevLett.99.120601
10.1103/PhysRevB.86.045139
10.1103/PhysRevE.97.053304
10.1103/PhysRevB.4.3174
10.1103/PhysRevLett.115.200401
10.1103/PhysRevB.81.174411
10.1103/PhysRevE.69.066138
10.1103/PhysRev.65.117
10.1103/PhysRevB.97.045111
10.1038/s41567-018-0081-4
10.1103/PhysRevLett.91.147902
10.1103/PhysRevD.86.065007
10.1007/s10955-017-1836-5
10.1103/PhysRev.95.1300
10.1103/PhysRevLett.42.859
10.1103/PhysRevB.97.045153
10.1103/PhysRev.76.1232
10.1103/PhysRevA.97.052314
10.1073/pnas.1618455114
10.1103/PhysRevA.74.022320
10.1103/PhysRevB.4.3184
10.1103/PhysRevLett.100.070502
10.1103/PhysRevB.95.035105
10.1063/1.1699114
10.1103/PhysRevLett.115.180405
10.1103/PhysRevB.78.205116
10.1103/PhysRevLett.118.250602
10.1002/wcms.31
ContentType Journal Article
Copyright Copyright American Physical Society Dec 28, 2018
Copyright_xml – notice: Copyright American Physical Society Dec 28, 2018
DBID AAYXX
CITATION
NPM
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.121.260601
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 30636161
10_1103_PhysRevLett_121_260601
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
UCJ
VQA
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c339t-de63a94fc3704ab76b3bacbfac6670562327cf2a1b33d1ed12e2e414ac087c9b3
IEDL.DBID 3MX
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454432900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Fri Jul 11 09:23:42 EDT 2025
Mon Jun 30 02:35:25 EDT 2025
Thu Jan 02 23:01:52 EST 2025
Tue Nov 18 20:57:49 EST 2025
Sat Nov 29 05:55:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-de63a94fc3704ab76b3bacbfac6670562327cf2a1b33d1ed12e2e414ac087c9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30636161
PQID 2173841973
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2179350861
proquest_journals_2173841973
pubmed_primary_30636161
crossref_citationtrail_10_1103_PhysRevLett_121_260601
crossref_primary_10_1103_PhysRevLett_121_260601
PublicationCentury 2000
PublicationDate 2018-Dec-28
PublicationDateYYYYMMDD 2018-12-28
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: College Park
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References J. S. Liu (PhysRevLett.121.260601Cc62R1) 2001
PhysRevLett.121.260601Cc10R1
PhysRevLett.121.260601Cc56R1
PhysRevLett.121.260601Cc79R1
M. E. Fisher (PhysRevLett.121.260601Cc68R1) 1983
PhysRevLett.121.260601Cc14R1
PhysRevLett.121.260601Cc12R1
PhysRevLett.121.260601Cc54R1
PhysRevLett.121.260601Cc75R1
A. Paszke (PhysRevLett.121.260601Cc52R1) 2017
R. M. Neal (PhysRevLett.121.260601Cc45R1) 2011
PhysRevLett.121.260601Cc71R1
I. Goodfellow (PhysRevLett.121.260601Cc50R1) 2016
B. Guy (PhysRevLett.121.260601Cc73R1) 1999
R. P. Feynman (PhysRevLett.121.260601Cc63R1) 1972
PhysRevLett.121.260601Cc18R1
PhysRevLett.121.260601Cc16R1
PhysRevLett.121.260601Cc42R1
PhysRevLett.121.260601Cc67R1
PhysRevLett.121.260601Cc25R1
PhysRevLett.121.260601Cc9R1
PhysRevLett.121.260601Cc23R1
PhysRevLett.121.260601Cc7R1
PhysRevLett.121.260601Cc5R1
PhysRevLett.121.260601Cc80R1
PhysRevLett.121.260601Cc3R1
PhysRevLett.121.260601Cc82R1
PhysRevLett.121.260601Cc1R1
D. J. C. MacKay (PhysRevLett.121.260601Cc61R1) 2005
PhysRevLett.121.260601Cc27R1
D. A. Moore (PhysRevLett.121.260601Cc48R1) 2016
PhysRevLett.121.260601Cc55R1
PhysRevLett.121.260601Cc57R1
PhysRevLett.121.260601Cc13R1
PhysRevLett.121.260601Cc11R1
PhysRevLett.121.260601Cc76R1
PhysRevLett.121.260601Cc72R1
C. M. Bishop (PhysRevLett.121.260601Cc64R1) 2006
PhysRevLett.121.260601Cc17R1
PhysRevLett.121.260601Cc15R1
PhysRevLett.121.260601Cc59R1
PhysRevLett.121.260601Cc43R1
PhysRevLett.121.260601Cc66R1
PhysRevLett.121.260601Cc8R1
PhysRevLett.121.260601Cc24R1
PhysRevLett.121.260601Cc6R1
PhysRevLett.121.260601Cc22R1
PhysRevLett.121.260601Cc4R1
PhysRevLett.121.260601Cc81R1
M. D. Zeiler (PhysRevLett.121.260601Cc19R1) 2014
PhysRevLett.121.260601Cc2R1
PhysRevLett.121.260601Cc60R1
Y. Zhang (PhysRevLett.121.260601Cc69R1) 2012; 25
References_xml – ident: PhysRevLett.121.260601Cc22R1
  doi: 10.1007/s10955-017-1770-6
– volume-title: Proceedings of the European Conference on Computer Vision
  year: 2014
  ident: PhysRevLett.121.260601Cc19R1
– ident: PhysRevLett.121.260601Cc66R1
  doi: 10.1063/1.1543581
– volume-title: Wavelets and Renormalization
  year: 1999
  ident: PhysRevLett.121.260601Cc73R1
– ident: PhysRevLett.121.260601Cc4R1
  doi: 10.1103/RevModPhys.47.773
– ident: PhysRevLett.121.260601Cc75R1
  doi: 10.1103/PhysRevLett.116.140403
– ident: PhysRevLett.121.260601Cc43R1
  doi: 10.1016/0370-2693(87)91197-X
– ident: PhysRevLett.121.260601Cc16R1
  doi: 10.1103/PhysRevLett.118.110504
– volume-title: Critical Phenomena
  year: 1983
  ident: PhysRevLett.121.260601Cc68R1
– volume-title: NIPS 2017 Workshop Autodiff
  year: 2017
  ident: PhysRevLett.121.260601Cc52R1
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: PhysRevLett.121.260601Cc64R1
– ident: PhysRevLett.121.260601Cc67R1
  doi: 10.1063/1.1543582
– ident: PhysRevLett.121.260601Cc9R1
  doi: 10.1103/PhysRevB.80.155131
– volume-title: Monte Carlo Strategies in Scientific Computing
  year: 2001
  ident: PhysRevLett.121.260601Cc62R1
– ident: PhysRevLett.121.260601Cc60R1
  doi: 10.1103/PhysRevB.95.041101
– ident: PhysRevLett.121.260601Cc6R1
  doi: 10.1103/PhysRevLett.101.110501
– ident: PhysRevLett.121.260601Cc10R1
  doi: 10.1103/PhysRevLett.103.160601
– ident: PhysRevLett.121.260601Cc13R1
  doi: 10.1103/RevModPhys.86.647
– ident: PhysRevLett.121.260601Cc56R1
  doi: 10.1103/PhysRevLett.105.010502
– ident: PhysRevLett.121.260601Cc7R1
  doi: 10.1103/PhysRevLett.99.120601
– ident: PhysRevLett.121.260601Cc12R1
  doi: 10.1103/PhysRevB.86.045139
– ident: PhysRevLett.121.260601Cc23R1
  doi: 10.1103/PhysRevE.97.053304
– ident: PhysRevLett.121.260601Cc2R1
  doi: 10.1103/PhysRevB.4.3174
– ident: PhysRevLett.121.260601Cc15R1
  doi: 10.1103/PhysRevLett.115.200401
– ident: PhysRevLett.121.260601Cc11R1
  doi: 10.1103/PhysRevB.81.174411
– ident: PhysRevLett.121.260601Cc79R1
  doi: 10.1103/PhysRevE.69.066138
– ident: PhysRevLett.121.260601Cc71R1
  doi: 10.1103/PhysRev.65.117
– ident: PhysRevLett.121.260601Cc18R1
  doi: 10.1103/PhysRevB.97.045111
– ident: PhysRevLett.121.260601Cc24R1
  doi: 10.1038/s41567-018-0081-4
– ident: PhysRevLett.121.260601Cc54R1
  doi: 10.1103/PhysRevLett.91.147902
– volume-title: Handbook of Markov Chain Monte Carlo
  year: 2011
  ident: PhysRevLett.121.260601Cc45R1
– ident: PhysRevLett.121.260601Cc82R1
  doi: 10.1103/PhysRevD.86.065007
– ident: PhysRevLett.121.260601Cc27R1
  doi: 10.1007/s10955-017-1836-5
– ident: PhysRevLett.121.260601Cc1R1
  doi: 10.1103/PhysRev.95.1300
– ident: PhysRevLett.121.260601Cc5R1
  doi: 10.1103/PhysRevLett.42.859
– ident: PhysRevLett.121.260601Cc25R1
  doi: 10.1103/PhysRevB.97.045153
– volume: 25
  start-page: 3194
  issn: 1049-5258
  year: 2012
  ident: PhysRevLett.121.260601Cc69R1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: PhysRevLett.121.260601Cc72R1
  doi: 10.1103/PhysRev.76.1232
– volume-title: Deep Learning
  year: 2016
  ident: PhysRevLett.121.260601Cc50R1
– ident: PhysRevLett.121.260601Cc76R1
  doi: 10.1103/PhysRevA.97.052314
– ident: PhysRevLett.121.260601Cc81R1
  doi: 10.1073/pnas.1618455114
– ident: PhysRevLett.121.260601Cc55R1
  doi: 10.1103/PhysRevA.74.022320
– ident: PhysRevLett.121.260601Cc3R1
  doi: 10.1103/PhysRevB.4.3184
– ident: PhysRevLett.121.260601Cc57R1
  doi: 10.1103/PhysRevLett.100.070502
– volume-title: Statistical Mechanics: A Set of Lectures
  year: 1972
  ident: PhysRevLett.121.260601Cc63R1
– ident: PhysRevLett.121.260601Cc59R1
  doi: 10.1103/PhysRevB.95.035105
– ident: PhysRevLett.121.260601Cc42R1
  doi: 10.1063/1.1699114
– ident: PhysRevLett.121.260601Cc14R1
  doi: 10.1103/PhysRevLett.115.180405
– volume-title: Information Theory, Inference, and Learning Algorithms
  year: 2005
  ident: PhysRevLett.121.260601Cc61R1
– ident: PhysRevLett.121.260601Cc8R1
  doi: 10.1103/PhysRevB.78.205116
– volume-title: NIPS Workshop on Advances in Approximate Bayesian Inference
  year: 2016
  ident: PhysRevLett.121.260601Cc48R1
– ident: PhysRevLett.121.260601Cc17R1
  doi: 10.1103/PhysRevLett.118.250602
– ident: PhysRevLett.121.260601Cc80R1
  doi: 10.1002/wcms.31
SSID ssj0001268
Score 2.6531312
Snippet We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 260601
SubjectTerms Computer simulation
Distillation
Free energy
Independent variables
Ising model
Mathematical models
Neural networks
Training
Upper bounds
Wavelet analysis
Title Neural Network Renormalization Group
URI https://www.ncbi.nlm.nih.gov/pubmed/30636161
https://www.proquest.com/docview/2173841973
https://www.proquest.com/docview/2179350861
Volume 121
WOSCitedRecordID wos000454432900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jKPji98d0SoW91jW9Nh-PIg5fHDIU-laS9ArC6GRff79J2hUFh-ylL2na43KX-11yH4QMrIkrMdYYQmElOCmptjrH01DKVChZUANR4ZtN8PFYZJl865Do7xt8GsHQRUJOcO2yW1wphAcLwFmdsCUS17IAXrN266Uxq7decHEHEW9Sgrd_5rc12gIxvakZHe1O5DE5bGBl8FjLwQnpYHVK9n14p1mckYGrwWHHx3XQdzDBymHVaZOEGfgTqHPyMXp-f3oJm_4IoQGQy7BABkompQEeJUpzpkEro0tlGOMe2MTclLGiGqCgWNAYY0xookwkuJEaLki3mlV4RYJCppyqApQr8GaQaUxlgoBCUVSa0R5JN3zKTVM83PWwmObeiYgg_8GB3HIgrznQI8N23lddPuPfGf3NMuSNOi1y6zeBSKjk0CP37bBVBHe7oSqcrfw7EizcdMRe1svX_tL6RcAstr3emZwbcmAhknABLLHok-5yvsJbsmfWy8_F_M5Ln33yTHwDWDvXaw
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Renormalization+Group&rft.jtitle=Physical+review+letters&rft.au=Li%2C+Shuo-Hui&rft.au=Wang%2C+Lei&rft.date=2018-12-28&rft.issn=1079-7114&rft.eissn=1079-7114&rft.volume=121&rft.issue=26&rft.spage=260601&rft_id=info:doi/10.1103%2FPhysRevLett.121.260601&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon