Multi-objective optimization of multi-channel cold plate under intermittent pulsating flow by RSM and NSGA-Ⅱ for thermal management of electric vehicle lithium-ion battery pack
The heat transfer and energy consumption characteristics are the most important performance parameters of cold plate for thermal management of electric vehicle lithium-ion battery pack. In this work, in order to address the issue about multi-objective optimization of multi-channel cold plate under i...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 283; s. 129085 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.11.2023
|
| Témata: | |
| ISSN: | 0360-5442 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The heat transfer and energy consumption characteristics are the most important performance parameters of cold plate for thermal management of electric vehicle lithium-ion battery pack. In this work, in order to address the issue about multi-objective optimization of multi-channel cold plate under intermittent pulsating flow, RSM (Response Surface Methodology) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) is combined to make a trade-off between the average heat transfer coefficient and energy consumption of multi-channel cold plate under intermittent pulsating flow. Box-Behnken design is used to arrange a series of numerical investigations using the steady flow velocity vin, pulsation amplitude A, and pulsation frequency e as design variables and the average heat transfer coefficient have and energy consumption W as objective functions. Regression models are created in the form of quadratic polynomials, and the significance of each term in the model is determined by analysis of variance (ANOVA). Results show that the linear term of vin has the greatest effect on have and W. According to the Pareto optimal solution obtained from NSGA-II, the optimal objective functions are have = 394.7012 W m−2 °C−1, W = 0.1086 J, and the corresponding design variables are vin = 0.02392 m/s, A = 0.1778 and e = 3.1846 Hz.
[Display omitted]
•Heat transfer and energy consumption characteristics of multi-channel cold plate are considered.•RSM and NSGA-II is combined for the multi-objective optimization.•The distribution of Pareto-optimal solutions is obtained.•The optimal parameters of intermittent pulsating flow are determined. |
|---|---|
| AbstractList | The heat transfer and energy consumption characteristics are the most important performance parameters of cold plate for thermal management of electric vehicle lithium-ion battery pack. In this work, in order to address the issue about multi-objective optimization of multi-channel cold plate under intermittent pulsating flow, RSM (Response Surface Methodology) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) is combined to make a trade-off between the average heat transfer coefficient and energy consumption of multi-channel cold plate under intermittent pulsating flow. Box-Behnken design is used to arrange a series of numerical investigations using the steady flow velocity vᵢₙ, pulsation amplitude A, and pulsation frequency e as design variables and the average heat transfer coefficient hₐᵥₑ and energy consumption W as objective functions. Regression models are created in the form of quadratic polynomials, and the significance of each term in the model is determined by analysis of variance (ANOVA). Results show that the linear term of vᵢₙ has the greatest effect on hₐᵥₑ and W. According to the Pareto optimal solution obtained from NSGA-II, the optimal objective functions are hₐᵥₑ = 394.7012 W m⁻² °C⁻¹, W = 0.1086 J, and the corresponding design variables are vᵢₙ = 0.02392 m/s, A = 0.1778 and e = 3.1846 Hz. The heat transfer and energy consumption characteristics are the most important performance parameters of cold plate for thermal management of electric vehicle lithium-ion battery pack. In this work, in order to address the issue about multi-objective optimization of multi-channel cold plate under intermittent pulsating flow, RSM (Response Surface Methodology) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) is combined to make a trade-off between the average heat transfer coefficient and energy consumption of multi-channel cold plate under intermittent pulsating flow. Box-Behnken design is used to arrange a series of numerical investigations using the steady flow velocity vin, pulsation amplitude A, and pulsation frequency e as design variables and the average heat transfer coefficient have and energy consumption W as objective functions. Regression models are created in the form of quadratic polynomials, and the significance of each term in the model is determined by analysis of variance (ANOVA). Results show that the linear term of vin has the greatest effect on have and W. According to the Pareto optimal solution obtained from NSGA-II, the optimal objective functions are have = 394.7012 W m−2 °C−1, W = 0.1086 J, and the corresponding design variables are vin = 0.02392 m/s, A = 0.1778 and e = 3.1846 Hz. [Display omitted] •Heat transfer and energy consumption characteristics of multi-channel cold plate are considered.•RSM and NSGA-II is combined for the multi-objective optimization.•The distribution of Pareto-optimal solutions is obtained.•The optimal parameters of intermittent pulsating flow are determined. |
| ArticleNumber | 129085 |
| Author | Li, Qingqing Zhou, Kun Zuo, Wei Li, Dexin Cheng, Qianju E, Jiaqiang |
| Author_xml | – sequence: 1 givenname: Wei surname: Zuo fullname: Zuo, Wei organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 2 givenname: Dexin surname: Li fullname: Li, Dexin organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 3 givenname: Qingqing surname: Li fullname: Li, Qingqing email: liqingqing426@163.com organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 4 givenname: Qianju surname: Cheng fullname: Cheng, Qianju organization: School of Mechanical and Electrical Engineering, Huanggang Normal University, Huanggang, 438000, China – sequence: 5 givenname: Kun surname: Zhou fullname: Zhou, Kun organization: The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China – sequence: 6 givenname: Jiaqiang surname: E fullname: E, Jiaqiang organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China |
| BookMark | eNqFkc9u1DAQxnMoEm3pG3DwkUsWO06yGw5IVQWlUgtSC2fLsce7szh2sJ2tlnsfpK_QR-JJ8DacOMBl5jDzmz_fd1IcOe-gKF4zumCUtW-3C3AQ1vtFRSu-YFVHV81RcUx5S8umrquXxUmMW0pps-q64-LpZrIJS99vQSXcAfFjwgF_yoTeEW_I8FxXG-kcWKK81WS0MgGZnIZA0CUIA6YELpFxsjGDbk2M9fek35PbuxsinSaf7y7Py18Pj8T4QNImI9KSQTq5huFA5kVg8wUBFdnBBpUFYjFtcBrKwyG9zBvCnoxSfX9VvDDSRjj7k0-Lbx8_fL34VF5_uby6OL8uFeddKnWvK1XxpalUw3jFjOSgQDPdcdbTbmlqk8t9DlD3HWgDspfQtg2oWtfM8NPizTx3DP7HBDGJAaMCa6UDP0XBWcNZu-LLVW59N7eq4GMMYITC9CxhChKtYFQczBFbMZsjDuaI2ZwM13_BY8BBhv3_sPczBlmDHUIQUSG4_CKGrKTQHv894Dfnu7aG |
| CitedBy_id | crossref_primary_10_1016_j_tsep_2025_104070 crossref_primary_10_1016_j_energy_2025_137987 crossref_primary_10_1016_j_prime_2024_100822 crossref_primary_10_1016_j_energy_2024_133266 crossref_primary_10_1016_j_energy_2024_132134 crossref_primary_10_1016_j_energy_2024_133728 crossref_primary_10_1016_j_est_2025_116586 crossref_primary_10_3389_fmech_2024_1411456 crossref_primary_10_1016_j_psep_2025_107560 crossref_primary_10_1016_j_energy_2024_131406 crossref_primary_10_1016_j_applthermaleng_2024_123682 crossref_primary_10_1016_j_est_2024_115125 crossref_primary_10_1016_j_ijrefrig_2025_02_022 crossref_primary_10_3389_fenrg_2024_1373586 crossref_primary_10_3389_fenrg_2024_1432725 crossref_primary_10_1016_j_rineng_2025_105566 crossref_primary_10_1016_j_applthermaleng_2024_124873 crossref_primary_10_1016_j_apenergy_2024_123898 crossref_primary_10_1016_j_applthermaleng_2024_124676 crossref_primary_10_1016_j_ijthermalsci_2023_108843 crossref_primary_10_1021_acs_iecr_5c01224 crossref_primary_10_1039_D4SE00459K crossref_primary_10_3390_wevj16050249 crossref_primary_10_1016_j_enconman_2024_118383 crossref_primary_10_1016_j_energy_2025_135679 crossref_primary_10_1016_j_energy_2025_135712 crossref_primary_10_1016_j_icheatmasstransfer_2025_108669 crossref_primary_10_1016_j_tsep_2025_104068 crossref_primary_10_3389_fmech_2025_1440903 crossref_primary_10_1016_j_est_2025_117102 crossref_primary_10_1016_j_jhazmat_2024_134154 crossref_primary_10_1016_j_est_2024_112726 crossref_primary_10_1016_j_rineng_2024_103547 crossref_primary_10_1007_s00170_024_14283_3 crossref_primary_10_1080_15435075_2025_2469802 crossref_primary_10_1016_j_energy_2025_137938 crossref_primary_10_1016_j_energy_2024_132769 crossref_primary_10_1016_j_rineng_2024_102913 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127298 crossref_primary_10_1002_apj_70056 crossref_primary_10_1016_j_est_2024_113212 crossref_primary_10_1016_j_apenergy_2024_123766 crossref_primary_10_1016_j_applthermaleng_2025_126765 crossref_primary_10_1016_j_icheatmasstransfer_2024_108575 |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2020.120568 10.1016/j.enconman.2016.08.063 10.1016/j.enconman.2016.03.054 10.1016/j.cherd.2017.12.018 10.1063/5.0087055 10.1016/j.energy.2020.118482 10.1016/j.applthermaleng.2022.118503 10.1149/1.3597614 10.1016/j.energy.2022.123637 10.1016/j.ijheatmasstransfer.2014.01.038 10.1016/j.fuproc.2020.106527 10.1016/j.apenergy.2019.113343 10.1016/j.est.2021.102885 10.1038/s41598-017-16372-8 10.1016/j.est.2023.107263 10.1016/j.renene.2022.04.116 10.1016/j.enconman.2022.115490 10.1016/j.renene.2018.01.034 10.1016/j.ijheatmasstransfer.2017.03.005 10.1016/j.enconman.2018.12.051 10.1016/j.csite.2021.101124 10.1063/5.0082617 10.1016/S0378-7753(02)00363-4 10.1080/00401706.1960.10489912 10.1016/j.jpowsour.2012.04.015 10.1016/j.energy.2019.116150 10.1007/978-1-4612-4380-9_23 10.1016/j.enconman.2023.116691 10.1109/4235.996017 10.1016/j.ast.2018.01.006 10.1016/j.est.2022.104040 10.1016/j.applthermaleng.2021.116729 10.1063/5.0147474 10.3390/vehicles1010008 10.1016/j.est.2021.102301 10.1016/j.energy.2023.127250 10.1016/j.energy.2021.121652 10.1016/j.applthermaleng.2019.114421 10.1016/j.applthermaleng.2022.119385 10.1016/j.expthermflusci.2013.08.021 10.1016/j.envres.2021.110975 10.1016/j.apenergy.2020.114698 10.1016/j.est.2022.106004 10.1016/j.applthermaleng.2022.119497 10.1002/er.3801 10.1016/j.ijft.2022.100255 10.1016/j.jpowsour.2021.229539 10.1016/j.energy.2021.123039 10.1016/j.enconman.2021.114936 10.1016/j.energy.2022.125384 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2023.129085 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2023_129085 S0360544223024799 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-dbd2c237f2c51321fa3eced1d931b097f4fc23bfc2e4b9edfeabae665ec4d41f3 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093145400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Mon Sep 29 05:35:52 EDT 2025 Tue Nov 18 22:39:08 EST 2025 Sat Nov 29 07:21:04 EST 2025 Tue Jul 16 14:15:01 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-channel cold plate Multi-objective optimization Intermittent pulsating flow Non-dominated sorting genetic algorithm II Response surface methodology |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-dbd2c237f2c51321fa3eced1d931b097f4fc23bfc2e4b9edfeabae665ec4d41f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3153168378 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153168378 crossref_citationtrail_10_1016_j_energy_2023_129085 crossref_primary_10_1016_j_energy_2023_129085 elsevier_sciencedirect_doi_10_1016_j_energy_2023_129085 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-15 |
| PublicationDateYYYYMMDD | 2023-11-15 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Zhao (bib17) 2018; 74 Gandoman, Jaguemont, Goutam, Gopalakrishnan, Firouz, Kalogiannis, Omar, Van Mierlo (bib8) 2019; 251 Qian, Li, Rao (bib26) 2016; 126 Li, Zuo, E J, Zhang, Li, Sun, Zhou, Zhang (bib35) 2022; 242 Liu, Shi, Shen, Xie (bib45) 2019; 189 Chen, Zhang, Zhu, Feng, Wei, Ouyang, Dai (bib37) 2022; 211 Panchal, Dincer, Agelin-Chaab, Fraser, Fowler (bib41) 2017; 109 Wu, Wang, Wu, Chen, Hong, Lai (bib24) 2019; 182 Yang, Tan, Liu (bib32) 2016; 117 Sun, Guo, Zhang, Whitehouse, Zhou, Xu, Wang (bib13) 2023; 17 Sun, Rao, Zhao, Wang, Sun, Sun (bib19) 2020; 264 Chen, Chang, Mutuku, Lam, Lee (bib53) 2021; 197 Cai, Zhao (bib18) 2020; 209 Sharma, Prabhakar (bib22) 2021; 41 Ran, Su, Chen, Yan, Yang, Zhao (bib15) 2022; 50 Box, Behnken (bib51) 1960; 2 Bao, Shao (bib31) 2023; 64 Shim (bib9) 2002; 112 Deb, Pratap, Agarwal, Meyarivan (bib38) 2002; 6 Zhang, Li, Luo, Fan, Du (bib3) 2022; 238 Guo, Xu, Zhao, Zhai, Zhao, Ni (bib44) 2022; 51 Mokhtari Mehmandoosti, Kowsary (bib34) 2023; 219 Sun, Zhao, Ji, Zhu, Rao, Wang (bib5) 2022; 34 Chacko, Chung (bib11) 2012; 213 Monika, Datta (bib14) 2022; 251 Zuo, Zhang, E J, Huang, Li, Zhou, Zhang (bib29) 2022; 261 Wu (bib21) 2022; 56 Zhang, Zuo, E J, Li, Li, Sun, Zhou, Zhang (bib28) 2022; 248 Li, Zuo, Li, Zhang, Zhou, E J (bib33) 2023; 273 Zhao, Guan (bib6) 2022; 34 Monika, Chakraborty, Roy, Dinda, Singh, Datta (bib39) 2021; 35 Ghaeminezhad, Wang, Ouyang (bib23) 2023; 219 Wang, Liu, Liu, Liu, Wang, Yang (bib30) 2021; 26 Li, Lu, Gao (bib55) 2021; 36 Peng, Ou, Yan (bib2) 2018; 131 Liu, Li, Li, Shi, Wang, Chen (bib7) 2020; 164 Lari, Sahin (bib12) 2018; 122 Kim, Smith, Lee, Santhanagopalan, Pesaran (bib49) 2011; 158 Wang, Zhang, Meng, Li, Situ, Lv, Rao (bib25) 2017; 41 Jiang, Zhao, Rao (bib46) 2021; 189 Verma, Rakshit (bib43) 2022; 32 He, Li, Ma (bib47) 2014; 72 Zhang, Wu, Chen, Zhou, Song (bib16) 2021; 490 Liu, Liao, Lai (bib42) 2019; 1 Ren, Zhou, Ou (bib1) 2020; 209 Tahir, Merten (bib48) 2022; 258 Li, Huang, Yan, Zhao, Zhao, Wei, Wang (bib20) 2014; 52 Zuo, Zhang, E J, Li, Li, Zhang (bib27) 2022; 192 Monika, Chakraborty, Roy, Dinda, Singh, Datta (bib40) 2021; 164 Monika, Chakraborty, Roy, Dinda, Singh, Datta (bib50) 2021; 35 Ma, Jiang, Tao, Song, Wu, Wang, Deng, Shang (bib10) 2018; 28 Kishore, Sanghadasa, Priya (bib52) 2017; 7 Guan, Zhao (bib4) 2023; 35 Chen, Zuo, Zhou, Li, Huang, E J (bib36) 2023; 277 Box, Wilson (bib54) 1992 Bao (10.1016/j.energy.2023.129085_bib31) 2023; 64 Yang (10.1016/j.energy.2023.129085_bib32) 2016; 117 Zuo (10.1016/j.energy.2023.129085_bib27) 2022; 192 Kishore (10.1016/j.energy.2023.129085_bib52) 2017; 7 Kim (10.1016/j.energy.2023.129085_bib49) 2011; 158 Sun (10.1016/j.energy.2023.129085_bib5) 2022; 34 Verma (10.1016/j.energy.2023.129085_bib43) 2022; 32 Peng (10.1016/j.energy.2023.129085_bib2) 2018; 131 Liu (10.1016/j.energy.2023.129085_bib45) 2019; 189 Jiang (10.1016/j.energy.2023.129085_bib46) 2021; 189 Mokhtari Mehmandoosti (10.1016/j.energy.2023.129085_bib34) 2023; 219 Tahir (10.1016/j.energy.2023.129085_bib48) 2022; 258 Box (10.1016/j.energy.2023.129085_bib51) 1960; 2 Sun (10.1016/j.energy.2023.129085_bib13) 2023; 17 Zhang (10.1016/j.energy.2023.129085_bib16) 2021; 490 Shim (10.1016/j.energy.2023.129085_bib9) 2002; 112 Wu (10.1016/j.energy.2023.129085_bib24) 2019; 182 Chen (10.1016/j.energy.2023.129085_bib53) 2021; 197 Ren (10.1016/j.energy.2023.129085_bib1) 2020; 209 Guan (10.1016/j.energy.2023.129085_bib4) 2023; 35 Ma (10.1016/j.energy.2023.129085_bib10) 2018; 28 Wang (10.1016/j.energy.2023.129085_bib30) 2021; 26 Zhao (10.1016/j.energy.2023.129085_bib6) 2022; 34 Monika (10.1016/j.energy.2023.129085_bib50) 2021; 35 Wang (10.1016/j.energy.2023.129085_bib25) 2017; 41 Zhang (10.1016/j.energy.2023.129085_bib28) 2022; 248 Qian (10.1016/j.energy.2023.129085_bib26) 2016; 126 Sharma (10.1016/j.energy.2023.129085_bib22) 2021; 41 Zuo (10.1016/j.energy.2023.129085_bib29) 2022; 261 Chen (10.1016/j.energy.2023.129085_bib36) 2023; 277 Li (10.1016/j.energy.2023.129085_bib20) 2014; 52 Panchal (10.1016/j.energy.2023.129085_bib41) 2017; 109 Lari (10.1016/j.energy.2023.129085_bib12) 2018; 122 Chen (10.1016/j.energy.2023.129085_bib17) 2018; 74 Chacko (10.1016/j.energy.2023.129085_bib11) 2012; 213 Chen (10.1016/j.energy.2023.129085_bib37) 2022; 211 Liu (10.1016/j.energy.2023.129085_bib42) 2019; 1 Cai (10.1016/j.energy.2023.129085_bib18) 2020; 209 Wu (10.1016/j.energy.2023.129085_bib21) 2022; 56 Deb (10.1016/j.energy.2023.129085_bib38) 2002; 6 Monika (10.1016/j.energy.2023.129085_bib40) 2021; 164 Sun (10.1016/j.energy.2023.129085_bib19) 2020; 264 Zhang (10.1016/j.energy.2023.129085_bib3) 2022; 238 Li (10.1016/j.energy.2023.129085_bib33) 2023; 273 Liu (10.1016/j.energy.2023.129085_bib7) 2020; 164 Guo (10.1016/j.energy.2023.129085_bib44) 2022; 51 Box (10.1016/j.energy.2023.129085_bib54) 1992 Monika (10.1016/j.energy.2023.129085_bib14) 2022; 251 Ghaeminezhad (10.1016/j.energy.2023.129085_bib23) 2023; 219 Li (10.1016/j.energy.2023.129085_bib35) 2022; 242 Ran (10.1016/j.energy.2023.129085_bib15) 2022; 50 Monika (10.1016/j.energy.2023.129085_bib39) 2021; 35 Li (10.1016/j.energy.2023.129085_bib55) 2021; 36 Gandoman (10.1016/j.energy.2023.129085_bib8) 2019; 251 He (10.1016/j.energy.2023.129085_bib47) 2014; 72 |
| References_xml | – volume: 197 year: 2021 ident: bib53 article-title: Analysis of microparticle deposition in the human lung by taguchi method and response surface methodology publication-title: Environ Res – volume: 219 year: 2023 ident: bib34 article-title: Artificial neural network-based multi-objective optimization of cooling of lithium-ion batteries used in electric vehicles utilizing pulsating coolant flow publication-title: Appl Therm Eng – volume: 182 start-page: 262 year: 2019 end-page: 281 ident: bib24 article-title: A critical review of battery thermal performance and liquid based battery thermal management publication-title: Energy Convers Manag – volume: 109 start-page: 1239 year: 2017 end-page: 1251 ident: bib41 article-title: Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO publication-title: Int J Heat Mass Tran – volume: 35 year: 2023 ident: bib4 article-title: Enhancing ammonia combustion with minimum hydrogen blended in presence of self-excited intermittent pulsating oscillations publication-title: Phys Fluids – volume: 34 year: 2022 ident: bib5 article-title: Large-eddy simulations of self-excited thermoacoustic instability in a premixed swirling combustor with an outlet nozzle publication-title: Phys Fluids – volume: 238 year: 2022 ident: bib3 article-title: A review on thermal management of lithium-ion batteries for electric vehicles publication-title: Energy – volume: 211 year: 2022 ident: bib37 article-title: Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging publication-title: Appl Therm Eng – volume: 209 year: 2020 ident: bib1 article-title: Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China publication-title: Energy – volume: 189 year: 2021 ident: bib46 article-title: Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management publication-title: Appl Therm Eng – volume: 72 start-page: 622 year: 2014 end-page: 629 ident: bib47 article-title: Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells publication-title: Int J Heat Mass Tran – volume: 251 year: 2022 ident: bib14 article-title: Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module publication-title: Energy Convers Manag – volume: 35 year: 2021 ident: bib50 article-title: An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles publication-title: J Energy Storage – volume: 41 year: 2021 ident: bib22 article-title: A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles publication-title: J Energy Storage – volume: 219 year: 2023 ident: bib23 article-title: A Review on lithium-ion battery thermal management system techniques: a control-oriented analysis publication-title: Appl Therm Eng – volume: 112 start-page: 222 year: 2002 end-page: 230 ident: bib9 article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature publication-title: J Power Sources – volume: 131 start-page: 699 year: 2018 end-page: 708 ident: bib2 article-title: Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model publication-title: Chem Eng Res Des – volume: 17 year: 2023 ident: bib13 article-title: Experimental study of battery passive thermal management system using copper foam-based phase change materials publication-title: Int J of Thermofluids – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib38 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 34 year: 2022 ident: bib6 article-title: Characterizing modal exponential growth behaviors of self-excited transverse and longitudinal thermoacoustic instabilities publication-title: Phys Fluids – volume: 264 year: 2020 ident: bib19 article-title: Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor publication-title: Appl Energy – volume: 41 start-page: 2468 year: 2017 end-page: 2479 ident: bib25 article-title: Liquid cooling based on thermal silica plate for battery thermal management system publication-title: Int J Energy Res – volume: 52 start-page: 47 year: 2014 end-page: 58 ident: bib20 article-title: Experimental study of n-heptane/air combustion in meso-scale burners with porous media publication-title: Exp Therm Fluid Sci – volume: 32 year: 2022 ident: bib43 article-title: Performance analysis of PCM-fin combination for heat abatement of Li-ion battery pack in electric vehicles at high ambient temperature publication-title: Therm Sci Eng Prog – volume: 74 start-page: 81 year: 2018 end-page: 92 ident: bib17 article-title: Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor publication-title: Aero Sci Technol – volume: 36 year: 2021 ident: bib55 article-title: Optimization of mixture proportions by statistical experimental design using response surface method - a review publication-title: J Build Eng – volume: 35 year: 2021 ident: bib39 article-title: An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles publication-title: J Energy Storage – volume: 122 start-page: 98 year: 2018 end-page: 107 ident: bib12 article-title: Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications publication-title: Renew Energy – volume: 56 year: 2022 ident: bib21 article-title: Multi-objective optimization of U-type air-cooled thermal management system for enhanced cooling behavior of lithium-ion battery pack publication-title: J Energy Storage – volume: 117 start-page: 577 year: 2016 end-page: 585 ident: bib32 article-title: Thermal management of Li-ion battery with liquid metal publication-title: Energy Convers Manag – volume: 258 year: 2022 ident: bib48 article-title: Multi-scale thermal modeling, experimental validation, and thermal characterization of a high-power lithium-ion cell for automobile application publication-title: Energy Convers Manag – volume: 164 year: 2020 ident: bib7 article-title: Thermal characteristics of power battery pack with liquid-based thermal management publication-title: Appl Therm Eng – volume: 261 year: 2022 ident: bib29 article-title: Effects of multi-factors on performance of an improved multi-channel cold plate for thermal management of a prismatic LiFePO4 battery publication-title: Energy – volume: 192 start-page: 46 year: 2022 end-page: 57 ident: bib27 article-title: Performance comparison between single S-channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery publication-title: Renew Energy – start-page: 270 year: 1992 end-page: 310 ident: bib54 article-title: On the experimental attainment of optimum conditions publication-title: Breakthroughs in statistics: methodology and distribution – volume: 64 year: 2023 ident: bib31 article-title: Numerical study on ultrathin wide straight flow channel cold plate for Li-ion battery thermal management publication-title: J Energy Storage – volume: 1 start-page: 127 year: 2019 end-page: 137 ident: bib42 article-title: Transient temperature distributions on lithium-ion polymer SLI battery publication-title: Vehicles – volume: 126 start-page: 622 year: 2016 end-page: 631 ident: bib26 article-title: Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling publication-title: Energy Convers Manag – volume: 248 year: 2022 ident: bib28 article-title: Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery publication-title: Energy – volume: 28 start-page: 653 year: 2018 end-page: 666 ident: bib10 article-title: Temperature effect and thermal impact in lithium-ion batteries: a review publication-title: Progress in Nat Sci-Materials Int – volume: 7 year: 2017 ident: bib52 article-title: Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques publication-title: Sci Rep – volume: 273 year: 2023 ident: bib33 article-title: Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack publication-title: Energy – volume: 189 year: 2019 ident: bib45 article-title: The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: experimental and numerical optimization publication-title: Energy – volume: 277 year: 2023 ident: bib36 article-title: Multi-objective optimization of proton exchange membrane fuel cells by RSM and NSGA-II publication-title: Energy Convers Manag – volume: 242 year: 2022 ident: bib35 article-title: Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II publication-title: Energy – volume: 50 year: 2022 ident: bib15 article-title: Investigation on thermal performance of water-cooled Li-ion cell and module with tree-shaped channel cold plate publication-title: J Energy Storage – volume: 26 year: 2021 ident: bib30 article-title: Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery publication-title: Case Stud Therm Eng – volume: 251 year: 2019 ident: bib8 article-title: Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges publication-title: Appl Energy – volume: 164 year: 2021 ident: bib40 article-title: Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates publication-title: Int J Heat Mass Tran – volume: 209 year: 2020 ident: bib18 article-title: Effects of fuel composition and wall thermal conductivity on thermal and NO publication-title: Fuel Process Technol – volume: 51 year: 2022 ident: bib44 article-title: A new battery thermal management system employing the mini-channel cold plate with pin fins publication-title: Sustain Energy Technol Assessments – volume: 2 start-page: 455 year: 1960 end-page: 475 ident: bib51 article-title: Some new three level designs for the study of quantitative variables publication-title: Technometrics – volume: 158 start-page: A955 year: 2011 end-page: A969 ident: bib49 article-title: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales publication-title: J Electrochem Soc – volume: 213 start-page: 296 year: 2012 end-page: 303 ident: bib11 article-title: Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles publication-title: J Power Sources – volume: 490 year: 2021 ident: bib16 article-title: Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems publication-title: J Power Sources – volume: 164 year: 2021 ident: 10.1016/j.energy.2023.129085_bib40 article-title: Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2020.120568 – volume: 126 start-page: 622 year: 2016 ident: 10.1016/j.energy.2023.129085_bib26 article-title: Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.08.063 – volume: 51 year: 2022 ident: 10.1016/j.energy.2023.129085_bib44 article-title: A new battery thermal management system employing the mini-channel cold plate with pin fins publication-title: Sustain Energy Technol Assessments – volume: 117 start-page: 577 year: 2016 ident: 10.1016/j.energy.2023.129085_bib32 article-title: Thermal management of Li-ion battery with liquid metal publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.03.054 – volume: 131 start-page: 699 year: 2018 ident: 10.1016/j.energy.2023.129085_bib2 article-title: Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2017.12.018 – volume: 34 issue: 4 year: 2022 ident: 10.1016/j.energy.2023.129085_bib5 article-title: Large-eddy simulations of self-excited thermoacoustic instability in a premixed swirling combustor with an outlet nozzle publication-title: Phys Fluids doi: 10.1063/5.0087055 – volume: 36 year: 2021 ident: 10.1016/j.energy.2023.129085_bib55 article-title: Optimization of mixture proportions by statistical experimental design using response surface method - a review publication-title: J Build Eng – volume: 209 year: 2020 ident: 10.1016/j.energy.2023.129085_bib1 article-title: Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China publication-title: Energy doi: 10.1016/j.energy.2020.118482 – volume: 211 year: 2022 ident: 10.1016/j.energy.2023.129085_bib37 article-title: Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118503 – volume: 158 start-page: A955 issue: 8 year: 2011 ident: 10.1016/j.energy.2023.129085_bib49 article-title: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales publication-title: J Electrochem Soc doi: 10.1149/1.3597614 – volume: 248 year: 2022 ident: 10.1016/j.energy.2023.129085_bib28 article-title: Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery publication-title: Energy doi: 10.1016/j.energy.2022.123637 – volume: 72 start-page: 622 year: 2014 ident: 10.1016/j.energy.2023.129085_bib47 article-title: Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2014.01.038 – volume: 32 year: 2022 ident: 10.1016/j.energy.2023.129085_bib43 article-title: Performance analysis of PCM-fin combination for heat abatement of Li-ion battery pack in electric vehicles at high ambient temperature publication-title: Therm Sci Eng Prog – volume: 209 year: 2020 ident: 10.1016/j.energy.2023.129085_bib18 article-title: Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2020.106527 – volume: 251 year: 2019 ident: 10.1016/j.energy.2023.129085_bib8 article-title: Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113343 – volume: 41 year: 2021 ident: 10.1016/j.energy.2023.129085_bib22 article-title: A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles publication-title: J Energy Storage doi: 10.1016/j.est.2021.102885 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.energy.2023.129085_bib52 article-title: Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques publication-title: Sci Rep doi: 10.1038/s41598-017-16372-8 – volume: 64 year: 2023 ident: 10.1016/j.energy.2023.129085_bib31 article-title: Numerical study on ultrathin wide straight flow channel cold plate for Li-ion battery thermal management publication-title: J Energy Storage doi: 10.1016/j.est.2023.107263 – volume: 192 start-page: 46 year: 2022 ident: 10.1016/j.energy.2023.129085_bib27 article-title: Performance comparison between single S-channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery publication-title: Renew Energy doi: 10.1016/j.renene.2022.04.116 – volume: 258 year: 2022 ident: 10.1016/j.energy.2023.129085_bib48 article-title: Multi-scale thermal modeling, experimental validation, and thermal characterization of a high-power lithium-ion cell for automobile application publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.115490 – volume: 122 start-page: 98 year: 2018 ident: 10.1016/j.energy.2023.129085_bib12 article-title: Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications publication-title: Renew Energy doi: 10.1016/j.renene.2018.01.034 – volume: 109 start-page: 1239 year: 2017 ident: 10.1016/j.energy.2023.129085_bib41 article-title: Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2017.03.005 – volume: 182 start-page: 262 year: 2019 ident: 10.1016/j.energy.2023.129085_bib24 article-title: A critical review of battery thermal performance and liquid based battery thermal management publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.12.051 – volume: 26 year: 2021 ident: 10.1016/j.energy.2023.129085_bib30 article-title: Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101124 – volume: 34 issue: 2 year: 2022 ident: 10.1016/j.energy.2023.129085_bib6 article-title: Characterizing modal exponential growth behaviors of self-excited transverse and longitudinal thermoacoustic instabilities publication-title: Phys Fluids doi: 10.1063/5.0082617 – volume: 112 start-page: 222 issue: 1 year: 2002 ident: 10.1016/j.energy.2023.129085_bib9 article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00363-4 – volume: 28 start-page: 653 issue: 6 year: 2018 ident: 10.1016/j.energy.2023.129085_bib10 article-title: Temperature effect and thermal impact in lithium-ion batteries: a review publication-title: Progress in Nat Sci-Materials Int – volume: 2 start-page: 455 issue: 4 year: 1960 ident: 10.1016/j.energy.2023.129085_bib51 article-title: Some new three level designs for the study of quantitative variables publication-title: Technometrics doi: 10.1080/00401706.1960.10489912 – volume: 213 start-page: 296 year: 2012 ident: 10.1016/j.energy.2023.129085_bib11 article-title: Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.04.015 – volume: 189 year: 2019 ident: 10.1016/j.energy.2023.129085_bib45 article-title: The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: experimental and numerical optimization publication-title: Energy doi: 10.1016/j.energy.2019.116150 – start-page: 270 year: 1992 ident: 10.1016/j.energy.2023.129085_bib54 article-title: On the experimental attainment of optimum conditions publication-title: Breakthroughs in statistics: methodology and distribution doi: 10.1007/978-1-4612-4380-9_23 – volume: 277 year: 2023 ident: 10.1016/j.energy.2023.129085_bib36 article-title: Multi-objective optimization of proton exchange membrane fuel cells by RSM and NSGA-II publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.116691 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.energy.2023.129085_bib38 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 74 start-page: 81 year: 2018 ident: 10.1016/j.energy.2023.129085_bib17 article-title: Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor publication-title: Aero Sci Technol doi: 10.1016/j.ast.2018.01.006 – volume: 50 year: 2022 ident: 10.1016/j.energy.2023.129085_bib15 article-title: Investigation on thermal performance of water-cooled Li-ion cell and module with tree-shaped channel cold plate publication-title: J Energy Storage doi: 10.1016/j.est.2022.104040 – volume: 189 year: 2021 ident: 10.1016/j.energy.2023.129085_bib46 article-title: Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.116729 – volume: 35 issue: 5 year: 2023 ident: 10.1016/j.energy.2023.129085_bib4 article-title: Enhancing ammonia combustion with minimum hydrogen blended in presence of self-excited intermittent pulsating oscillations publication-title: Phys Fluids doi: 10.1063/5.0147474 – volume: 1 start-page: 127 issue: 1 year: 2019 ident: 10.1016/j.energy.2023.129085_bib42 article-title: Transient temperature distributions on lithium-ion polymer SLI battery publication-title: Vehicles doi: 10.3390/vehicles1010008 – volume: 35 year: 2021 ident: 10.1016/j.energy.2023.129085_bib39 article-title: An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles publication-title: J Energy Storage doi: 10.1016/j.est.2021.102301 – volume: 273 year: 2023 ident: 10.1016/j.energy.2023.129085_bib33 article-title: Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack publication-title: Energy doi: 10.1016/j.energy.2023.127250 – volume: 238 year: 2022 ident: 10.1016/j.energy.2023.129085_bib3 article-title: A review on thermal management of lithium-ion batteries for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2021.121652 – volume: 164 year: 2020 ident: 10.1016/j.energy.2023.129085_bib7 article-title: Thermal characteristics of power battery pack with liquid-based thermal management publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114421 – volume: 219 year: 2023 ident: 10.1016/j.energy.2023.129085_bib34 article-title: Artificial neural network-based multi-objective optimization of cooling of lithium-ion batteries used in electric vehicles utilizing pulsating coolant flow publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.119385 – volume: 35 year: 2021 ident: 10.1016/j.energy.2023.129085_bib50 article-title: An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles publication-title: J Energy Storage doi: 10.1016/j.est.2021.102301 – volume: 52 start-page: 47 year: 2014 ident: 10.1016/j.energy.2023.129085_bib20 article-title: Experimental study of n-heptane/air combustion in meso-scale burners with porous media publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2013.08.021 – volume: 197 year: 2021 ident: 10.1016/j.energy.2023.129085_bib53 article-title: Analysis of microparticle deposition in the human lung by taguchi method and response surface methodology publication-title: Environ Res doi: 10.1016/j.envres.2021.110975 – volume: 264 year: 2020 ident: 10.1016/j.energy.2023.129085_bib19 article-title: Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114698 – volume: 56 year: 2022 ident: 10.1016/j.energy.2023.129085_bib21 article-title: Multi-objective optimization of U-type air-cooled thermal management system for enhanced cooling behavior of lithium-ion battery pack publication-title: J Energy Storage doi: 10.1016/j.est.2022.106004 – volume: 219 year: 2023 ident: 10.1016/j.energy.2023.129085_bib23 article-title: A Review on lithium-ion battery thermal management system techniques: a control-oriented analysis publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.119497 – volume: 41 start-page: 2468 issue: 15 year: 2017 ident: 10.1016/j.energy.2023.129085_bib25 article-title: Liquid cooling based on thermal silica plate for battery thermal management system publication-title: Int J Energy Res doi: 10.1002/er.3801 – volume: 17 year: 2023 ident: 10.1016/j.energy.2023.129085_bib13 article-title: Experimental study of battery passive thermal management system using copper foam-based phase change materials publication-title: Int J of Thermofluids doi: 10.1016/j.ijft.2022.100255 – volume: 490 year: 2021 ident: 10.1016/j.energy.2023.129085_bib16 article-title: Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.229539 – volume: 242 year: 2022 ident: 10.1016/j.energy.2023.129085_bib35 article-title: Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II publication-title: Energy doi: 10.1016/j.energy.2021.123039 – volume: 251 year: 2022 ident: 10.1016/j.energy.2023.129085_bib14 article-title: Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114936 – volume: 261 year: 2022 ident: 10.1016/j.energy.2023.129085_bib29 article-title: Effects of multi-factors on performance of an improved multi-channel cold plate for thermal management of a prismatic LiFePO4 battery publication-title: Energy doi: 10.1016/j.energy.2022.125384 |
| SSID | ssj0005899 |
| Score | 2.5946715 |
| Snippet | The heat transfer and energy consumption characteristics are the most important performance parameters of cold plate for thermal management of electric vehicle... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 129085 |
| SubjectTerms | algorithms analysis of variance cold electric vehicles energy heat transfer heat transfer coefficient Intermittent pulsating flow lithium batteries Multi-channel cold plate Multi-objective optimization Non-dominated sorting genetic algorithm II Response surface methodology steady flow |
| Title | Multi-objective optimization of multi-channel cold plate under intermittent pulsating flow by RSM and NSGA-Ⅱ for thermal management of electric vehicle lithium-ion battery pack |
| URI | https://dx.doi.org/10.1016/j.energy.2023.129085 https://www.proquest.com/docview/3153168378 |
| Volume | 283 |
| WOSCitedRecordID | wos001093145400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKBwk2CAZGM7xkJFhVqZrYeXhZofISVAwdRMUmqh1H05JJStuUzgfwIazZ8Ul8Cb52nD5GaACJjVXlYbu6J_a1fc69CD0OgsjvJJQ4QZJwB2JMOUwEwvEo5xGNhPBTnbXkddjvR8Mhe9tofLdamGUW5nm0WrHpfzW1uqaMDdLZvzB3Xam6oH4ro6tSmV2Vf2R4Lal1Cj4xQ1mrUIPCWaW21Kfp-j4IfnMJsUGyBFJJL6TOiDvT8SNA5L8AksC0zIDtA2TLrPgCruq7wRt93tAfPO86minhP-m6lqyoRvmsIsRakoHJszMWraU8ha6C6Pl0XJ450B2uo3uet9TC_dPWGYFRJEIo1JVh39f7FR9Lvbn7QY5rLpHRysvVON--dKw6_tlOzZrCIM3Idqy-iUm5ueHhEVD-Gcmn2YWzSpw17cmovzqOT-nWyO6ZHDkXZgmzYTFpS_1n2tBIG_bjTPKgnfjbA6gaalaLNY-GjF1Be17os6iJ9rove8NXa0ZRpNOV1l2xSk1NJ7zY1u88oR2fQDs6JzfRjWqFgrsGWbdQQ-b76JoVsM_30UFvLY5UD1azw_w2-rEDPbwJPVykeAt6GKCHNfSwhh7ehB6uoYcBepifYwU9rKCHNfR-fv2GFTJwBTq8Bh00ZEGHK9DhDdDhCnQYQHcHvX_WO3n6wqlygjiCELZwEp54wiNh6gnfJZ6bjogUMnETRlzeYWFKU3Wbq0JSzmSSyhEfySDwpaAJdVNygJp5kctDhF0Zhh2X8lAmgvKA8ST1lT-dUsE4GQlyhIi1TyyqgPmQtyWLLTNyEhurxmDV2Fj1CDn1W1MTMOaS50Nr-rhyeo0zGyu0XvLmI4uUWM0JcNA3ymVRzmOi3Bg3gFQRd_-59nvo-vrju4-ai1kpH6CrYrkYz2cPK-j_Ahor6Q4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+multi-channel+cold+plate+under+intermittent+pulsating+flow+by+RSM+and+NSGA-%E2%85%A1+for+thermal+management+of+electric+vehicle+lithium-ion+battery+pack&rft.jtitle=Energy+%28Oxford%29&rft.au=Zuo%2C+Wei&rft.au=Li%2C+Dexin&rft.au=Li%2C+Qingqing&rft.au=Cheng%2C+Qianju&rft.date=2023-11-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=283&rft_id=info:doi/10.1016%2Fj.energy.2023.129085&rft.externalDocID=S0360544223024799 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |