Improved approximate dynamic programming for real-time economic dispatch of integrated microgrids
Economic dispatch of electricity-heat microgrid is critical for real-time power generation and storage. However, conventional economic dispatch algorithms are generally integrated with static unit models without considering dynamics of units, thus leading to difficulties for real deployment in stoch...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 255; s. 124513 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.09.2022
|
| Témata: | |
| ISSN: | 0360-5442 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Economic dispatch of electricity-heat microgrid is critical for real-time power generation and storage. However, conventional economic dispatch algorithms are generally integrated with static unit models without considering dynamics of units, thus leading to difficulties for real deployment in stochastical environments. In this paper, we propose a novel approximate dynamic programming (ADP) based real-time optimization algorithm. Specifically, the proposed ADP is employed to solve the Markov decision process with considering the dynamic process of combined-cycle gas turbine. Furthermore, we also design a novel weighted piecewise linear function to achieve the near-optimal solution, which is simple but effective for computational complexity reduction. In the experimental section, we conduct extensive experiments with comparisons to other economic dispatch methods. The experimental results indicate that: 1) The dynamic process of energy conversion brings more practical solutions; 2) The proposed ADP-based method could handle the stochasticity of the microgrid; 3) The proposed method outperforms the other intra-day optimization policies in both economical and computational efficiency.
•Propose real-time optimization for an integrated microgrid with uncertainties.•Dynamic model of CCGT plant makes solutions more practical.•Dispatch flexibilities of electricity and heat storage are jointly utilized.•Improved updating method enhances the convergence performance of ADP.•Comprehensive experiments validate the proposed ADP. |
|---|---|
| AbstractList | Economic dispatch of electricity-heat microgrid is critical for real-time power generation and storage. However, conventional economic dispatch algorithms are generally integrated with static unit models without considering dynamics of units, thus leading to difficulties for real deployment in stochastical environments. In this paper, we propose a novel approximate dynamic programming (ADP) based real-time optimization algorithm. Specifically, the proposed ADP is employed to solve the Markov decision process with considering the dynamic process of combined-cycle gas turbine. Furthermore, we also design a novel weighted piecewise linear function to achieve the near-optimal solution, which is simple but effective for computational complexity reduction. In the experimental section, we conduct extensive experiments with comparisons to other economic dispatch methods. The experimental results indicate that: 1) The dynamic process of energy conversion brings more practical solutions; 2) The proposed ADP-based method could handle the stochasticity of the microgrid; 3) The proposed method outperforms the other intra-day optimization policies in both economical and computational efficiency. Economic dispatch of electricity-heat microgrid is critical for real-time power generation and storage. However, conventional economic dispatch algorithms are generally integrated with static unit models without considering dynamics of units, thus leading to difficulties for real deployment in stochastical environments. In this paper, we propose a novel approximate dynamic programming (ADP) based real-time optimization algorithm. Specifically, the proposed ADP is employed to solve the Markov decision process with considering the dynamic process of combined-cycle gas turbine. Furthermore, we also design a novel weighted piecewise linear function to achieve the near-optimal solution, which is simple but effective for computational complexity reduction. In the experimental section, we conduct extensive experiments with comparisons to other economic dispatch methods. The experimental results indicate that: 1) The dynamic process of energy conversion brings more practical solutions; 2) The proposed ADP-based method could handle the stochasticity of the microgrid; 3) The proposed method outperforms the other intra-day optimization policies in both economical and computational efficiency. •Propose real-time optimization for an integrated microgrid with uncertainties.•Dynamic model of CCGT plant makes solutions more practical.•Dispatch flexibilities of electricity and heat storage are jointly utilized.•Improved updating method enhances the convergence performance of ADP.•Comprehensive experiments validate the proposed ADP. |
| ArticleNumber | 124513 |
| Author | Zhao, Jun Yin, Huan Song, Chunyue Lin, Zhiyi |
| Author_xml | – sequence: 1 givenname: Zhiyi orcidid: 0000-0002-6471-530X surname: Lin fullname: Lin, Zhiyi organization: State Key Laboratory of Industrial Control Technology, Institute of Industry Intelligence and Systems Engineering, Zhejiang University, Hangzhou, 310027, China – sequence: 2 givenname: Chunyue orcidid: 0000-0003-2196-520X surname: Song fullname: Song, Chunyue email: csong@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, Institute of Industry Intelligence and Systems Engineering, Zhejiang University, Hangzhou, 310027, China – sequence: 3 givenname: Jun surname: Zhao fullname: Zhao, Jun email: zjuyinhuan@gmail.com organization: State Key Laboratory of Industrial Control Technology, Institute of Industry Intelligence and Systems Engineering, Zhejiang University, Hangzhou, 310027, China – sequence: 4 givenname: Huan surname: Yin fullname: Yin, Huan organization: Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong |
| BookMark | eNqFkLtOwzAUhj0UibbwBgwZWRJ8yZUBCVXcpEosMFuOfVJcJXaw3Yq-PY7CxADTsY7_79fRt0ILYw0gdEVwRjApb_YZGHC7U0YxpRmheUHYAi0xK3Fa5Dk9Ryvv9xjjom6aJRIvw-jsEVQixvj40oMIkKiTEYOWSdzsnBgGbXZJZ13iQPRp0AMkIK2xU0RpP4ogPxLbJdoEiPkQ2-LXxGrlL9BZJ3oPlz9zjd4fH942z-n29ellc79NJWNNSFVVMkEJ7lpV0KqSLZUF7aQStKMVY3lNVIMLKCSrW6ZagLpqWyBKEIGBNoKt0fXcG4_-PIAPfNBeQt8LA_bgOa1ITUtcMhKjt3M03ui9g45LHUTQ1gQndM8J5pNLvuezSz655LPLCOe_4NFFa-70H3Y3YxAdHDU47qUGI0FpBzJwZfXfBd8U_Zc0 |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2023_03_106 crossref_primary_10_1016_j_apenergy_2023_121156 crossref_primary_10_1016_j_energy_2023_126965 crossref_primary_10_1109_TSG_2023_3329459 crossref_primary_10_1155_er_9531493 crossref_primary_10_3390_en18071802 crossref_primary_10_1016_j_energy_2024_133095 crossref_primary_10_1016_j_segan_2025_101792 crossref_primary_10_1016_j_energy_2025_137893 crossref_primary_10_1002_rnc_7685 crossref_primary_10_1016_j_energy_2025_137550 crossref_primary_10_1016_j_ijepes_2023_109661 crossref_primary_10_1016_j_energy_2024_131672 crossref_primary_10_1016_j_est_2023_110406 crossref_primary_10_1016_j_energy_2024_131357 crossref_primary_10_1016_j_energy_2024_132880 crossref_primary_10_1109_TII_2024_3478268 crossref_primary_10_3390_electronics12122742 crossref_primary_10_1038_s41598_025_05145_3 crossref_primary_10_1016_j_est_2024_112221 crossref_primary_10_1016_j_segan_2025_101966 crossref_primary_10_1016_j_cie_2025_111374 crossref_primary_10_1049_esi2_12089 crossref_primary_10_1049_esi2_12100 crossref_primary_10_3389_fenrg_2024_1512832 crossref_primary_10_1109_TIA_2024_3462698 crossref_primary_10_1016_j_ijepes_2023_109212 |
| Cites_doi | 10.1080/00908310490450647 10.1049/iet-rpg.2019.0297 10.1016/j.ijepes.2019.105776 10.1016/j.enconman.2021.114400 10.1016/j.ejor.2018.07.014 10.1016/j.solener.2020.04.007 10.1016/j.energy.2020.118271 10.1109/TSTE.2018.2855039 10.1109/TSG.2017.2652723 10.1002/er.5551 10.1016/j.renene.2019.07.081 10.1287/moor.1040.0107 10.1016/j.enconman.2018.12.059 10.1287/ijoc.2017.0768 10.1016/j.apenergy.2018.04.103 10.1109/TSG.2016.2618621 10.1109/TSTE.2016.2555704 10.1109/TSTE.2014.2331712 10.1016/j.apenergy.2019.114039 10.1109/TSG.2021.3119972 10.1016/j.enconman.2019.06.058 10.1016/j.energy.2017.09.146 10.1016/j.energy.2022.123228 10.1016/j.enconman.2021.114338 10.1016/j.energy.2021.121638 10.1109/TSG.2021.3088290 10.1016/j.energy.2019.04.151 10.1109/TPWRS.2015.2455491 10.1109/TSG.2020.3035127 10.1016/j.conengprac.2021.104845 10.1016/j.energy.2021.120367 10.1109/TIA.2020.2965894 10.1109/TPWRS.2015.2424974 10.1016/j.ijepes.2019.105763 10.1016/j.energy.2019.07.046 10.1109/TPWRS.2019.2912491 10.1109/TAC.2013.2272973 10.1109/TSG.2018.2859821 10.1109/ACCESS.2017.2728683 10.1016/j.energy.2020.118228 10.1109/ACCESS.2015.2443119 10.1109/TSG.2018.2798039 10.1109/TII.2018.2820421 10.1016/j.energy.2020.118589 10.1016/j.energy.2021.119894 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.124513 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_124513 S0360544222014165 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-d763a210fbd5277cb2c52fcda2f2733481d905e5c38b3dbee87bbe1da1a0e29a3 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862250400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 10:36:55 EDT 2025 Sat Nov 29 07:18:30 EST 2025 Tue Nov 18 21:07:22 EST 2025 Fri Feb 23 02:39:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | dynamic process approximate dynamic programming Economic dispatch microgrid combined-cycle gas turbine |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-d763a210fbd5277cb2c52fcda2f2733481d905e5c38b3dbee87bbe1da1a0e29a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2196-520X 0000-0002-6471-530X |
| PQID | 2718260631 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718260631 crossref_citationtrail_10_1016_j_energy_2022_124513 crossref_primary_10_1016_j_energy_2022_124513 elsevier_sciencedirect_doi_10_1016_j_energy_2022_124513 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-15 |
| PublicationDateYYYYMMDD | 2022-09-15 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Powell (bib44) 2019; 275 Genc, Erisoglu, Pekgor, Oturanc, Hepbasli, Ulgen (bib48) 2005; 27 Saez-de Ibarra, Milo, Gaztanaga, Debusschere, Bacha (bib15) 2016; 7 Powell (bib39) 2007; vol. 703 Sun, Lu, Li, Lubkeman, Lu (bib31) 2017; 9 Zadeh, Desoer (bib40) 2008; vol. 4 Sun, Wang, Xie (bib35) 2021; 243 Li, Wu, Xu, Moazeni, Tang (bib24) 2021; 13 Wu, Ravey, Chrenko, Miraoui (bib38) 2019; 196 Yang, Zhu (bib36) 2021; 113 M. Alramlawi, P. Li, Design optimization of a residential pv-battery microgrid with a detailed battery lifetime estimation model, IEEE Trans Ind Appl 56 (2). Parhizi, Lotfi, Khodaei, Bahramirad (bib1) 2015; 3 Mansouri, Ahmarinejad, Nematbakhsh, Javadi, Nezhad, Catalão (bib8) 2022 Mohammadi, Mohammadi (bib12) 2021; 243 Powell, Meisel (bib33) 2015; 31 Shuai, Fang, Ai, Tang, Wen, He (bib37) 2018; 10 Wang, Guo, Han, Lu, Sun, Li, Sauer, Ouyang (bib27) 2020; 207 Garmabdari, Moghimi, Yang, Lu (bib6) 2020; 212 Ghasemi (bib11) 2018; 142 Bhattacharya, Kharoufeh, Zeng (bib14) 2016; 9 MansourLakouraj, Shahabi, Shafie-khah, Catalão (bib2) 2021 Zeng, Li, He, Li (bib49) 2018; 10 Puterman (bib20) 2014 Cagnano, De Tuglie, Mancarella (bib3) 2020; 258 Shams, Shahabi, MansourLakouraj, Shafie-khah, Catalão (bib16) 2021; 222 Shuai, Ai, Fang, Ding, Chen, Wen (bib23) 2020; 118 Kwon, Moon, Kim (bib34) 2020; 207 Zeinal-Kheiri, Ghassem-Zadeh, Shotorbani, Mohammadi-Ivatloo (bib32) 2020; 14 Salas, Powell (bib42) 2018; 30 Mazidi, Rezaei, Ghaderi (bib5) 2019; 185 Powell, Ruszczyński, Topaloglu (bib45) 2004; 29 de Carvalho Neiva Pinheiro, Francato, Powell (bib13) 2020; 44 Ashtiani, Toopshekan, Astaraei, Yousefi, Maleki (bib19) 2020; 203 Bao, Ye, Wu (bib29) 2020; 118 Zia, Elbouchikhi, Benbouzid (bib9) 2018; 222 Nascimento, Powell (bib47) 2013; 58 Nguyen, Crow (bib25) 2015; 31 Zakaria, Ismail, Lipu, Hannan (bib41) 2020; 145 Qin, Liu, Hua, Cao (bib50) 2021; 12 Dong, Chen (bib17) 2018; 15 Shuai, He (bib21) 2020; 12 Ma, Javed (bib7) 2019; 182 Zhang, Meng, Wang, Kazemtabrizi, Shi (bib30) 2019; 179 Shuai, Fang, Ai, Wen, He (bib28) 2018; 10 Sun, Wu, Gu, Zhu, Zhong, Gao (bib22) 2021; 226 Kanchev, Colas, Lazarov, Francois (bib10) 2014; 5 Khan, Singh (bib18) 2017; 5 Zhang, Chen, Yang, Peng, Zhao, Zhang (bib4) 2021; 237 L. Cant, Life saving decisions: a model for optimal blood inventory management. Shuai, Fang, Ai, Yao, Wen, He (bib43) 2019; 34 Zeinal-Kheiri (10.1016/j.energy.2022.124513_bib32) 2020; 14 Shuai (10.1016/j.energy.2022.124513_bib21) 2020; 12 Zeng (10.1016/j.energy.2022.124513_bib49) 2018; 10 Powell (10.1016/j.energy.2022.124513_bib44) 2019; 275 10.1016/j.energy.2022.124513_bib46 Mazidi (10.1016/j.energy.2022.124513_bib5) 2019; 185 Puterman (10.1016/j.energy.2022.124513_bib20) 2014 Ashtiani (10.1016/j.energy.2022.124513_bib19) 2020; 203 Powell (10.1016/j.energy.2022.124513_bib45) 2004; 29 Mansouri (10.1016/j.energy.2022.124513_bib8) 2022 Zhang (10.1016/j.energy.2022.124513_bib4) 2021; 237 Bhattacharya (10.1016/j.energy.2022.124513_bib14) 2016; 9 Parhizi (10.1016/j.energy.2022.124513_bib1) 2015; 3 de Carvalho Neiva Pinheiro (10.1016/j.energy.2022.124513_bib13) 2020; 44 Ma (10.1016/j.energy.2022.124513_bib7) 2019; 182 Yang (10.1016/j.energy.2022.124513_bib36) 2021; 113 Cagnano (10.1016/j.energy.2022.124513_bib3) 2020; 258 Zakaria (10.1016/j.energy.2022.124513_bib41) 2020; 145 Shuai (10.1016/j.energy.2022.124513_bib43) 2019; 34 Qin (10.1016/j.energy.2022.124513_bib50) 2021; 12 Sun (10.1016/j.energy.2022.124513_bib22) 2021; 226 Nguyen (10.1016/j.energy.2022.124513_bib25) 2015; 31 Powell (10.1016/j.energy.2022.124513_bib33) 2015; 31 Sun (10.1016/j.energy.2022.124513_bib35) 2021; 243 Shams (10.1016/j.energy.2022.124513_bib16) 2021; 222 Garmabdari (10.1016/j.energy.2022.124513_bib6) 2020; 212 10.1016/j.energy.2022.124513_bib26 Zia (10.1016/j.energy.2022.124513_bib9) 2018; 222 Khan (10.1016/j.energy.2022.124513_bib18) 2017; 5 Shuai (10.1016/j.energy.2022.124513_bib23) 2020; 118 MansourLakouraj (10.1016/j.energy.2022.124513_bib2) 2021 Shuai (10.1016/j.energy.2022.124513_bib28) 2018; 10 Saez-de Ibarra (10.1016/j.energy.2022.124513_bib15) 2016; 7 Genc (10.1016/j.energy.2022.124513_bib48) 2005; 27 Kwon (10.1016/j.energy.2022.124513_bib34) 2020; 207 Powell (10.1016/j.energy.2022.124513_bib39) 2007; vol. 703 Zadeh (10.1016/j.energy.2022.124513_bib40) 2008; vol. 4 Mohammadi (10.1016/j.energy.2022.124513_bib12) 2021; 243 Bao (10.1016/j.energy.2022.124513_bib29) 2020; 118 Dong (10.1016/j.energy.2022.124513_bib17) 2018; 15 Nascimento (10.1016/j.energy.2022.124513_bib47) 2013; 58 Li (10.1016/j.energy.2022.124513_bib24) 2021; 13 Wu (10.1016/j.energy.2022.124513_bib38) 2019; 196 Wang (10.1016/j.energy.2022.124513_bib27) 2020; 207 Kanchev (10.1016/j.energy.2022.124513_bib10) 2014; 5 Salas (10.1016/j.energy.2022.124513_bib42) 2018; 30 Shuai (10.1016/j.energy.2022.124513_bib37) 2018; 10 Ghasemi (10.1016/j.energy.2022.124513_bib11) 2018; 142 Zhang (10.1016/j.energy.2022.124513_bib30) 2019; 179 Sun (10.1016/j.energy.2022.124513_bib31) 2017; 9 |
| References_xml | – volume: 142 start-page: 1 year: 2018 end-page: 13 ident: bib11 article-title: Coordination of pumped-storage unit and irrigation system with intermittent wind generation for intelligent energy management of an agricultural microgrid publication-title: Energy – volume: 9 start-page: 483 year: 2016 end-page: 496 ident: bib14 article-title: Managing energy storage in microgrids: a multistage stochastic programming approach publication-title: IEEE Trans Smart Grid – volume: 15 start-page: 869 year: 2018 end-page: 877 ident: bib17 article-title: Data-driven energy management in a home microgrid based on bayesian optimal algorithm publication-title: IEEE Trans Ind Inf – volume: vol. 4 year: 2008 ident: bib40 publication-title: Linear system theory: the state space approach – reference: L. Cant, Life saving decisions: a model for optimal blood inventory management. – volume: 207 year: 2020 ident: bib27 article-title: Impact of battery degradation models on energy management of a grid-connected dc microgrid publication-title: Energy – volume: vol. 703 year: 2007 ident: bib39 publication-title: Approximate dynamic programming: solving the curses of dimensionality – volume: 212 year: 2020 ident: bib6 article-title: Multi-objective optimisation and planning of grid-connected cogeneration systems in presence of grid power fluctuations and energy storage dynamics publication-title: Energy – volume: 182 start-page: 178 year: 2019 end-page: 190 ident: bib7 article-title: Integrated sizing of hybrid pv-wind-battery system for remote island considering the saturation of each renewable energy resource publication-title: Energy Convers Manag – volume: 118 year: 2020 ident: bib23 article-title: Real-time optimization of the integrated gas and power systems using hybrid approximate dynamic programming publication-title: Int J Electr Power Energy Syst – volume: 179 start-page: 1265 year: 2019 end-page: 1278 ident: bib30 article-title: Uncertainty-resistant stochastic mpc approach for optimal operation of chp microgrid publication-title: Energy – volume: 31 start-page: 1459 year: 2015 end-page: 1467 ident: bib33 article-title: Tutorial on stochastic optimization in energy—part i: modeling and policies publication-title: IEEE Trans Power Syst – volume: 29 start-page: 814 year: 2004 end-page: 836 ident: bib45 article-title: Learning algorithms for separable approximations of discrete stochastic optimization problems publication-title: Math Oper Res – year: 2022 ident: bib8 article-title: A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources publication-title: Energy – volume: 10 start-page: 931 year: 2018 end-page: 942 ident: bib28 article-title: Optimal real-time operation strategy for microgrid: an adp-based stochastic nonlinear optimization approach publication-title: IEEE Trans Sustain Energy – volume: 7 start-page: 1749 year: 2016 end-page: 1761 ident: bib15 article-title: Co-optimization of storage system sizing and control strategy for intelligent photovoltaic power plants market integration publication-title: IEEE Trans Sustain Energy – volume: 10 start-page: 2440 year: 2018 end-page: 2452 ident: bib37 article-title: Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming publication-title: IEEE Trans Smart Grid – volume: 14 start-page: 526 year: 2020 end-page: 538 ident: bib32 article-title: Real-time energy management in a microgrid with renewable generation, energy storages, flexible loads and combined heat and power units using lyapunov optimisation publication-title: IET Renew Power Gener – volume: 27 start-page: 809 year: 2005 end-page: 822 ident: bib48 article-title: Estimation of wind power potential using weibull distribution publication-title: Energy Sources – volume: 258 year: 2020 ident: bib3 article-title: Microgrids: overview and guidelines for practical implementations and operation publication-title: Appl Energy – volume: 226 year: 2021 ident: bib22 article-title: Flexible expansion planning of distribution system integrating multiple renewable energy sources: an approximate dynamic programming approach publication-title: Energy – reference: M. Alramlawi, P. Li, Design optimization of a residential pv-battery microgrid with a detailed battery lifetime estimation model, IEEE Trans Ind Appl 56 (2). – volume: 12 start-page: 4079 year: 2021 end-page: 4089 ident: bib50 article-title: Privacy preserving load control of residential microgrid via deep reinforcement learning publication-title: IEEE Trans Smart Grid – volume: 118 year: 2020 ident: bib29 article-title: Multi-timescale coordinated schedule of interdependent electricity-natural gas systems considering electricity grid steady-state and gas network dynamics publication-title: Int J Electr Power Energy Syst – volume: 207 year: 2020 ident: bib34 article-title: Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling publication-title: Energy – year: 2014 ident: bib20 article-title: Markov decision processes: discrete stochastic dynamic programming – volume: 30 start-page: 106 year: 2018 end-page: 123 ident: bib42 article-title: Benchmarking a scalable approximate dynamic programming algorithm for stochastic control of grid-level energy storage publication-title: Inf J Comput – volume: 145 start-page: 1543 year: 2020 end-page: 1571 ident: bib41 article-title: Uncertainty models for stochastic optimization in renewable energy applications publication-title: Renew Energy – volume: 275 start-page: 795 year: 2019 end-page: 821 ident: bib44 article-title: A unified framework for stochastic optimization publication-title: Eur J Oper Res – volume: 44 start-page: 8635 year: 2020 end-page: 8653 ident: bib13 article-title: Reinforcement learning for electricity dispatch in grids with high intermittent generation and energy storage systems: a case study for the brazilian grid publication-title: Int J Energy Res – volume: 243 year: 2021 ident: bib35 article-title: Thermodynamic and exergoeconomic analysis of combined supercritical co2 cycle and organic rankine cycle using co2-based binary mixtures for gas turbine waste heat recovery publication-title: Energy Convers Manag – volume: 222 start-page: 1033 year: 2018 end-page: 1055 ident: bib9 article-title: Microgrids energy management systems: a critical review on methods, solutions, and prospects publication-title: Appl Energy – volume: 196 start-page: 878 year: 2019 end-page: 890 ident: bib38 article-title: Demand side energy management of ev charging stations by approximate dynamic programming publication-title: Energy Convers Manag – volume: 203 start-page: 69 year: 2020 end-page: 82 ident: bib19 article-title: Techno-economic analysis of a grid-connected pv/battery system using the teaching-learning-based optimization algorithm publication-title: Sol Energy – volume: 58 start-page: 2995 year: 2013 end-page: 3010 ident: bib47 article-title: An optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controls publication-title: IEEE Trans Automat Control – volume: 243 year: 2021 ident: bib12 article-title: A multi-criteria logical based approach for optimal planning and assessment of rule-based hybrid load following micro combined heat and power systems publication-title: Energy Convers Manag – volume: 5 start-page: 13951 year: 2017 end-page: 13977 ident: bib18 article-title: Selecting a meta-heuristic technique for smart micro-grid optimization problem: a comprehensive analysis publication-title: IEEE Access – volume: 10 start-page: 4435 year: 2018 end-page: 4445 ident: bib49 article-title: Dynamic energy management of a microgrid using approximate dynamic programming and deep recurrent neural network learning publication-title: IEEE Trans Smart Grid – volume: 12 start-page: 1073 year: 2020 end-page: 1087 ident: bib21 article-title: Online scheduling of a residential microgrid via monte-carlo tree search and a learned model publication-title: IEEE Trans Smart Grid – volume: 13 start-page: 213 year: 2021 end-page: 226 ident: bib24 article-title: Multi-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven mpc-adp approach publication-title: IEEE Trans Smart Grid – volume: 3 start-page: 890 year: 2015 end-page: 925 ident: bib1 article-title: State of the art in research on microgrids: a review publication-title: IEEE Access – volume: 34 start-page: 3300 year: 2019 end-page: 3302 ident: bib43 article-title: On-line energy management of microgrid via parametric cost function approximation publication-title: IEEE Trans Power Syst – volume: 9 start-page: 4172 year: 2017 end-page: 4180 ident: bib31 article-title: Modeling combined heat and power systems for microgrid applications publication-title: IEEE Trans Smart Grid – year: 2021 ident: bib2 article-title: Optimal market-based operation of microgrid with the integration of wind turbines, energy storage system and demand response resources – volume: 5 start-page: 1397 year: 2014 end-page: 1405 ident: bib10 article-title: Emission reduction and economical optimization of an urban microgrid operation including dispatched pv-based active generators publication-title: IEEE Trans Sustain Energy – volume: 113 year: 2021 ident: bib36 article-title: Two-time scaled identification for multi-energy systems publication-title: Control Eng Pract – volume: 237 year: 2021 ident: bib4 article-title: Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power publication-title: Energy – volume: 31 start-page: 2289 year: 2015 end-page: 2296 ident: bib25 article-title: Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost publication-title: IEEE Trans Power Syst – volume: 185 start-page: 239 year: 2019 end-page: 253 ident: bib5 article-title: Simultaneous power and heat scheduling of microgrids considering operational uncertainties: a new stochastic p-robust optimization approach publication-title: Energy – volume: 222 year: 2021 ident: bib16 article-title: Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids publication-title: Energy – volume: 27 start-page: 809 issue: 9 year: 2005 ident: 10.1016/j.energy.2022.124513_bib48 article-title: Estimation of wind power potential using weibull distribution publication-title: Energy Sources doi: 10.1080/00908310490450647 – volume: 14 start-page: 526 issue: 4 year: 2020 ident: 10.1016/j.energy.2022.124513_bib32 article-title: Real-time energy management in a microgrid with renewable generation, energy storages, flexible loads and combined heat and power units using lyapunov optimisation publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2019.0297 – volume: 118 year: 2020 ident: 10.1016/j.energy.2022.124513_bib23 article-title: Real-time optimization of the integrated gas and power systems using hybrid approximate dynamic programming publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105776 – volume: 243 year: 2021 ident: 10.1016/j.energy.2022.124513_bib35 article-title: Thermodynamic and exergoeconomic analysis of combined supercritical co2 cycle and organic rankine cycle using co2-based binary mixtures for gas turbine waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114400 – volume: 275 start-page: 795 issue: 3 year: 2019 ident: 10.1016/j.energy.2022.124513_bib44 article-title: A unified framework for stochastic optimization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.07.014 – volume: 203 start-page: 69 year: 2020 ident: 10.1016/j.energy.2022.124513_bib19 article-title: Techno-economic analysis of a grid-connected pv/battery system using the teaching-learning-based optimization algorithm publication-title: Sol Energy doi: 10.1016/j.solener.2020.04.007 – volume: 207 year: 2020 ident: 10.1016/j.energy.2022.124513_bib34 article-title: Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling publication-title: Energy doi: 10.1016/j.energy.2020.118271 – volume: 10 start-page: 931 issue: 2 year: 2018 ident: 10.1016/j.energy.2022.124513_bib28 article-title: Optimal real-time operation strategy for microgrid: an adp-based stochastic nonlinear optimization approach publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2855039 – volume: 9 start-page: 4172 issue: 5 year: 2017 ident: 10.1016/j.energy.2022.124513_bib31 article-title: Modeling combined heat and power systems for microgrid applications publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2652723 – volume: 44 start-page: 8635 issue: 11 year: 2020 ident: 10.1016/j.energy.2022.124513_bib13 article-title: Reinforcement learning for electricity dispatch in grids with high intermittent generation and energy storage systems: a case study for the brazilian grid publication-title: Int J Energy Res doi: 10.1002/er.5551 – volume: 145 start-page: 1543 year: 2020 ident: 10.1016/j.energy.2022.124513_bib41 article-title: Uncertainty models for stochastic optimization in renewable energy applications publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.081 – volume: 29 start-page: 814 issue: 4 year: 2004 ident: 10.1016/j.energy.2022.124513_bib45 article-title: Learning algorithms for separable approximations of discrete stochastic optimization problems publication-title: Math Oper Res doi: 10.1287/moor.1040.0107 – volume: 182 start-page: 178 year: 2019 ident: 10.1016/j.energy.2022.124513_bib7 article-title: Integrated sizing of hybrid pv-wind-battery system for remote island considering the saturation of each renewable energy resource publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.12.059 – volume: 30 start-page: 106 issue: 1 year: 2018 ident: 10.1016/j.energy.2022.124513_bib42 article-title: Benchmarking a scalable approximate dynamic programming algorithm for stochastic control of grid-level energy storage publication-title: Inf J Comput doi: 10.1287/ijoc.2017.0768 – volume: 222 start-page: 1033 year: 2018 ident: 10.1016/j.energy.2022.124513_bib9 article-title: Microgrids energy management systems: a critical review on methods, solutions, and prospects publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.04.103 – volume: 9 start-page: 483 issue: 1 year: 2016 ident: 10.1016/j.energy.2022.124513_bib14 article-title: Managing energy storage in microgrids: a multistage stochastic programming approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2618621 – volume: 7 start-page: 1749 issue: 4 year: 2016 ident: 10.1016/j.energy.2022.124513_bib15 article-title: Co-optimization of storage system sizing and control strategy for intelligent photovoltaic power plants market integration publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2016.2555704 – volume: 5 start-page: 1397 issue: 4 year: 2014 ident: 10.1016/j.energy.2022.124513_bib10 article-title: Emission reduction and economical optimization of an urban microgrid operation including dispatched pv-based active generators publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2014.2331712 – volume: 258 year: 2020 ident: 10.1016/j.energy.2022.124513_bib3 article-title: Microgrids: overview and guidelines for practical implementations and operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114039 – volume: 13 start-page: 213 issue: 1 year: 2021 ident: 10.1016/j.energy.2022.124513_bib24 article-title: Multi-stage real-time operation of a multi-energy microgrid with electrical and thermal energy storage assets: a data-driven mpc-adp approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3119972 – volume: 196 start-page: 878 year: 2019 ident: 10.1016/j.energy.2022.124513_bib38 article-title: Demand side energy management of ev charging stations by approximate dynamic programming publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.06.058 – volume: 142 start-page: 1 year: 2018 ident: 10.1016/j.energy.2022.124513_bib11 article-title: Coordination of pumped-storage unit and irrigation system with intermittent wind generation for intelligent energy management of an agricultural microgrid publication-title: Energy doi: 10.1016/j.energy.2017.09.146 – ident: 10.1016/j.energy.2022.124513_bib46 – year: 2022 ident: 10.1016/j.energy.2022.124513_bib8 article-title: A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources publication-title: Energy doi: 10.1016/j.energy.2022.123228 – volume: 243 year: 2021 ident: 10.1016/j.energy.2022.124513_bib12 article-title: A multi-criteria logical based approach for optimal planning and assessment of rule-based hybrid load following micro combined heat and power systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114338 – volume: vol. 703 year: 2007 ident: 10.1016/j.energy.2022.124513_bib39 – volume: 237 year: 2021 ident: 10.1016/j.energy.2022.124513_bib4 article-title: Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power publication-title: Energy doi: 10.1016/j.energy.2021.121638 – volume: 12 start-page: 4079 issue: 5 year: 2021 ident: 10.1016/j.energy.2022.124513_bib50 article-title: Privacy preserving load control of residential microgrid via deep reinforcement learning publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3088290 – volume: 179 start-page: 1265 year: 2019 ident: 10.1016/j.energy.2022.124513_bib30 article-title: Uncertainty-resistant stochastic mpc approach for optimal operation of chp microgrid publication-title: Energy doi: 10.1016/j.energy.2019.04.151 – volume: 31 start-page: 2289 issue: 3 year: 2015 ident: 10.1016/j.energy.2022.124513_bib25 article-title: Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2455491 – volume: 12 start-page: 1073 issue: 2 year: 2020 ident: 10.1016/j.energy.2022.124513_bib21 article-title: Online scheduling of a residential microgrid via monte-carlo tree search and a learned model publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.3035127 – volume: 113 year: 2021 ident: 10.1016/j.energy.2022.124513_bib36 article-title: Two-time scaled identification for multi-energy systems publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2021.104845 – volume: 226 year: 2021 ident: 10.1016/j.energy.2022.124513_bib22 article-title: Flexible expansion planning of distribution system integrating multiple renewable energy sources: an approximate dynamic programming approach publication-title: Energy doi: 10.1016/j.energy.2021.120367 – ident: 10.1016/j.energy.2022.124513_bib26 doi: 10.1109/TIA.2020.2965894 – year: 2014 ident: 10.1016/j.energy.2022.124513_bib20 – volume: 31 start-page: 1459 issue: 2 year: 2015 ident: 10.1016/j.energy.2022.124513_bib33 article-title: Tutorial on stochastic optimization in energy—part i: modeling and policies publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2424974 – volume: 118 year: 2020 ident: 10.1016/j.energy.2022.124513_bib29 article-title: Multi-timescale coordinated schedule of interdependent electricity-natural gas systems considering electricity grid steady-state and gas network dynamics publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105763 – volume: 185 start-page: 239 year: 2019 ident: 10.1016/j.energy.2022.124513_bib5 article-title: Simultaneous power and heat scheduling of microgrids considering operational uncertainties: a new stochastic p-robust optimization approach publication-title: Energy doi: 10.1016/j.energy.2019.07.046 – volume: 34 start-page: 3300 issue: 4 year: 2019 ident: 10.1016/j.energy.2022.124513_bib43 article-title: On-line energy management of microgrid via parametric cost function approximation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2912491 – year: 2021 ident: 10.1016/j.energy.2022.124513_bib2 – volume: 58 start-page: 2995 issue: 12 year: 2013 ident: 10.1016/j.energy.2022.124513_bib47 article-title: An optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controls publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2013.2272973 – volume: 10 start-page: 4435 issue: 4 year: 2018 ident: 10.1016/j.energy.2022.124513_bib49 article-title: Dynamic energy management of a microgrid using approximate dynamic programming and deep recurrent neural network learning publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2859821 – volume: 5 start-page: 13951 year: 2017 ident: 10.1016/j.energy.2022.124513_bib18 article-title: Selecting a meta-heuristic technique for smart micro-grid optimization problem: a comprehensive analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728683 – volume: 207 year: 2020 ident: 10.1016/j.energy.2022.124513_bib27 article-title: Impact of battery degradation models on energy management of a grid-connected dc microgrid publication-title: Energy doi: 10.1016/j.energy.2020.118228 – volume: 3 start-page: 890 year: 2015 ident: 10.1016/j.energy.2022.124513_bib1 article-title: State of the art in research on microgrids: a review publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2443119 – volume: 10 start-page: 2440 issue: 3 year: 2018 ident: 10.1016/j.energy.2022.124513_bib37 article-title: Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2798039 – volume: 15 start-page: 869 issue: 2 year: 2018 ident: 10.1016/j.energy.2022.124513_bib17 article-title: Data-driven energy management in a home microgrid based on bayesian optimal algorithm publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2820421 – volume: 212 year: 2020 ident: 10.1016/j.energy.2022.124513_bib6 article-title: Multi-objective optimisation and planning of grid-connected cogeneration systems in presence of grid power fluctuations and energy storage dynamics publication-title: Energy doi: 10.1016/j.energy.2020.118589 – volume: 222 year: 2021 ident: 10.1016/j.energy.2022.124513_bib16 article-title: Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids publication-title: Energy doi: 10.1016/j.energy.2021.119894 – volume: vol. 4 year: 2008 ident: 10.1016/j.energy.2022.124513_bib40 |
| SSID | ssj0005899 |
| Score | 2.5517745 |
| Snippet | Economic dispatch of electricity-heat microgrid is critical for real-time power generation and storage. However, conventional economic dispatch algorithms are... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124513 |
| SubjectTerms | algorithms approximate dynamic programming combined-cycle gas turbine dynamic process Economic dispatch energy conversion microgrid power generation |
| Title | Improved approximate dynamic programming for real-time economic dispatch of integrated microgrids |
| URI | https://dx.doi.org/10.1016/j.energy.2022.124513 https://www.proquest.com/docview/2718260631 |
| Volume | 255 |
| WOSCitedRecordID | wos000862250400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3_a9QwFA-6CfqL6HQ4pxLB344ebdpcmh_HOJkyhuCEc7-UfKvXsfWO61Vu__1emqSdGzIV_KWU0qSln0-Tl5f3eQ-hDwlnqeniwkiqoozyPJKcykimSsCKCCbkrBMKH7OTk3w24198tc2mKyfA6jrfbPjyv0IN1wBsK539C7j7TuECnAPocATY4fhHwDs3AdiRXbrwTQUmqRlpV3g-hGNdhvhJMBkvIltffmS8Qtlu2SxhfJ7_kkxCjy5t5N6PVeWEwb0z30kHbc7SjQuT7x0Lxy47wdm8uqp6P44PAD6ct_VV23PqbC7cBlDbU_W7a33UevZ6xwSsaW1hBTp4y4JiZghPciqtOKKZy6h1Z_h2noTzselefmx7HYMBQp1c9VZi7K-2L9sVITZadUIfom3CKIexbfvg03T2eQj1ybs6ov2zg4Syi_O7-6zfmSi3JuvOAjl9hp76pQM-cJA_Rw9MvYMeB2V5s4N2p4NqEW70w3bzAonACXyDE9hzAt_gBAYMcc8JHDiBAyfwosQDJ_DAiZfo28fp6eFR5GtrRCpN-TrSMK8IWO6XUlPCmJJEUVIqLUgJBq1VZ2seU0NVmstUS2NyJqVJtEhEbAgX6S7aqhe1eYXwpFRSw8ekWiWZFLGcUAZ2Os9ZphKTxHsoDZ-zUD7xvK1_clGECMPzwoFQWBAKB8IeivpWS5d45Z77WUCq8MajMwoLINc9Ld8HYAsYW-2GmajNom0KwuzqG4z45PU_976Pngw_xxu0tV615i16pH6uq2b1zjP1GpFbpLc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+approximate+dynamic+programming+for+real-time+economic+dispatch+of+integrated+microgrids&rft.jtitle=Energy+%28Oxford%29&rft.au=Lin%2C+Zhiyi&rft.au=Song%2C+Chunyue&rft.au=Zhao%2C+Jun&rft.au=Yin%2C+Huan&rft.date=2022-09-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft_id=info:doi/10.1016%2Fj.energy.2022.124513&rft.externalDocID=S0360544222014165 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |