Feature fusion strategy and improved GhostNet for accurate recognition of fish feeding behavior

•An LC-GhostNet lightweight network based on the GhostNet is proposed.•Fusion of Mel spectrogram, STFT feature map, and CQT feature map.•The method can quantify the feeding behavior of fish into four classes.•The feature fusion accuracy reaches 97.941%, which is higher than a single feature. In aqua...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers and electronics in agriculture Ročník 214; s. 108310
Hlavní autori: Du, Zhuangzhuang, Xu, Xianbao, Bai, Zhuangzhuang, Liu, Xiaohang, Hu, Yang, Li, Wanchao, Wang, Cong, Li, Daoliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2023
Predmet:
ISSN:0168-1699, 1872-7107
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •An LC-GhostNet lightweight network based on the GhostNet is proposed.•Fusion of Mel spectrogram, STFT feature map, and CQT feature map.•The method can quantify the feeding behavior of fish into four classes.•The feature fusion accuracy reaches 97.941%, which is higher than a single feature. In aquaculture, accurate detection of fish feeding intensity is a critical step for establishing an on-demand feeding system. In this paper, a novel fish feeding intensity detection method based on the fusion of multiple features (Mel spectrogram, STFT, and CQT feature map) and the LC-GhostNet lightweight network was proposed as an experimental object with Oplegnathus. First, a dataset of feeding sounds of Oplegnathus punctatus was built, in which there are four types: “strong”, “medium”, “weak” and “none”. Next, the Mel, STFT, and CQT feature maps of the feeding sound were extracted using the Librosa library, and then these feature maps were fused by feature image stitching. Lastly, the fused audio feature maps were fed to LC-GhostNet for further feature extraction and classification. Experimental results indicated that the accuracy of the fused feature maps was 97.941% when used as input, which was 4.053%, 7.207%, and 3.003% higher than that of the single feature Mel, STFT, and CQT, respectively. The method proposed in this paper is more lightweight and effective than the mainstream methods, and the accuracy has been improved. Based on this automatic and non-destructive method of obtaining fish feeding information, feeding decisions can be effectively optimized.
AbstractList In aquaculture, accurate detection of fish feeding intensity is a critical step for establishing an on-demand feeding system. In this paper, a novel fish feeding intensity detection method based on the fusion of multiple features (Mel spectrogram, STFT, and CQT feature map) and the LC-GhostNet lightweight network was proposed as an experimental object with Oplegnathus. First, a dataset of feeding sounds of Oplegnathus punctatus was built, in which there are four types: “strong”, “medium”, “weak” and “none”. Next, the Mel, STFT, and CQT feature maps of the feeding sound were extracted using the Librosa library, and then these feature maps were fused by feature image stitching. Lastly, the fused audio feature maps were fed to LC-GhostNet for further feature extraction and classification. Experimental results indicated that the accuracy of the fused feature maps was 97.941% when used as input, which was 4.053%, 7.207%, and 3.003% higher than that of the single feature Mel, STFT, and CQT, respectively. The method proposed in this paper is more lightweight and effective than the mainstream methods, and the accuracy has been improved. Based on this automatic and non-destructive method of obtaining fish feeding information, feeding decisions can be effectively optimized.
•An LC-GhostNet lightweight network based on the GhostNet is proposed.•Fusion of Mel spectrogram, STFT feature map, and CQT feature map.•The method can quantify the feeding behavior of fish into four classes.•The feature fusion accuracy reaches 97.941%, which is higher than a single feature. In aquaculture, accurate detection of fish feeding intensity is a critical step for establishing an on-demand feeding system. In this paper, a novel fish feeding intensity detection method based on the fusion of multiple features (Mel spectrogram, STFT, and CQT feature map) and the LC-GhostNet lightweight network was proposed as an experimental object with Oplegnathus. First, a dataset of feeding sounds of Oplegnathus punctatus was built, in which there are four types: “strong”, “medium”, “weak” and “none”. Next, the Mel, STFT, and CQT feature maps of the feeding sound were extracted using the Librosa library, and then these feature maps were fused by feature image stitching. Lastly, the fused audio feature maps were fed to LC-GhostNet for further feature extraction and classification. Experimental results indicated that the accuracy of the fused feature maps was 97.941% when used as input, which was 4.053%, 7.207%, and 3.003% higher than that of the single feature Mel, STFT, and CQT, respectively. The method proposed in this paper is more lightweight and effective than the mainstream methods, and the accuracy has been improved. Based on this automatic and non-destructive method of obtaining fish feeding information, feeding decisions can be effectively optimized.
ArticleNumber 108310
Author Wang, Cong
Xu, Xianbao
Liu, Xiaohang
Bai, Zhuangzhuang
Li, Wanchao
Hu, Yang
Li, Daoliang
Du, Zhuangzhuang
Author_xml – sequence: 1
  givenname: Zhuangzhuang
  surname: Du
  fullname: Du, Zhuangzhuang
  email: dzz643@cau.edu.cn
  organization: National Innovation Center for Digital Fishery, China Agricultural University, China
– sequence: 2
  givenname: Xianbao
  surname: Xu
  fullname: Xu, Xianbao
  email: 1184706116@qq.com
  organization: National Innovation Center for Digital Fishery, China Agricultural University, China
– sequence: 3
  givenname: Zhuangzhuang
  surname: Bai
  fullname: Bai, Zhuangzhuang
  email: zzbai1997@163.com
  organization: National Innovation Center for Digital Fishery, China Agricultural University, China
– sequence: 4
  givenname: Xiaohang
  surname: Liu
  fullname: Liu, Xiaohang
  email: lxhhaust@163.com
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
– sequence: 5
  givenname: Yang
  surname: Hu
  fullname: Hu, Yang
  email: yang_hu2000@126.com
  organization: National Innovation Center for Digital Fishery, China Agricultural University, China
– sequence: 6
  givenname: Wanchao
  surname: Li
  fullname: Li, Wanchao
  email: wanchao_li2023@163.com
  organization: College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300392, China
– sequence: 7
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  email: ndfic_wc@cau.edu.cn
  organization: National Innovation Center for Digital Fishery, China Agricultural University, China
– sequence: 8
  givenname: Daoliang
  orcidid: 0000-0002-1842-419X
  surname: Li
  fullname: Li, Daoliang
  email: dliangl@cau.edu.cn
  organization: National Innovation Center for Digital Fishery, China Agricultural University, China
BookMark eNqFkEFPAjEQhRuDiYD-Aw89ellsu7BtPZgYImhC9KLnprSzUAJbbLsk_Hu7WU8edHpoZvLeZN43QoPGN4DQLSUTSmh1v5sYfzjqzYQRVuaRKCm5QEMqOCs4JXyAhlkmClpJeYVGMe5I7qXgQ6QWoFMbANdtdL7BMQWdYHPGurHYHY7Bn8Di5dbH9AYJ1z5gbUzbiXAA4zeNS53P17h2cYtrAOuaDV7DVp-cD9fostb7CDc__xh9Lp4_5i_F6n35On9aFaYsZSpsJUtuwBrO1hwk8FqadcWZllZoIoUoBawFSEY415TlmjGhrbEzwypdmXKM7vq9-eKvFmJSBxcN7Pe6Ad9GVZJpfrlmWfrQS03wMQaolXFJdylydrdXlKiOqtqpnqrqqKqeajZPf5mPwR10OP9ne-xtkBmcHAQVjYMmJ3aZYlLWu78XfAPb_5bH
CitedBy_id crossref_primary_10_1016_j_compag_2024_108903
crossref_primary_10_3390_jmse12071132
crossref_primary_10_3390_jmse13050944
crossref_primary_10_1016_j_aquaeng_2025_102552
crossref_primary_10_3390_s25144374
crossref_primary_10_1016_j_wateco_2025_100008
crossref_primary_10_3390_ani14223197
crossref_primary_10_1016_j_biosystemseng_2024_08_001
crossref_primary_10_3389_fpsyg_2024_1459446
crossref_primary_10_1016_j_atech_2025_101078
crossref_primary_10_1016_j_compag_2024_109699
crossref_primary_10_1016_j_saa_2024_125653
crossref_primary_10_3390_foods14020258
crossref_primary_10_1007_s10499_025_02054_0
crossref_primary_10_3390_ani14111690
crossref_primary_10_1016_j_applanim_2025_106588
crossref_primary_10_1016_j_compag_2025_110038
crossref_primary_10_1016_j_jfoodeng_2024_112452
crossref_primary_10_1007_s11760_025_04139_y
crossref_primary_10_1016_j_aquaculture_2025_742700
crossref_primary_10_1016_j_compag_2024_109367
crossref_primary_10_3389_fpls_2025_1609222
crossref_primary_10_1007_s10499_025_01913_0
crossref_primary_10_1016_j_inpa_2024_04_001
crossref_primary_10_1088_1361_6501_ae0061
Cites_doi 10.1016/j.compag.2022.106994
10.3390/app13074124
10.1016/j.aquaculture.2022.737913
10.1111/are.15317
10.1016/j.compag.2016.06.025
10.1016/j.compag.2021.106135
10.1080/09524622.2019.1606734
10.1016/j.compag.2022.107580
10.1109/ACCESS.2019.2940051
10.1109/CVPR46437.2021.01350
10.1109/EMBC.2018.8512408
10.21437/Interspeech.2019-1841
10.1016/j.aquaculture.2008.06.036
10.1002/etc.4242
10.1016/j.patcog.2007.10.026
10.1016/j.jclepro.2022.131632
10.1049/cje.2017.09.018
10.1016/j.aquaculture.2018.11.013
10.1016/j.compag.2022.106914
10.1016/j.compag.2023.107645
10.1109/TPAMI.2019.2913372
10.1016/j.aquaeng.2023.102345
10.1016/j.aquaeng.2021.102178
10.1016/j.aquaculture.2021.737326
10.1109/CVPR.2018.00291
10.1016/j.biosystemseng.2022.05.010
10.1109/TII.2022.3168887
10.1111/are.14907
10.1016/j.aquaculture.2016.06.045
10.1016/j.compag.2019.105087
10.1109/ICCV.2017.155
10.1016/j.specom.2020.12.009
10.1016/j.compag.2021.106316
10.1016/j.aquaeng.2022.102244
10.3389/fnins.2023.1183132
10.1111/raq.12546
10.1109/CVPR42600.2020.00165
10.1109/ACCESS.2020.3019529
10.1155/2016/6172453
10.13031/trans.59.11406
10.1016/j.aquaculture.2019.04.056
10.1016/j.apacoust.2020.107732
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2023.108310
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2023_108310
S0168169923006981
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-d6937cedc72b7e9e7f9cb672a9d8a098838eb8e92077a12222528adcd5c26a6c3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001096264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Thu Oct 02 21:44:30 EDT 2025
Tue Nov 18 21:16:39 EST 2025
Sat Nov 29 07:25:46 EST 2025
Fri Feb 23 02:35:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LC-GhostNet lightweight network
Feature fusion
Fish feeding intensity
On-demand feeding system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-d6937cedc72b7e9e7f9cb672a9d8a098838eb8e92077a12222528adcd5c26a6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1842-419X
PQID 3040400005
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040400005
crossref_citationtrail_10_1016_j_compag_2023_108310
crossref_primary_10_1016_j_compag_2023_108310
elsevier_sciencedirect_doi_10_1016_j_compag_2023_108310
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Usama, Xiao, Ahmad, Wan, Hassan, Alelaiwi (b0160) 2019
Xu, Wei, Zaidi, Ren, Yang (b0185) 2021; 174
Ko, K., Park, S., Ko, H., 2018. Convolutional Feature Vectors and Support Vector Machine for Animal Sound Classification. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 376-379. doi:10.1109/EMBC.2018.8512408.
Fore, Alver, Alfredsen, Marafioti, Senneset, Birkevold, Terjesen (b0040) 2016; 464
Hu, Liu, Zhao, Liu, Yang, Sun, Zhou (b0075) 2021; 185
Abdar, Fahami, Rundo, Radeva, Frangi, Acharya, Nahavandi (b0005) 2023; 19
Knight, Poo Hernandez, Bayne, Bulitko, Tucker (b0095) 2019; 29
Nisar, S., Khan, O.U., Tariq, M., 2016. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization. Comput. Intell. Neurosci. 6172453. Retrieved from
Yin, Ji, Wang, Shen, Dai, Kou, Liang (b0200) 2023; 205
Zhang, Tao, Chuang, Zhao (b0210) 2021; 127
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). GhostNet More Features from Cheap Operations. In: IEEE Conference on Computer Vision and Pattern Recognition, 1577-1586. doi:10.1109/CVPR42600.2020.00165.
Wang, Li, You, Chen, Yuan, Feng (b0165) 2022; 197
Darodes de Tailly, Keitel, Owen, Alcaraz-Calero, Alexander, Sloman (b0025) 2021; 13
Zhou, Xu, Chen, Zhang, Sun, Yang, Wang (b0220) 2019; 507
Feng, Yang, Liu, Zhao, Liu, Yan, Zhou (b0035) 2022; 98
Hamilton, Silva, Costa Filho, Peixoto (b0050) 2021; 52
Pham, L., McLoughlin, I., Phan, H., & Palaniappan, R., 2019. A Robust Framework for Acoustic Scene Classification. Paper presented at the Interspeech 2019.
Du, Cui, Wang, Liu, Xu, Bai, Li (b0030) 2023; 102
Cui, Liu, Zhao, Sun, Lian, Chen, Wang (b0020) 2022; 1–6
Jiang, Liu, Wen (b0090) 2018; 27
Xiong, Xie, Feng, Wang (b0180) 2022; 352
Wei, Lin, Chen, Su, Cheng (b0175) 2020; 8
An, Hao, Wei, Wang, Yu (b0010) 2020; 52
Tu, Liu, Zhao, Yan, Zou (b0150) 2023; 13
Shen, Ji, Yin, Dai, Tu, Sun, Zhao (b0135) 2022; 197
Ye, Zhao, Han, Zhu, Li, Lu, Ruan (b0195) 2016; 59
Ubina, Cheng, Chang, Chen (b0155) 2021; 94
He, Y., Zhang, X., Sun, J., 2017. Channel Pruning for Accelerating Very Deep Neural Networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), 1398-1406. doi:10.1109/ICCV.2017.155.
Yang, Yu, Cheng, Mei, Duan, Li, Chen (b0190) 2021; 187
Reis, Peixoto, Soares, Rhodes, Ching, Davis (b0125) 2022; 546
Temko, Macho, Nadeu (b0145) 2008; 41
Azim, Little (b0015) 2008; 283
doi:10.1155/2016/6172453.
Gui, S., Wang, H., Yang, H., Yu, C., Wang, Z., Liu, J., … Garnett, R., 2019. Model Compression with Adversarial Robustness A Unified Optimization Framework. In: 33rd Conference on Neural Information Processing Systems (NeurIPS), 32. doi:10.48550/arXiv.1902.03538.
Hou, Q., Zhou, D., Feng, J., 2021. Coordinate Attention for Efficient Mobile Network Design. In: Paper presented at the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Huang, G., Liu, S., Maaten, L. v. d., & Weinberger, K.Q., 2018. CondenseNet: An Efficient DenseNet Using Learned Group Convolutions. In: Paper presented at the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Silva, Hamilton, Rocha, Borie, Travassos, Soares, Peixoto (b0140) 2019; 501
Ji, Shen, Yin, Bao, Dai, Hou, Zhao (b0085) 2022; 219
Li, Luo, Wang, Liu, Sang (b0105) 2023; 17
Måløy, Aamodt, Misimi (b0110) 2019; 167
Wang, Yu, Liu, An, Wei (b0170) 2022; 551
Zeng, Yang, Pan, Zhu, Wang, Zhao, Zhou (b0205) 2023; 204
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E., 2020. Squeeze-and-excitation networks.
Saari, Corrales, Haddad, Chambliss, Brooks (b0130) 2018; 37
Zhao, Gu, Shi, Lu, Li, Shen, Zhu (b0215) 2016; 127
(8), 2011-2023. doi:10.1109/TPAMI.2019.2913372.
10.1016/j.compag.2023.108310_b0070
Ubina (10.1016/j.compag.2023.108310_b0155) 2021; 94
Knight (10.1016/j.compag.2023.108310_b0095) 2019; 29
Reis (10.1016/j.compag.2023.108310_b0125) 2022; 546
Usama (10.1016/j.compag.2023.108310_b0160) 2019
Cui (10.1016/j.compag.2023.108310_b0020) 2022; 1–6
Li (10.1016/j.compag.2023.108310_b0105) 2023; 17
Ye (10.1016/j.compag.2023.108310_b0195) 2016; 59
An (10.1016/j.compag.2023.108310_b0010) 2020; 52
Hu (10.1016/j.compag.2023.108310_b0075) 2021; 185
Ji (10.1016/j.compag.2023.108310_b0085) 2022; 219
Zeng (10.1016/j.compag.2023.108310_b0205) 2023; 204
Wei (10.1016/j.compag.2023.108310_b0175) 2020; 8
Darodes de Tailly (10.1016/j.compag.2023.108310_b0025) 2021; 13
Feng (10.1016/j.compag.2023.108310_b0035) 2022; 98
Tu (10.1016/j.compag.2023.108310_b0150) 2023; 13
Zhao (10.1016/j.compag.2023.108310_b0215) 2016; 127
Azim (10.1016/j.compag.2023.108310_b0015) 2008; 283
Zhou (10.1016/j.compag.2023.108310_b0220) 2019; 507
10.1016/j.compag.2023.108310_b0055
Hamilton (10.1016/j.compag.2023.108310_b0050) 2021; 52
Måløy (10.1016/j.compag.2023.108310_b0110) 2019; 167
10.1016/j.compag.2023.108310_b0115
Yang (10.1016/j.compag.2023.108310_b0190) 2021; 187
Zhang (10.1016/j.compag.2023.108310_b0210) 2021; 127
10.1016/j.compag.2023.108310_b0080
Jiang (10.1016/j.compag.2023.108310_b0090) 2018; 27
Yin (10.1016/j.compag.2023.108310_b0200) 2023; 205
Silva (10.1016/j.compag.2023.108310_b0140) 2019; 501
10.1016/j.compag.2023.108310_b0060
Shen (10.1016/j.compag.2023.108310_b0135) 2022; 197
Wang (10.1016/j.compag.2023.108310_b0165) 2022; 197
Du (10.1016/j.compag.2023.108310_b0030) 2023; 102
Xiong (10.1016/j.compag.2023.108310_b0180) 2022; 352
Temko (10.1016/j.compag.2023.108310_b0145) 2008; 41
Abdar (10.1016/j.compag.2023.108310_b0005) 2023; 19
Xu (10.1016/j.compag.2023.108310_b0185) 2021; 174
10.1016/j.compag.2023.108310_b0045
10.1016/j.compag.2023.108310_b0100
Saari (10.1016/j.compag.2023.108310_b0130) 2018; 37
10.1016/j.compag.2023.108310_b0065
10.1016/j.compag.2023.108310_b0120
Wang (10.1016/j.compag.2023.108310_b0170) 2022; 551
Fore (10.1016/j.compag.2023.108310_b0040) 2016; 464
References_xml – reference: Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E., 2020. Squeeze-and-excitation networks.
– volume: 13
  start-page: 1828
  year: 2021
  end-page: 1843
  ident: b0025
  article-title: Monitoring methods of feeding behaviour to answer key questions in penaeid shrimp feeding
  publication-title: Rev. Aquac.
– volume: 27
  start-page: 393
  year: 2018
  end-page: 398
  ident: b0090
  article-title: Speech Magnitude Spectrum Reconstruction from MFCCs Using Deep Neural Network
  publication-title: Chin. J. Electron.
– volume: 205
  year: 2023
  ident: b0200
  article-title: An investigation of fusion strategies for boosting pig cough sound recognition
  publication-title: Comput. Electron. Agric.
– volume: 127
  start-page: 73
  year: 2021
  end-page: 81
  ident: b0210
  article-title: Learning deep multimodal affective features for spontaneous speech emotion recognition
  publication-title: Speech Comm.
– volume: 551
  year: 2022
  ident: b0170
  article-title: Dynamic feeding method for aquaculture fish using multi-task neural network
  publication-title: Aquaculture
– volume: 19
  start-page: 274
  year: 2023
  end-page: 285
  ident: b0005
  article-title: Hercules: Deep Hierarchical Attentive Multilevel Fusion Model With Uncertainty Quantification for Medical Image Classification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 41
  start-page: 1814
  year: 2008
  end-page: 1823
  ident: b0145
  article-title: Fuzzy integral based information fusion for classification of highly confusable non-speech sounds
  publication-title: Pattern Recogn.
– volume: 29
  start-page: 337
  year: 2019
  end-page: 355
  ident: b0095
  article-title: Pre-processing spectrogram parameters improve the accuracy of bioacoustic classification using convolutional neural networks
  publication-title: Bioacoustics
– volume: 352
  year: 2022
  ident: b0180
  article-title: Occurrence of microplastics in a pond-river-lake connection water system: How does the aquaculture process affect microplastics in natural water bodies
  publication-title: J. Clean. Prod.
– volume: 546
  year: 2022
  ident: b0125
  article-title: Passive acoustic monitoring as a tool to assess feed response and growth of shrimp in ponds and research systems
  publication-title: Aquaculture
– volume: 127
  start-page: 271
  year: 2016
  end-page: 280
  ident: b0215
  article-title: Spatial behavioral characteristics and statistics-based kinetic energy modeling in special behaviors detection of a shoal of fish in a recirculating aquaculture system
  publication-title: Comput. Electron. Agric.
– volume: 94
  year: 2021
  ident: b0155
  article-title: Evaluating fish feeding intensity in aquaculture with convolutional neural networks
  publication-title: Aquac. Eng.
– volume: 37
  start-page: 2835
  year: 2018
  end-page: 2850
  ident: b0130
  article-title: Influence of Diltiazem on Fathead Minnows Across Dissolved Oxygen Gradients
  publication-title: Environ. Toxicol. Chem.
– volume: 219
  start-page: 281
  year: 2022
  end-page: 293
  ident: b0085
  article-title: Investigation of acoustic and visual features for pig cough classification
  publication-title: Biosyst. Eng.
– reference: Huang, G., Liu, S., Maaten, L. v. d., & Weinberger, K.Q., 2018. CondenseNet: An Efficient DenseNet Using Learned Group Convolutions. In: Paper presented at the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
– volume: 17
  start-page: 1183132
  year: 2023
  ident: b0105
  article-title: GCF(2)-Net: global-aware cross-modal feature fusion network for speech emotion recognition
  publication-title: Front Neurosci
– reference: Pham, L., McLoughlin, I., Phan, H., & Palaniappan, R., 2019. A Robust Framework for Acoustic Scene Classification. Paper presented at the Interspeech 2019.
– start-page: 140252
  year: 2019
  end-page: 140260
  ident: b0160
  article-title: Deep Learning Based Weighted Feature Fusion Approach for Sentiment Analysis
  publication-title: IEEE Access
– reference: Gui, S., Wang, H., Yang, H., Yu, C., Wang, Z., Liu, J., … Garnett, R., 2019. Model Compression with Adversarial Robustness A Unified Optimization Framework. In: 33rd Conference on Neural Information Processing Systems (NeurIPS), 32. doi:10.48550/arXiv.1902.03538.
– reference: . doi:10.1155/2016/6172453.
– reference: Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). GhostNet More Features from Cheap Operations. In: IEEE Conference on Computer Vision and Pattern Recognition, 1577-1586. doi:10.1109/CVPR42600.2020.00165.
– reference: Ko, K., Park, S., Ko, H., 2018. Convolutional Feature Vectors and Support Vector Machine for Animal Sound Classification. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 376-379. doi:10.1109/EMBC.2018.8512408.
– reference: (8), 2011-2023. doi:10.1109/TPAMI.2019.2913372.
– reference: He, Y., Zhang, X., Sun, J., 2017. Channel Pruning for Accelerating Very Deep Neural Networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), 1398-1406. doi:10.1109/ICCV.2017.155.
– volume: 197
  year: 2022
  ident: b0135
  article-title: Fusion of acoustic and deep features for pig cough sound recognition
  publication-title: Comput. Electron. Agric.
– volume: 187
  year: 2021
  ident: b0190
  article-title: A dual attention network based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture
  publication-title: Comput. Electron. Agric.
– volume: 185
  year: 2021
  ident: b0075
  article-title: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
  publication-title: Comput. Electron. Agric.
– reference: Hou, Q., Zhou, D., Feng, J., 2021. Coordinate Attention for Efficient Mobile Network Design. In: Paper presented at the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
– volume: 59
  start-page: 345
  year: 2016
  end-page: 355
  ident: b0195
  article-title: Behavioral Characteristics and Statistics-Based Imaging Techniques in the Assessment and Optimization of Tilapia Feeding in a Recirculating Aquaculture System
  publication-title: Trans. ASABE
– volume: 501
  start-page: 76
  year: 2019
  end-page: 81
  ident: b0140
  article-title: Acoustic characterization of feeding activity of Litopenaeus vannamei in captivity
  publication-title: Aquaculture
– reference: Nisar, S., Khan, O.U., Tariq, M., 2016. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization. Comput. Intell. Neurosci. 6172453. Retrieved from
– volume: 52
  start-page: 4841
  year: 2021
  end-page: 4848
  ident: b0050
  article-title: Sound emission of Macrobrachium rosenbergii during feeding activity
  publication-title: Aquac. Res.
– volume: 204
  year: 2023
  ident: b0205
  article-title: Fish school feeding behavior quantification using acoustic signal and improved Swin Transformer
  publication-title: Comput. Electron. Agric.
– volume: 174
  year: 2021
  ident: b0185
  article-title: Speech enhancement based on nonnegative matrix factorization in constant-Q frequency domain
  publication-title: Appl. Acoust.
– volume: 167
  year: 2019
  ident: b0110
  article-title: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture
  publication-title: Comput. Electron. Agric.
– volume: 283
  start-page: 29
  year: 2008
  end-page: 35
  ident: b0015
  article-title: The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus)
  publication-title: Aquaculture
– volume: 1–6
  year: 2022
  ident: b0020
  article-title: Fish feeding intensity assessment in aquaculture a new audio dataset affia3k and a deep learning algorithm
  publication-title: IEEE Int. Workshop Mach. Learn. Signal Process.
– volume: 464
  start-page: 268
  year: 2016
  end-page: 278
  ident: b0040
  article-title: Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments
  publication-title: Aquaculture
– volume: 8
  start-page: 156654
  year: 2020
  end-page: 156662
  ident: b0175
  article-title: Study on Feeding Activity of Litopenaeus Vannamei Based on Passive Acoustic Detection
  publication-title: IEEE Access
– volume: 98
  year: 2022
  ident: b0035
  article-title: Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network
  publication-title: Aquac. Eng.
– volume: 102
  year: 2023
  ident: b0030
  article-title: Feeding intensity assessment of aquaculture fish using Mel Spectrogram and deep learning algorithms
  publication-title: Aquac. Eng.
– volume: 197
  year: 2022
  ident: b0165
  article-title: Fusing deep learning features of triplet leaf image patterns to boost soybean cultivar identification
  publication-title: Comput. Electron. Agric.
– volume: 507
  start-page: 457
  year: 2019
  end-page: 465
  ident: b0220
  article-title: Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision
  publication-title: Aquaculture
– volume: 13
  year: 2023
  ident: b0150
  article-title: A Feature Fusion Model with Data Augmentation for Speech Emotion Recognition
  publication-title: Appl. Sci.
– volume: 52
  start-page: 423
  year: 2020
  end-page: 437
  ident: b0010
  article-title: Application of computer vision in fish intelligent feeding system—A review
  publication-title: Aquac. Res.
– volume: 197
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0135
  article-title: Fusion of acoustic and deep features for pig cough sound recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106994
– volume: 13
  issue: 7
  year: 2023
  ident: 10.1016/j.compag.2023.108310_b0150
  article-title: A Feature Fusion Model with Data Augmentation for Speech Emotion Recognition
  publication-title: Appl. Sci.
  doi: 10.3390/app13074124
– volume: 551
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0170
  article-title: Dynamic feeding method for aquaculture fish using multi-task neural network
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.737913
– volume: 52
  start-page: 4841
  issue: 10
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0050
  article-title: Sound emission of Macrobrachium rosenbergii during feeding activity
  publication-title: Aquac. Res.
  doi: 10.1111/are.15317
– volume: 127
  start-page: 271
  year: 2016
  ident: 10.1016/j.compag.2023.108310_b0215
  article-title: Spatial behavioral characteristics and statistics-based kinetic energy modeling in special behaviors detection of a shoal of fish in a recirculating aquaculture system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.06.025
– volume: 185
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0075
  article-title: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106135
– volume: 29
  start-page: 337
  issue: 3
  year: 2019
  ident: 10.1016/j.compag.2023.108310_b0095
  article-title: Pre-processing spectrogram parameters improve the accuracy of bioacoustic classification using convolutional neural networks
  publication-title: Bioacoustics
  doi: 10.1080/09524622.2019.1606734
– volume: 204
  year: 2023
  ident: 10.1016/j.compag.2023.108310_b0205
  article-title: Fish school feeding behavior quantification using acoustic signal and improved Swin Transformer
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107580
– start-page: 140252
  year: 2019
  ident: 10.1016/j.compag.2023.108310_b0160
  article-title: Deep Learning Based Weighted Feature Fusion Approach for Sentiment Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940051
– ident: 10.1016/j.compag.2023.108310_b0065
  doi: 10.1109/CVPR46437.2021.01350
– ident: 10.1016/j.compag.2023.108310_b0100
  doi: 10.1109/EMBC.2018.8512408
– ident: 10.1016/j.compag.2023.108310_b0120
  doi: 10.21437/Interspeech.2019-1841
– volume: 283
  start-page: 29
  issue: 1–4
  year: 2008
  ident: 10.1016/j.compag.2023.108310_b0015
  article-title: The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus)
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2008.06.036
– volume: 37
  start-page: 2835
  issue: 11
  year: 2018
  ident: 10.1016/j.compag.2023.108310_b0130
  article-title: Influence of Diltiazem on Fathead Minnows Across Dissolved Oxygen Gradients
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.4242
– volume: 41
  start-page: 1814
  issue: 5
  year: 2008
  ident: 10.1016/j.compag.2023.108310_b0145
  article-title: Fuzzy integral based information fusion for classification of highly confusable non-speech sounds
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2007.10.026
– volume: 352
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0180
  article-title: Occurrence of microplastics in a pond-river-lake connection water system: How does the aquaculture process affect microplastics in natural water bodies
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131632
– volume: 27
  start-page: 393
  issue: 2
  year: 2018
  ident: 10.1016/j.compag.2023.108310_b0090
  article-title: Speech Magnitude Spectrum Reconstruction from MFCCs Using Deep Neural Network
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2017.09.018
– volume: 501
  start-page: 76
  year: 2019
  ident: 10.1016/j.compag.2023.108310_b0140
  article-title: Acoustic characterization of feeding activity of Litopenaeus vannamei in captivity
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2018.11.013
– volume: 197
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0165
  article-title: Fusing deep learning features of triplet leaf image patterns to boost soybean cultivar identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106914
– volume: 205
  year: 2023
  ident: 10.1016/j.compag.2023.108310_b0200
  article-title: An investigation of fusion strategies for boosting pig cough sound recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107645
– ident: 10.1016/j.compag.2023.108310_b0070
  doi: 10.1109/TPAMI.2019.2913372
– volume: 102
  year: 2023
  ident: 10.1016/j.compag.2023.108310_b0030
  article-title: Feeding intensity assessment of aquaculture fish using Mel Spectrogram and deep learning algorithms
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2023.102345
– volume: 94
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0155
  article-title: Evaluating fish feeding intensity in aquaculture with convolutional neural networks
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2021.102178
– volume: 546
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0125
  article-title: Passive acoustic monitoring as a tool to assess feed response and growth of shrimp in ponds and research systems
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.737326
– ident: 10.1016/j.compag.2023.108310_b0080
  doi: 10.1109/CVPR.2018.00291
– volume: 219
  start-page: 281
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0085
  article-title: Investigation of acoustic and visual features for pig cough classification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2022.05.010
– volume: 19
  start-page: 274
  issue: 1
  year: 2023
  ident: 10.1016/j.compag.2023.108310_b0005
  article-title: Hercules: Deep Hierarchical Attentive Multilevel Fusion Model With Uncertainty Quantification for Medical Image Classification
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3168887
– volume: 52
  start-page: 423
  issue: 2
  year: 2020
  ident: 10.1016/j.compag.2023.108310_b0010
  article-title: Application of computer vision in fish intelligent feeding system—A review
  publication-title: Aquac. Res.
  doi: 10.1111/are.14907
– volume: 464
  start-page: 268
  year: 2016
  ident: 10.1016/j.compag.2023.108310_b0040
  article-title: Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2016.06.045
– volume: 167
  year: 2019
  ident: 10.1016/j.compag.2023.108310_b0110
  article-title: A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105087
– ident: 10.1016/j.compag.2023.108310_b0060
  doi: 10.1109/ICCV.2017.155
– volume: 127
  start-page: 73
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0210
  article-title: Learning deep multimodal affective features for spontaneous speech emotion recognition
  publication-title: Speech Comm.
  doi: 10.1016/j.specom.2020.12.009
– volume: 187
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0190
  article-title: A dual attention network based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106316
– volume: 98
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0035
  article-title: Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2022.102244
– volume: 17
  start-page: 1183132
  year: 2023
  ident: 10.1016/j.compag.2023.108310_b0105
  article-title: GCF(2)-Net: global-aware cross-modal feature fusion network for speech emotion recognition
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2023.1183132
– volume: 13
  start-page: 1828
  issue: 4
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0025
  article-title: Monitoring methods of feeding behaviour to answer key questions in penaeid shrimp feeding
  publication-title: Rev. Aquac.
  doi: 10.1111/raq.12546
– volume: 1–6
  year: 2022
  ident: 10.1016/j.compag.2023.108310_b0020
  article-title: Fish feeding intensity assessment in aquaculture a new audio dataset affia3k and a deep learning algorithm
  publication-title: IEEE Int. Workshop Mach. Learn. Signal Process.
– ident: 10.1016/j.compag.2023.108310_b0055
  doi: 10.1109/CVPR42600.2020.00165
– volume: 8
  start-page: 156654
  year: 2020
  ident: 10.1016/j.compag.2023.108310_b0175
  article-title: Study on Feeding Activity of Litopenaeus Vannamei Based on Passive Acoustic Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019529
– ident: 10.1016/j.compag.2023.108310_b0045
– ident: 10.1016/j.compag.2023.108310_b0115
  doi: 10.1155/2016/6172453
– volume: 59
  start-page: 345
  issue: 1
  year: 2016
  ident: 10.1016/j.compag.2023.108310_b0195
  article-title: Behavioral Characteristics and Statistics-Based Imaging Techniques in the Assessment and Optimization of Tilapia Feeding in a Recirculating Aquaculture System
  publication-title: Trans. ASABE
  doi: 10.13031/trans.59.11406
– volume: 507
  start-page: 457
  year: 2019
  ident: 10.1016/j.compag.2023.108310_b0220
  article-title: Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2019.04.056
– volume: 174
  year: 2021
  ident: 10.1016/j.compag.2023.108310_b0185
  article-title: Speech enhancement based on nonnegative matrix factorization in constant-Q frequency domain
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107732
SSID ssj0016987
Score 2.5167274
Snippet •An LC-GhostNet lightweight network based on the GhostNet is proposed.•Fusion of Mel spectrogram, STFT feature map, and CQT feature map.•The method can...
In aquaculture, accurate detection of fish feeding intensity is a critical step for establishing an on-demand feeding system. In this paper, a novel fish...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108310
SubjectTerms agriculture
aquaculture
data collection
electronics
Feature fusion
fish
Fish feeding intensity
LC-GhostNet lightweight network
nondestructive methods
On-demand feeding system
Oplegnathus
Title Feature fusion strategy and improved GhostNet for accurate recognition of fish feeding behavior
URI https://dx.doi.org/10.1016/j.compag.2023.108310
https://www.proquest.com/docview/3040400005
Volume 214
WOSCitedRecordID wos001096264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JaxsxFBau00N7KF1puqFC6cVMcGaTdDSt0wXj9uDA3IS2cRzC2LU9weTX52kkzZi2IemhF2E00ozR-5A-vRWhD7mReVIKEUmqaJQaYSJWpjJShukETmxWMt0UmyDTKS0K9rPX24VYmMsLUlV0t2Or_ypq6ANh29DZfxB3-1LogN8gdGhB7NDeSfCW1FmrQFlbRdhg49LP-jRLjQoBOOYXG9wxNVvnRKlUbQcNWm8iRyJLm-2odMdbG8-_z2ZDSQiX57mrqNP42Ir52uf1aLHzuW5sIWe1qOZXTRueFM2TArAqxbLTri5uGj9ZhAnLs9DtdRdx4oP49tSZOdxhc1ciKezH8XE6WFnfR2Ce0V93eadwOD9q3PTnR_bNfnx3qgVL_vQHPzmdTPhsXMw-rn5Ftt6Ytcv74iv30EFMMkb76GD0bVx8by1QOaMu1N7_wxB22fgG_vnhm2jNbwd8w1pmj9Ejf93AIweTJ6hnqqfo4agTzTPEPWCwAwwOgMEgUxwAgwNgMAAGB8DgPcDgZYktYLAHDA6AeY5OT8azT18jX3YjUknCtpHOgbIqoxWJJTHMkJIpmZNYME3FkFGaUCOpYfGQEHEcW4VBTIVWOlNxLnKVvED9almZlwhrouH-qqXOpEhJJmSsNIULvywTKtkwP0RJWDWufE56Wxrlggfnw3Pu1prbteZurQ9R1M5auZwst4wnQSDc80rHFzkA6paZ74P8OGy71pYmKrOsNzyBwy-1ZC97dYcxr9GDDv5vUH-7rs1bdF9dbheb9TsPvWtJ5asE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+fusion+strategy+and+improved+GhostNet+for+accurate+recognition+of+fish+feeding+behavior&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Du%2C+Zhuangzhuang&rft.au=Xu%2C+Xianbao&rft.au=Bai%2C+Zhuangzhuang&rft.au=Liu%2C+Xiaohang&rft.date=2023-11-01&rft.issn=0168-1699&rft.volume=214+p.108310-&rft_id=info:doi/10.1016%2Fj.compag.2023.108310&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon