Insights on Transfer Optimization: Because Experience is the Best Teacher

Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the capabilities of solvers do not automatically grow with experience. In contrast, however, humans routinely make use of a pool of knowledge drawn from...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence Vol. 2; no. 1; pp. 51 - 64
Main Authors: Gupta, Abhishek, Ong, Yew-Soon, Feng, Liang
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2471-285X, 2471-285X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the capabilities of solvers do not automatically grow with experience. In contrast, however, humans routinely make use of a pool of knowledge drawn from past experiences whenever faced with a new task. This is often an effective approach in practice as real-world problems seldom exist in isolation. Similarly, practically useful artificial systems are expected to face a large number of problems in their lifetime, many of which will either be repetitive or share domain-specific similarities. This view naturally motivates advanced optimizers that mimic human cognitive capabilities; leveraging on what has been seen before to accelerate the search toward optimal solutions of never before seen tasks. With this in mind, this paper sheds light on recent research advances in the field of global black-box optimization that champion the theme of automatic knowledge transfer across problems. We introduce a general formalization of transfer optimization , based on which the conceptual realizations of the paradigm are classified into three distinct categories, namely sequential transfer , multitasking , and multiform optimization . In addition, we carry out a survey of different methodological perspectives spanning Bayesian optimization and nature-inspired computational intelligence procedures for efficient encoding and transfer of knowledge building blocks. Finally, real-world applications of the techniques are identified, demonstrating the future impact of optimization engines that evolve as better problem-solvers over time by learning from the past and from one another.
AbstractList Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the capabilities of solvers do not automatically grow with experience. In contrast, however, humans routinely make use of a pool of knowledge drawn from past experiences whenever faced with a new task. This is often an effective approach in practice as real-world problems seldom exist in isolation. Similarly, practically useful artificial systems are expected to face a large number of problems in their lifetime, many of which will either be repetitive or share domain-specific similarities. This view naturally motivates advanced optimizers that mimic human cognitive capabilities; leveraging on what has been seen before to accelerate the search toward optimal solutions of never before seen tasks. With this in mind, this paper sheds light on recent research advances in the field of global black-box optimization that champion the theme of automatic knowledge transfer across problems. We introduce a general formalization of transfer optimization , based on which the conceptual realizations of the paradigm are classified into three distinct categories, namely sequential transfer , multitasking , and multiform optimization . In addition, we carry out a survey of different methodological perspectives spanning Bayesian optimization and nature-inspired computational intelligence procedures for efficient encoding and transfer of knowledge building blocks. Finally, real-world applications of the techniques are identified, demonstrating the future impact of optimization engines that evolve as better problem-solvers over time by learning from the past and from one another.
Author Ong, Yew-Soon
Feng, Liang
Gupta, Abhishek
Author_xml – sequence: 1
  givenname: Abhishek
  orcidid: 0000-0002-6080-855X
  surname: Gupta
  fullname: Gupta, Abhishek
  email: abhishekg@ntu.edu.sg
  organization: Data Science and Artificial Intelligence Research Centre, School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Yew-Soon
  orcidid: 0000-0002-4480-169X
  surname: Ong
  fullname: Ong, Yew-Soon
  email: asysong@ntu.edu.sg
  organization: Data Science and Artificial Intelligence Research Centre, School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-8356-7242
  surname: Feng
  fullname: Feng, Liang
  email: liangf@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
BookMark eNp9kE9LAzEQxYNUsNZ-Ab0seN6af9vdeNNSdaHQywreliQ7sSltdk22oH5601ZEPHiagXm_mTfvHA1c6wChS4InhGBxU82rWTmhmOQTmk8FwfwEDSnPSUqL7GXwqz9D4xDWGGMqMsIyPkRl6YJ9XfUhaV1SeemCAZ8su95u7afsbetuk3vQchcgmb934C04DYkNSb-COAl9UoHUK_AX6NTITYDxdx2h54do7CldLB_L2d0i1YyJPm04UzgHoYjhWkN0rYFJapRQXGOjFDQcTFNIg7XKGq3iWwLTQjaCN0Vm2AhdH_d2vn3bRQP1ut15F0_WlApBpoQzElXFUaV9G4IHU2vbH_7pvbSbmuB6n119yK7eZ1d_ZxdR-gftvN1K__E_dHWELAD8AAUhnIiCfQFkBX2A
CODEN ITETCU
CitedBy_id crossref_primary_10_1007_s11227_025_07787_6
crossref_primary_10_1109_TEVC_2023_3339506
crossref_primary_10_1109_TETCI_2019_2916051
crossref_primary_10_1109_TEVC_2021_3083362
crossref_primary_10_4018_IJeC_307137
crossref_primary_10_1109_TCYB_2020_2989465
crossref_primary_10_1109_TCYB_2020_3017049
crossref_primary_10_1109_TEVC_2022_3215743
crossref_primary_10_1109_TEVC_2021_3135691
crossref_primary_10_1109_TEVC_2023_3332676
crossref_primary_10_1109_MCI_2023_3277769
crossref_primary_10_1109_TEVC_2023_3259067
crossref_primary_10_1109_TCYB_2022_3214825
crossref_primary_10_1016_j_asoc_2025_112732
crossref_primary_10_1109_MCI_2021_3108302
crossref_primary_10_1109_TEVC_2022_3187512
crossref_primary_10_1109_TEVC_2023_3349313
crossref_primary_10_1016_j_snb_2023_133942
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1109_JAS_2023_123336
crossref_primary_10_1016_j_asoc_2021_107399
crossref_primary_10_3389_fnbot_2019_00109
crossref_primary_10_1016_j_asoc_2021_107713
crossref_primary_10_1109_TASE_2018_2865593
crossref_primary_10_1007_s12293_025_00448_4
crossref_primary_10_1109_TCYB_2022_3222101
crossref_primary_10_1109_TCYB_2020_2981733
crossref_primary_10_1016_j_engappai_2023_106937
crossref_primary_10_1109_TCYB_2020_2980888
crossref_primary_10_1109_TETCI_2024_3499997
crossref_primary_10_26599_TST_2023_9010048
crossref_primary_10_1016_j_aei_2023_102343
crossref_primary_10_1109_TETCI_2022_3209655
crossref_primary_10_1109_TEVC_2021_3099289
crossref_primary_10_1016_j_ins_2021_05_005
crossref_primary_10_1109_TCYB_2023_3234969
crossref_primary_10_1016_j_knosys_2019_105294
crossref_primary_10_1109_TETCI_2024_3393368
crossref_primary_10_1109_MCI_2021_3108311
crossref_primary_10_1109_MCI_2021_3108310
crossref_primary_10_1109_TETC_2019_2945775
crossref_primary_10_1109_TEVC_2017_2785351
crossref_primary_10_1109_TEVC_2023_3255246
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_swevo_2019_02_006
crossref_primary_10_1007_s12293_021_00346_5
crossref_primary_10_1016_j_swevo_2024_101618
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_26599_TST_2024_9010116
crossref_primary_10_1109_TCYB_2020_3041265
crossref_primary_10_1109_TCYB_2020_3029176
crossref_primary_10_1109_TCYB_2022_3164399
crossref_primary_10_1109_TCYB_2023_3266241
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1109_TASE_2024_3505846
crossref_primary_10_1109_TCYB_2021_3050516
crossref_primary_10_3390_math9080864
crossref_primary_10_1109_TCYB_2020_3042243
crossref_primary_10_1109_TEVC_2023_3323877
crossref_primary_10_1016_j_ins_2023_119568
crossref_primary_10_3389_fnins_2019_01396
crossref_primary_10_1109_TEVC_2019_2962747
crossref_primary_10_1109_TEVC_2019_2906927
crossref_primary_10_1109_TEVC_2022_3172294
crossref_primary_10_1016_j_eswa_2023_119550
crossref_primary_10_1080_0305215X_2022_2139374
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1016_j_asoc_2022_109775
crossref_primary_10_1109_TETCI_2024_3451709
crossref_primary_10_1109_TCYB_2018_2864345
crossref_primary_10_3390_electronics11111712
crossref_primary_10_1061_JAEEEZ_ASENG_5120
crossref_primary_10_1007_s40747_024_01750_3
crossref_primary_10_1109_ACCESS_2021_3065741
crossref_primary_10_1109_TCYB_2020_3036393
crossref_primary_10_1007_s00158_025_03976_2
crossref_primary_10_1109_TETCI_2019_2928344
crossref_primary_10_1109_TETCI_2022_3205384
crossref_primary_10_1109_TCYB_2021_3108977
crossref_primary_10_1109_TEVC_2022_3141819
crossref_primary_10_1007_s00521_024_09787_8
crossref_primary_10_1109_TCDS_2022_3221805
crossref_primary_10_1109_TEVC_2024_3370937
crossref_primary_10_1109_TEVC_2021_3107435
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1109_TEVC_2022_3210872
crossref_primary_10_1109_TEVC_2020_2991717
crossref_primary_10_1109_TETCI_2024_3389769
crossref_primary_10_1016_j_ins_2022_05_114
crossref_primary_10_1109_TEVC_2021_3098523
crossref_primary_10_2514_1_J060718
crossref_primary_10_1016_j_knosys_2024_112741
crossref_primary_10_1109_TEVC_2024_3393151
crossref_primary_10_1016_j_swevo_2021_100840
crossref_primary_10_1109_TEVC_2022_3154416
crossref_primary_10_1109_TETC_2023_3268182
crossref_primary_10_1109_TEVC_2024_3358854
crossref_primary_10_1109_TSMC_2025_3577732
crossref_primary_10_1109_TCYB_2022_3218345
crossref_primary_10_1109_TEVC_2021_3120980
crossref_primary_10_1109_MCI_2020_3039066
crossref_primary_10_1109_TEVC_2022_3199783
crossref_primary_10_1109_MCI_2020_3039067
crossref_primary_10_1016_j_ast_2024_108998
crossref_primary_10_1016_j_asoc_2023_110385
crossref_primary_10_1109_TETCI_2018_2848289
crossref_primary_10_1109_TEVC_2021_3115036
crossref_primary_10_1016_j_swevo_2022_101203
crossref_primary_10_1109_ACCESS_2024_3430037
crossref_primary_10_1109_TII_2020_3038949
crossref_primary_10_1109_TETCI_2018_2823329
crossref_primary_10_1016_j_swevo_2025_101880
crossref_primary_10_1007_s12559_022_10012_8
crossref_primary_10_1016_j_eswa_2024_123336
crossref_primary_10_1109_TEVC_2018_2881955
crossref_primary_10_1109_TEVC_2023_3258491
crossref_primary_10_1007_s12559_018_9620_7
crossref_primary_10_1109_TCYB_2021_3052509
crossref_primary_10_1109_TETCI_2023_3306351
crossref_primary_10_1016_j_asoc_2024_111407
crossref_primary_10_1109_TEVC_2022_3144180
crossref_primary_10_1109_TCYB_2020_3043509
crossref_primary_10_1049_joe_2019_1230
crossref_primary_10_1016_j_knosys_2021_107019
crossref_primary_10_1109_TEVC_2017_2783441
crossref_primary_10_1109_TEVC_2024_3375751
crossref_primary_10_1109_TETCI_2024_3369314
crossref_primary_10_1016_j_ins_2019_07_099
crossref_primary_10_3390_pr11020613
crossref_primary_10_1016_j_isatra_2023_03_015
crossref_primary_10_1007_s00521_020_05549_4
crossref_primary_10_1109_TASE_2020_3017644
crossref_primary_10_1109_TEVC_2024_3417325
crossref_primary_10_1016_j_asoc_2022_108934
crossref_primary_10_1016_j_ins_2025_121908
crossref_primary_10_1109_MCI_2022_3155332
crossref_primary_10_1109_TEVC_2021_3139437
crossref_primary_10_1109_TEVC_2024_3376729
crossref_primary_10_1016_j_swevo_2021_100888
crossref_primary_10_1109_TSMC_2023_3270308
crossref_primary_10_1145_3674152
crossref_primary_10_1109_TETCI_2021_3077909
crossref_primary_10_1007_s00500_021_05876_1
crossref_primary_10_1109_TEVC_2018_2869001
crossref_primary_10_3390_math12070992
crossref_primary_10_1109_ACCESS_2020_3029968
crossref_primary_10_2118_205013_PA
crossref_primary_10_1016_j_asoc_2023_110866
crossref_primary_10_1109_TEVC_2019_2926107
crossref_primary_10_1007_s10489_023_04917_6
crossref_primary_10_1016_j_asoc_2020_106276
crossref_primary_10_1016_j_ins_2025_122559
crossref_primary_10_1109_TEVC_2022_3169289
crossref_primary_10_1109_TSMC_2022_3205010
crossref_primary_10_1109_TEVC_2022_3230822
crossref_primary_10_1007_s12559_020_09777_7
crossref_primary_10_1016_j_eswa_2024_123932
crossref_primary_10_1109_TEVC_2021_3082112
crossref_primary_10_1016_j_ins_2023_04_006
crossref_primary_10_3390_app13010602
crossref_primary_10_1109_TEVC_2021_3133874
crossref_primary_10_1016_j_swevo_2024_101798
crossref_primary_10_1016_j_engappai_2025_111519
crossref_primary_10_2118_219732_PA
crossref_primary_10_1109_TCYB_2025_3547565
crossref_primary_10_1007_s12293_020_00316_3
crossref_primary_10_1109_TETCI_2024_3406689
crossref_primary_10_1109_TEVC_2024_3373131
crossref_primary_10_1109_TCYB_2025_3561518
crossref_primary_10_1109_TCYB_2024_3456471
crossref_primary_10_1109_TETCI_2024_3381512
crossref_primary_10_3390_pr11030693
crossref_primary_10_1007_s12293_021_00331_y
crossref_primary_10_1016_j_eswa_2019_07_015
crossref_primary_10_1109_TEVC_2021_3056514
crossref_primary_10_1109_TCYB_2021_3065340
crossref_primary_10_1109_TEVC_2019_2925959
crossref_primary_10_1109_TETCI_2023_3236633
crossref_primary_10_1016_j_knosys_2022_109173
crossref_primary_10_1007_s42064_021_0109_x
crossref_primary_10_1109_TETCI_2021_3107488
crossref_primary_10_1109_TETCI_2021_3066999
crossref_primary_10_2514_1_G003285
crossref_primary_10_1109_TETCI_2018_2863728
crossref_primary_10_1109_TSMC_2023_3322718
crossref_primary_10_1109_TETCI_2022_3182360
crossref_primary_10_1016_j_asoc_2022_109708
crossref_primary_10_1109_MCI_2022_3222050
crossref_primary_10_1109_TEVC_2025_3527875
crossref_primary_10_1109_TAI_2024_3442731
crossref_primary_10_1016_j_asoc_2023_110780
crossref_primary_10_1109_TEVC_2023_3349250
crossref_primary_10_1038_s41598_023_33414_6
crossref_primary_10_1016_j_asoc_2022_109392
crossref_primary_10_1109_TCYB_2022_3165044
crossref_primary_10_1109_TEVC_2021_3131236
crossref_primary_10_1109_TIE_2019_2914637
crossref_primary_10_1109_TCYB_2022_3168551
crossref_primary_10_1007_s41060_025_00801_3
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1109_TEVC_2022_3166482
crossref_primary_10_1007_s12293_021_00352_7
crossref_primary_10_1109_TEVC_2023_3291697
crossref_primary_10_1109_TETCI_2021_3115518
crossref_primary_10_1109_TETCI_2024_3359070
crossref_primary_10_1016_j_swevo_2024_101768
crossref_primary_10_1109_TEVC_2024_3398436
crossref_primary_10_1016_j_asoc_2023_110545
crossref_primary_10_1109_TCYB_2022_3232113
crossref_primary_10_1109_TEVC_2021_3129278
Cites_doi 10.1109/JPROC.2015.2494218
10.1109/CEC.2015.7257018
10.1145/2908812.2908813
10.1007/s12559-016-9395-7
10.1109/TEVC.2016.2577593
10.1109/MCI.2010.936309
10.1007/s12065-016-0146-1
10.1007/s12293-015-0166-x
10.1145/1569901.1569959
10.1109/CEC.2017.7969454
10.1007/978-3-540-44511-1_2
10.1007/978-3-540-44511-1_11
10.1109/TEVC.2005.856209
10.1016/j.knosys.2010.08.003
10.1109/MCI.2017.2742781
10.1145/1276958.1277114
10.1007/978-3-540-44511-1_3
10.1007/s40747-016-0011-y
10.1109/TEVC.2017.2672668
10.1109/TEVC.2009.2027359
10.1007/978-3-540-87700-4_4
10.1007/978-1-4615-5529-2_5
10.1016/j.eswa.2010.03.019
10.1109/TEVC.2017.2657556
10.1162/evco.2008.16.3.385
10.1080/09544820701802279
10.1109/CEC.2016.7743992
10.1109/TEVC.2004.823466
10.1109/TEVC.2007.913070
10.1016/j.knosys.2015.01.010
10.1109/CEC.2016.7744245
10.1016/j.engappai.2017.05.008
10.1109/TKDE.2009.191
10.1109/TEVC.2017.2682274
10.1137/1.9781611973594
10.1109/CEC.2017.7969579
10.1007/978-3-540-32373-0_6
10.1023/A:1007331723572
10.1023/A:1018784510310
10.1109/TCYB.2014.2307319
10.1007/BF00226293
10.1007/978-3-540-70928-2_62
10.1109/TEVC.2013.2281537
10.1109/CEC.2017.7969403
10.1109/CEC.2017.7969453
10.1016/0167-8191(88)90098-1
10.1145/3067695.3075615
10.1007/978-3-319-42978-6_5
10.1007/978-3-540-44511-1_4
10.1109/CEC.2012.6252893
10.1007/978-3-642-32937-1_18
10.1145/2330163.2330283
10.1109/TEVC.2014.2362558
10.1007/s11063-017-9718-z
10.1371/journal.pone.0150558
10.1109/CEC.2016.7748363
10.1162/EVCO_a_00056
10.1016/j.neucom.2017.02.065
10.1016/j.knosys.2011.05.015
10.1109/TEVC.2017.2664665
10.1109/CEC.2014.6900571
10.1109/TEVC.2011.2132725
10.1109/TEVC.2017.2694221
10.1007/978-3-540-85984-0_29
10.1109/TCYB.2016.2554622
10.1109/CEC.2017.7969596
10.1007/978-3-642-04898-2_327
10.1145/1276958.1277077
10.1007/978-3-319-45823-6_7
10.1007/978-3-642-32964-7_6
10.1038/srep02522
10.1109/SSCI.2016.7850038
10.1016/S0045-7825(01)00323-1
10.1007/s12293-009-0011-1
10.1098/rspa.2007.1900
10.1109/CEC.2016.7744178
10.1109/TEVC.2015.2458037
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2017.2769104
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2471-285X
EndPage 64
ExternalDocumentID 10_1109_TETCI_2017_2769104
8114198
Genre orig-research
GrantInformation_xml – fundername: Data Science and Artificial Intelligence Research Centre
– fundername: School of Computer Science and Engineering at Nanyang Technological University
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c339t-d43b07e9b1f4cce201ce3a2fb9b4c0fbbed4efd8af0cb5dcb0179028ad94d85f3
IEDL.DBID RIE
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679685100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Nov 30 04:54:01 EST 2025
Tue Nov 18 21:32:25 EST 2025
Sat Nov 29 05:12:01 EST 2025
Wed Aug 27 02:52:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-d43b07e9b1f4cce201ce3a2fb9b4c0fbbed4efd8af0cb5dcb0179028ad94d85f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4480-169X
0000-0002-8356-7242
0000-0002-6080-855X
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/147980/2/Insights%20on%20transfer%20optimization%20because%20experience%20is%20the%20best%20teacher.pdf
PQID 2299161431
PQPubID 4437216
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TETCI_2017_2769104
crossref_primary_10_1109_TETCI_2017_2769104
proquest_journals_2299161431
ieee_primary_8114198
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref59
ref58
ref53
ref52
ref55
ref54
ehrgott (ref25) 2006
ref51
ref50
ref46
ref45
ref47
ref44
jiang (ref62) 0; 2005
leake (ref7) 1996
bonilla (ref43) 0
ref49
ref8
gomez (ref96) 0; 99
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref33
thrun (ref1) 0
ref32
ref38
ref24
ref23
ref26
ref22
ref21
feurer (ref20) 0
ref27
ref29
bardenet (ref42) 0
yogatama (ref41) 0
ref13
ref12
ref15
ref97
ref11
ref10
ref17
ref16
ref18
ref93
ref92
ref95
ref94
ref91
ref90
klein (ref39) 0; 134
ref89
ref86
wills (ref14) 0; 94
ref85
ref88
ref87
koçer (ref48) 2010; 37
tang (ref75) 0
jin (ref4) 2013; 167
ref82
ref81
ref84
ref83
ref78
caruana (ref36) 0
ref74
ref77
ref76
ref2
feng (ref56) 2013; 28
ref71
ref70
ref73
ref72
millington (ref79) 2016
ref68
ref67
ref69
ref64
ref63
ref66
ref65
swersky (ref19) 0
salimans (ref80) 2017
yi (ref28) 0
da (ref30) 0
ref60
ref61
References_xml – year: 2006
  ident: ref25
  publication-title: Multicriteria Optimization
– ident: ref40
  doi: 10.1109/JPROC.2015.2494218
– ident: ref66
  doi: 10.1109/CEC.2015.7257018
– ident: ref71
  doi: 10.1145/2908812.2908813
– ident: ref21
  doi: 10.1007/s12559-016-9395-7
– ident: ref82
  doi: 10.1109/TEVC.2016.2577593
– start-page: 2004
  year: 0
  ident: ref19
  article-title: Multi-task Bayesian optimization
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref52
  doi: 10.1109/MCI.2010.936309
– ident: ref63
  doi: 10.1007/s12065-016-0146-1
– ident: ref16
  doi: 10.1007/s12293-015-0166-x
– ident: ref59
  doi: 10.1145/1569901.1569959
– ident: ref22
  doi: 10.1109/CEC.2017.7969454
– ident: ref9
  doi: 10.1007/978-3-540-44511-1_2
– year: 1996
  ident: ref7
  publication-title: Case-Based Reasoning Experiences Lessons and Future Directions
– ident: ref11
  doi: 10.1007/978-3-540-44511-1_11
– ident: ref81
  doi: 10.1109/TEVC.2005.856209
– ident: ref13
  doi: 10.1016/j.knosys.2010.08.003
– year: 0
  ident: ref30
  article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results
– ident: ref89
  doi: 10.1109/MCI.2017.2742781
– ident: ref38
  doi: 10.1145/1276958.1277114
– start-page: 153
  year: 0
  ident: ref43
  article-title: Multi-task Gaussian process prediction
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref5
  doi: 10.1007/978-3-540-44511-1_3
– ident: ref92
  doi: 10.1007/s40747-016-0011-y
– ident: ref32
  doi: 10.1109/TEVC.2017.2672668
– ident: ref47
  doi: 10.1109/TEVC.2009.2027359
– ident: ref31
  doi: 10.1007/978-3-540-87700-4_4
– ident: ref2
  doi: 10.1007/978-1-4615-5529-2_5
– volume: 37
  start-page: 6997
  year: 2010
  ident: ref48
  article-title: Genetic transfer learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.03.019
– ident: ref23
  doi: 10.1109/TEVC.2017.2657556
– ident: ref85
  doi: 10.1162/evco.2008.16.3.385
– ident: ref90
  doi: 10.1080/09544820701802279
– ident: ref18
  doi: 10.1109/CEC.2016.7743992
– ident: ref6
  doi: 10.1109/TEVC.2004.823466
– ident: ref86
  doi: 10.1109/TEVC.2007.913070
– ident: ref49
  doi: 10.1016/j.knosys.2015.01.010
– ident: ref67
  doi: 10.1109/CEC.2016.7744245
– start-page: 474
  year: 0
  ident: ref75
  article-title: Evolutionary multi-task learning for modular extremal learning machine
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref93
  doi: 10.1016/j.engappai.2017.05.008
– ident: ref3
  doi: 10.1109/TKDE.2009.191
– volume: 2005
  start-page: 370
  year: 0
  ident: ref62
  article-title: PGMC: A framework for probabilistic graphical model combination
  publication-title: AMIA Annu Symp Proc
– ident: ref64
  doi: 10.1109/TEVC.2017.2682274
– ident: ref54
  doi: 10.1137/1.9781611973594
– ident: ref94
  doi: 10.1109/CEC.2017.7969579
– ident: ref60
  doi: 10.1007/978-3-540-32373-0_6
– start-page: 1077
  year: 0
  ident: ref41
  article-title: Efficient transfer learning method for automatic hyperparameter tuning
  publication-title: Proc Int Conf Artif Intell Statist
– year: 2017
  ident: ref80
  article-title: Evolution strategies as a scalable alternative to reinforcement learning
– volume: 134
  start-page: 98
  year: 0
  ident: ref39
  article-title: Towards efficient Bayesian optimization for big data
  publication-title: Proc NIPS Workshop Bayesian Optim
– volume: 99
  start-page: 1356
  year: 0
  ident: ref96
  article-title: Solving non-Markovian control tasks with neuroevolution
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref97
  doi: 10.1023/A:1007331723572
– start-page: 1128
  year: 0
  ident: ref20
  article-title: Initializing Bayesian hyperparameter optimization via meta-learning
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref37
  doi: 10.1023/A:1018784510310
– ident: ref26
  doi: 10.1109/TCYB.2014.2307319
– ident: ref8
  doi: 10.1007/BF00226293
– ident: ref87
  doi: 10.1007/978-3-540-70928-2_62
– year: 2016
  ident: ref79
  publication-title: Artificial Intelligence for Games
– ident: ref69
  doi: 10.1109/TEVC.2013.2281537
– ident: ref88
  doi: 10.1109/CEC.2017.7969403
– ident: ref68
  doi: 10.1109/CEC.2017.7969453
– ident: ref46
  doi: 10.1016/0167-8191(88)90098-1
– ident: ref72
  doi: 10.1145/3067695.3075615
– ident: ref17
  doi: 10.1007/978-3-319-42978-6_5
– ident: ref10
  doi: 10.1007/978-3-540-44511-1_4
– ident: ref53
  doi: 10.1109/CEC.2012.6252893
– ident: ref57
  doi: 10.1007/978-3-642-32937-1_18
– ident: ref70
  doi: 10.1145/2330163.2330283
– volume: 167
  year: 2013
  ident: ref4
  publication-title: Knowledge Incorporation in Evolutionary Computation
– ident: ref55
  doi: 10.1109/TEVC.2014.2362558
– volume: 94
  start-page: 50
  year: 0
  ident: ref14
  article-title: Towards more creative case-based design systems
  publication-title: Proc Nat Conf Artif Intell
– volume: 28
  start-page: 38
  year: 2013
  ident: ref56
  article-title: Extreme learning machine guided memetic computation for vehicle routing
  publication-title: IEEE Intell Syst
– ident: ref74
  doi: 10.1007/s11063-017-9718-z
– ident: ref34
  doi: 10.1371/journal.pone.0150558
– ident: ref73
  doi: 10.1109/CEC.2016.7748363
– ident: ref58
  doi: 10.1162/EVCO_a_00056
– ident: ref76
  doi: 10.1016/j.neucom.2017.02.065
– ident: ref61
  doi: 10.1016/j.knosys.2011.05.015
– start-page: 640
  year: 0
  ident: ref1
  article-title: Is learning the n-th thing any easier than learning the first?
  publication-title: Proc 8th Int Conf Neural Inf Process Syst
– ident: ref83
  doi: 10.1109/TEVC.2017.2664665
– ident: ref78
  doi: 10.1109/CEC.2014.6900571
– start-page: 657
  year: 0
  ident: ref36
  article-title: Learning many related tasks at the same time with backpropagation
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref51
  doi: 10.1109/TEVC.2011.2132725
– ident: ref45
  doi: 10.1109/TEVC.2017.2694221
– ident: ref33
  doi: 10.1007/978-3-540-85984-0_29
– start-page: 37
  year: 0
  ident: ref28
  article-title: A survey of fog computing: Concepts, applications and issues
  publication-title: Proc Workshop Mobile Big Data
– ident: ref91
  doi: 10.1109/TCYB.2016.2554622
– ident: ref29
  doi: 10.1109/CEC.2017.7969596
– ident: ref27
  doi: 10.1007/978-3-642-04898-2_327
– ident: ref15
  doi: 10.1145/1276958.1277077
– ident: ref44
  doi: 10.1007/978-3-319-45823-6_7
– ident: ref77
  doi: 10.1007/978-3-642-32964-7_6
– ident: ref95
  doi: 10.1038/srep02522
– start-page: 199
  year: 0
  ident: ref42
  article-title: Collaborative hyperparameter tuning
  publication-title: Proc 30th Int Conf Mach Learn
– ident: ref84
  doi: 10.1109/SSCI.2016.7850038
– ident: ref35
  doi: 10.1016/S0045-7825(01)00323-1
– ident: ref12
  doi: 10.1007/s12293-009-0011-1
– ident: ref65
  doi: 10.1098/rspa.2007.1900
– ident: ref50
  doi: 10.1109/CEC.2016.7744178
– ident: ref24
  doi: 10.1109/TEVC.2015.2458037
SSID ssj0002951354
Score 2.55098
Snippet Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Artificial intelligence
Bayes methods
Bayesian optimization
Computational intelligence
Computer science
evolutionary algorithms
Knowledge management
Knowledge transfer
multiform optimization
Multitasking
Optimization
Problem-solving
Solvers
Transfer
Title Insights on Transfer Optimization: Because Experience is the Best Teacher
URI https://ieeexplore.ieee.org/document/8114198
https://www.proquest.com/docview/2299161431
Volume 2
WOSCitedRecordID wos000679685100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60ePDiW6wvcvCmq_vINhtvKhYLoh4UvC15TEDQrXRbf7-TNK2IInhbSGbZzGQy32TnAXBklK54yU2CurQJF4pUymAvIXCdV45b2lUhUfhW3N1Vz8_yYQFO5rkwiBiCz_DUP4Z_-XZoJv6q7Kwi8E5O8iIsCtGb5mrN71NyggpFyWd5Mak8e7x-vBr44C1xmosemUX-zfaEZio_TuBgVvqr__ugNViJ8JFdTOW9DgvYbMDqrDUDi5q6CYNB03q3u2XDhgV75Gj4ns6Ht5h4ec4u0ahJi-yr2jF7aRkBQhppxyzWet6Cpz4t8SaJXRMSUxRynFhe6FSg1JnjxiCt32Chcqel5iZ1WqPl6GylXGpIPkZ7nSSUoazktipdsQ2dZtjgDrDcZakiDcdSSs7REI21uSozkVZCOd2FbMbP2sSS4r6zxWsdXItU1kEGtZdBHWXQheM5zfu0oMafszc91-czI8O7sD8TWx11rq3z3GNdwn_Z7u9Ue7BM766mMdf70BmPJngAS-Zj_NKODsN2-gRXvcps
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xhjRe1kFBdOs2P_AGgcRxSMwbm4ZaUQoPReIt8sdZQoIUkZa_f2fXLUKgSXuLZJ8S3_l8v3PuA2DfKF2JQpgEdWETUSpSKYMnCYFrXjlhaVeFROFROR5Xt7fyeg0OV7kwiBiCz_DIP4Z_-XZq5v6q7Lgi8E5O8gf4WAjB00W21upGhRNYyAuxzIxJ5fHkz-T30IdvlUe8PCHDKF5Zn9BO5c0ZHAzLeef_PukLfI4Akp0tJL4Fa9hsQ2fZnIFFXe3CcNi03vFu2bRhwSI5Gr6iE-Ihpl6esl9o1LxF9lLvmN21jCAhjbQzFqs978DNOS1xkMS-CYnJczlLrMh1WqLUmRPGIK3fYK6401ILkzqt0Qp0tlIuNSQho71WEs5QVgpbFS7fhfVm2uAeMO6yVJGOYyGlEGiIxlquiqxMq1I53YNsyc_axKLivrfFfR2ci1TWQQa1l0EdZdCDgxXN46Kkxj9ndz3XVzMjw3vQX4qtjlrX1px7tEsIMPv6PtVP-DSYXI7q0XB88Q026T3VIgK7D-uzpzl-hw3zPLtrn36ErfUXBuPNsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+on+Transfer+Optimization%3A+Because+Experience+is+the+Best+Teacher&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Gupta%2C+Abhishek&rft.au=Yew-Soon+Ong&rft.au=Liang%2C+Feng&rft.date=2018-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=2&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1109%2FTETCI.2017.2769104&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon