Insights on Transfer Optimization: Because Experience is the Best Teacher
Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the capabilities of solvers do not automatically grow with experience. In contrast, however, humans routinely make use of a pool of knowledge drawn from...
Uloženo v:
| Vydáno v: | IEEE transactions on emerging topics in computational intelligence Ročník 2; číslo 1; s. 51 - 64 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the capabilities of solvers do not automatically grow with experience. In contrast, however, humans routinely make use of a pool of knowledge drawn from past experiences whenever faced with a new task. This is often an effective approach in practice as real-world problems seldom exist in isolation. Similarly, practically useful artificial systems are expected to face a large number of problems in their lifetime, many of which will either be repetitive or share domain-specific similarities. This view naturally motivates advanced optimizers that mimic human cognitive capabilities; leveraging on what has been seen before to accelerate the search toward optimal solutions of never before seen tasks. With this in mind, this paper sheds light on recent research advances in the field of global black-box optimization that champion the theme of automatic knowledge transfer across problems. We introduce a general formalization of transfer optimization , based on which the conceptual realizations of the paradigm are classified into three distinct categories, namely sequential transfer , multitasking , and multiform optimization . In addition, we carry out a survey of different methodological perspectives spanning Bayesian optimization and nature-inspired computational intelligence procedures for efficient encoding and transfer of knowledge building blocks. Finally, real-world applications of the techniques are identified, demonstrating the future impact of optimization engines that evolve as better problem-solvers over time by learning from the past and from one another. |
|---|---|
| AbstractList | Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the capabilities of solvers do not automatically grow with experience. In contrast, however, humans routinely make use of a pool of knowledge drawn from past experiences whenever faced with a new task. This is often an effective approach in practice as real-world problems seldom exist in isolation. Similarly, practically useful artificial systems are expected to face a large number of problems in their lifetime, many of which will either be repetitive or share domain-specific similarities. This view naturally motivates advanced optimizers that mimic human cognitive capabilities; leveraging on what has been seen before to accelerate the search toward optimal solutions of never before seen tasks. With this in mind, this paper sheds light on recent research advances in the field of global black-box optimization that champion the theme of automatic knowledge transfer across problems. We introduce a general formalization of transfer optimization , based on which the conceptual realizations of the paradigm are classified into three distinct categories, namely sequential transfer , multitasking , and multiform optimization . In addition, we carry out a survey of different methodological perspectives spanning Bayesian optimization and nature-inspired computational intelligence procedures for efficient encoding and transfer of knowledge building blocks. Finally, real-world applications of the techniques are identified, demonstrating the future impact of optimization engines that evolve as better problem-solvers over time by learning from the past and from one another. |
| Author | Ong, Yew-Soon Feng, Liang Gupta, Abhishek |
| Author_xml | – sequence: 1 givenname: Abhishek orcidid: 0000-0002-6080-855X surname: Gupta fullname: Gupta, Abhishek email: abhishekg@ntu.edu.sg organization: Data Science and Artificial Intelligence Research Centre, School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Yew-Soon orcidid: 0000-0002-4480-169X surname: Ong fullname: Ong, Yew-Soon email: asysong@ntu.edu.sg organization: Data Science and Artificial Intelligence Research Centre, School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Liang orcidid: 0000-0002-8356-7242 surname: Feng fullname: Feng, Liang email: liangf@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China |
| BookMark | eNp9kE9LAzEQxYNUsNZ-Ab0seN6af9vdeNNSdaHQywreliQ7sSltdk22oH5601ZEPHiagXm_mTfvHA1c6wChS4InhGBxU82rWTmhmOQTmk8FwfwEDSnPSUqL7GXwqz9D4xDWGGMqMsIyPkRl6YJ9XfUhaV1SeemCAZ8su95u7afsbetuk3vQchcgmb934C04DYkNSb-COAl9UoHUK_AX6NTITYDxdx2h54do7CldLB_L2d0i1YyJPm04UzgHoYjhWkN0rYFJapRQXGOjFDQcTFNIg7XKGq3iWwLTQjaCN0Vm2AhdH_d2vn3bRQP1ut15F0_WlApBpoQzElXFUaV9G4IHU2vbH_7pvbSbmuB6n119yK7eZ1d_ZxdR-gftvN1K__E_dHWELAD8AAUhnIiCfQFkBX2A |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07787_6 crossref_primary_10_1109_TEVC_2023_3339506 crossref_primary_10_1109_TETCI_2019_2916051 crossref_primary_10_1109_TEVC_2021_3083362 crossref_primary_10_4018_IJeC_307137 crossref_primary_10_1109_TCYB_2020_2989465 crossref_primary_10_1109_TCYB_2020_3017049 crossref_primary_10_1109_TEVC_2022_3215743 crossref_primary_10_1109_TEVC_2021_3135691 crossref_primary_10_1109_TEVC_2023_3332676 crossref_primary_10_1109_MCI_2023_3277769 crossref_primary_10_1109_TEVC_2023_3259067 crossref_primary_10_1109_TCYB_2022_3214825 crossref_primary_10_1016_j_asoc_2025_112732 crossref_primary_10_1109_MCI_2021_3108302 crossref_primary_10_1109_TEVC_2022_3187512 crossref_primary_10_1109_TEVC_2023_3349313 crossref_primary_10_1016_j_snb_2023_133942 crossref_primary_10_1007_s10489_024_05612_w crossref_primary_10_1109_JAS_2023_123336 crossref_primary_10_1016_j_asoc_2021_107399 crossref_primary_10_3389_fnbot_2019_00109 crossref_primary_10_1016_j_asoc_2021_107713 crossref_primary_10_1109_TASE_2018_2865593 crossref_primary_10_1007_s12293_025_00448_4 crossref_primary_10_1109_TCYB_2022_3222101 crossref_primary_10_1109_TCYB_2020_2981733 crossref_primary_10_1016_j_engappai_2023_106937 crossref_primary_10_1109_TCYB_2020_2980888 crossref_primary_10_1109_TETCI_2024_3499997 crossref_primary_10_26599_TST_2023_9010048 crossref_primary_10_1016_j_aei_2023_102343 crossref_primary_10_1109_TETCI_2022_3209655 crossref_primary_10_1109_TEVC_2021_3099289 crossref_primary_10_1016_j_ins_2021_05_005 crossref_primary_10_1109_TCYB_2023_3234969 crossref_primary_10_1016_j_knosys_2019_105294 crossref_primary_10_1109_TETCI_2024_3393368 crossref_primary_10_1109_MCI_2021_3108311 crossref_primary_10_1109_MCI_2021_3108310 crossref_primary_10_1109_TETC_2019_2945775 crossref_primary_10_1109_TEVC_2017_2785351 crossref_primary_10_1109_TEVC_2023_3255246 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_swevo_2019_02_006 crossref_primary_10_1007_s12293_021_00346_5 crossref_primary_10_1016_j_swevo_2024_101618 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_26599_TST_2024_9010116 crossref_primary_10_1109_TCYB_2020_3041265 crossref_primary_10_1109_TCYB_2020_3029176 crossref_primary_10_1109_TCYB_2022_3164399 crossref_primary_10_1109_TCYB_2023_3266241 crossref_primary_10_1109_TCYB_2025_3535722 crossref_primary_10_1109_TASE_2024_3505846 crossref_primary_10_1109_TCYB_2021_3050516 crossref_primary_10_3390_math9080864 crossref_primary_10_1109_TCYB_2020_3042243 crossref_primary_10_1109_TEVC_2023_3323877 crossref_primary_10_1016_j_ins_2023_119568 crossref_primary_10_3389_fnins_2019_01396 crossref_primary_10_1109_TEVC_2019_2962747 crossref_primary_10_1109_TEVC_2019_2906927 crossref_primary_10_1109_TEVC_2022_3172294 crossref_primary_10_1016_j_eswa_2023_119550 crossref_primary_10_1080_0305215X_2022_2139374 crossref_primary_10_1109_TEVC_2023_3294307 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1016_j_asoc_2022_109775 crossref_primary_10_1109_TETCI_2024_3451709 crossref_primary_10_1109_TCYB_2018_2864345 crossref_primary_10_3390_electronics11111712 crossref_primary_10_1061_JAEEEZ_ASENG_5120 crossref_primary_10_1007_s40747_024_01750_3 crossref_primary_10_1109_ACCESS_2021_3065741 crossref_primary_10_1109_TCYB_2020_3036393 crossref_primary_10_1007_s00158_025_03976_2 crossref_primary_10_1109_TETCI_2019_2928344 crossref_primary_10_1109_TETCI_2022_3205384 crossref_primary_10_1109_TCYB_2021_3108977 crossref_primary_10_1109_TEVC_2022_3141819 crossref_primary_10_1007_s00521_024_09787_8 crossref_primary_10_1109_TCDS_2022_3221805 crossref_primary_10_1109_TEVC_2024_3370937 crossref_primary_10_1109_TEVC_2021_3107435 crossref_primary_10_1007_s40747_022_00650_8 crossref_primary_10_1109_TEVC_2022_3210872 crossref_primary_10_1109_TEVC_2020_2991717 crossref_primary_10_1109_TETCI_2024_3389769 crossref_primary_10_1016_j_ins_2022_05_114 crossref_primary_10_1109_TEVC_2021_3098523 crossref_primary_10_2514_1_J060718 crossref_primary_10_1016_j_knosys_2024_112741 crossref_primary_10_1109_TEVC_2024_3393151 crossref_primary_10_1016_j_swevo_2021_100840 crossref_primary_10_1109_TEVC_2022_3154416 crossref_primary_10_1109_TETC_2023_3268182 crossref_primary_10_1109_TEVC_2024_3358854 crossref_primary_10_1109_TSMC_2025_3577732 crossref_primary_10_1109_TCYB_2022_3218345 crossref_primary_10_1109_TEVC_2021_3120980 crossref_primary_10_1109_MCI_2020_3039066 crossref_primary_10_1109_TEVC_2022_3199783 crossref_primary_10_1109_MCI_2020_3039067 crossref_primary_10_1016_j_ast_2024_108998 crossref_primary_10_1016_j_asoc_2023_110385 crossref_primary_10_1109_TETCI_2018_2848289 crossref_primary_10_1109_TEVC_2021_3115036 crossref_primary_10_1016_j_swevo_2022_101203 crossref_primary_10_1109_ACCESS_2024_3430037 crossref_primary_10_1109_TII_2020_3038949 crossref_primary_10_1109_TETCI_2018_2823329 crossref_primary_10_1016_j_swevo_2025_101880 crossref_primary_10_1007_s12559_022_10012_8 crossref_primary_10_1016_j_eswa_2024_123336 crossref_primary_10_1109_TEVC_2018_2881955 crossref_primary_10_1109_TEVC_2023_3258491 crossref_primary_10_1007_s12559_018_9620_7 crossref_primary_10_1109_TCYB_2021_3052509 crossref_primary_10_1109_TETCI_2023_3306351 crossref_primary_10_1016_j_asoc_2024_111407 crossref_primary_10_1109_TEVC_2022_3144180 crossref_primary_10_1109_TCYB_2020_3043509 crossref_primary_10_1049_joe_2019_1230 crossref_primary_10_1016_j_knosys_2021_107019 crossref_primary_10_1109_TEVC_2017_2783441 crossref_primary_10_1109_TEVC_2024_3375751 crossref_primary_10_1109_TETCI_2024_3369314 crossref_primary_10_1016_j_ins_2019_07_099 crossref_primary_10_3390_pr11020613 crossref_primary_10_1016_j_isatra_2023_03_015 crossref_primary_10_1007_s00521_020_05549_4 crossref_primary_10_1109_TASE_2020_3017644 crossref_primary_10_1109_TEVC_2024_3417325 crossref_primary_10_1016_j_asoc_2022_108934 crossref_primary_10_1016_j_ins_2025_121908 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1109_TEVC_2021_3139437 crossref_primary_10_1109_TEVC_2024_3376729 crossref_primary_10_1016_j_swevo_2021_100888 crossref_primary_10_1109_TSMC_2023_3270308 crossref_primary_10_1145_3674152 crossref_primary_10_1109_TETCI_2021_3077909 crossref_primary_10_1007_s00500_021_05876_1 crossref_primary_10_1109_TEVC_2018_2869001 crossref_primary_10_3390_math12070992 crossref_primary_10_1109_ACCESS_2020_3029968 crossref_primary_10_2118_205013_PA crossref_primary_10_1016_j_asoc_2023_110866 crossref_primary_10_1109_TEVC_2019_2926107 crossref_primary_10_1007_s10489_023_04917_6 crossref_primary_10_1016_j_asoc_2020_106276 crossref_primary_10_1016_j_ins_2025_122559 crossref_primary_10_1109_TEVC_2022_3169289 crossref_primary_10_1109_TSMC_2022_3205010 crossref_primary_10_1109_TEVC_2022_3230822 crossref_primary_10_1007_s12559_020_09777_7 crossref_primary_10_1016_j_eswa_2024_123932 crossref_primary_10_1109_TEVC_2021_3082112 crossref_primary_10_1016_j_ins_2023_04_006 crossref_primary_10_3390_app13010602 crossref_primary_10_1109_TEVC_2021_3133874 crossref_primary_10_1016_j_swevo_2024_101798 crossref_primary_10_1016_j_engappai_2025_111519 crossref_primary_10_2118_219732_PA crossref_primary_10_1109_TCYB_2025_3547565 crossref_primary_10_1007_s12293_020_00316_3 crossref_primary_10_1109_TETCI_2024_3406689 crossref_primary_10_1109_TEVC_2024_3373131 crossref_primary_10_1109_TCYB_2025_3561518 crossref_primary_10_1109_TCYB_2024_3456471 crossref_primary_10_1109_TETCI_2024_3381512 crossref_primary_10_3390_pr11030693 crossref_primary_10_1007_s12293_021_00331_y crossref_primary_10_1016_j_eswa_2019_07_015 crossref_primary_10_1109_TEVC_2021_3056514 crossref_primary_10_1109_TCYB_2021_3065340 crossref_primary_10_1109_TEVC_2019_2925959 crossref_primary_10_1109_TETCI_2023_3236633 crossref_primary_10_1016_j_knosys_2022_109173 crossref_primary_10_1007_s42064_021_0109_x crossref_primary_10_1109_TETCI_2021_3107488 crossref_primary_10_1109_TETCI_2021_3066999 crossref_primary_10_2514_1_G003285 crossref_primary_10_1109_TETCI_2018_2863728 crossref_primary_10_1109_TSMC_2023_3322718 crossref_primary_10_1109_TETCI_2022_3182360 crossref_primary_10_1016_j_asoc_2022_109708 crossref_primary_10_1109_MCI_2022_3222050 crossref_primary_10_1109_TEVC_2025_3527875 crossref_primary_10_1109_TAI_2024_3442731 crossref_primary_10_1016_j_asoc_2023_110780 crossref_primary_10_1109_TEVC_2023_3349250 crossref_primary_10_1038_s41598_023_33414_6 crossref_primary_10_1016_j_asoc_2022_109392 crossref_primary_10_1109_TCYB_2022_3165044 crossref_primary_10_1109_TEVC_2021_3131236 crossref_primary_10_1109_TIE_2019_2914637 crossref_primary_10_1109_TCYB_2022_3168551 crossref_primary_10_1007_s41060_025_00801_3 crossref_primary_10_1109_MCI_2021_3061854 crossref_primary_10_1109_TEVC_2022_3166482 crossref_primary_10_1007_s12293_021_00352_7 crossref_primary_10_1109_TEVC_2023_3291697 crossref_primary_10_1109_TETCI_2021_3115518 crossref_primary_10_1109_TETCI_2024_3359070 crossref_primary_10_1016_j_swevo_2024_101768 crossref_primary_10_1109_TEVC_2024_3398436 crossref_primary_10_1016_j_asoc_2023_110545 crossref_primary_10_1109_TCYB_2022_3232113 crossref_primary_10_1109_TEVC_2021_3129278 |
| Cites_doi | 10.1109/JPROC.2015.2494218 10.1109/CEC.2015.7257018 10.1145/2908812.2908813 10.1007/s12559-016-9395-7 10.1109/TEVC.2016.2577593 10.1109/MCI.2010.936309 10.1007/s12065-016-0146-1 10.1007/s12293-015-0166-x 10.1145/1569901.1569959 10.1109/CEC.2017.7969454 10.1007/978-3-540-44511-1_2 10.1007/978-3-540-44511-1_11 10.1109/TEVC.2005.856209 10.1016/j.knosys.2010.08.003 10.1109/MCI.2017.2742781 10.1145/1276958.1277114 10.1007/978-3-540-44511-1_3 10.1007/s40747-016-0011-y 10.1109/TEVC.2017.2672668 10.1109/TEVC.2009.2027359 10.1007/978-3-540-87700-4_4 10.1007/978-1-4615-5529-2_5 10.1016/j.eswa.2010.03.019 10.1109/TEVC.2017.2657556 10.1162/evco.2008.16.3.385 10.1080/09544820701802279 10.1109/CEC.2016.7743992 10.1109/TEVC.2004.823466 10.1109/TEVC.2007.913070 10.1016/j.knosys.2015.01.010 10.1109/CEC.2016.7744245 10.1016/j.engappai.2017.05.008 10.1109/TKDE.2009.191 10.1109/TEVC.2017.2682274 10.1137/1.9781611973594 10.1109/CEC.2017.7969579 10.1007/978-3-540-32373-0_6 10.1023/A:1007331723572 10.1023/A:1018784510310 10.1109/TCYB.2014.2307319 10.1007/BF00226293 10.1007/978-3-540-70928-2_62 10.1109/TEVC.2013.2281537 10.1109/CEC.2017.7969403 10.1109/CEC.2017.7969453 10.1016/0167-8191(88)90098-1 10.1145/3067695.3075615 10.1007/978-3-319-42978-6_5 10.1007/978-3-540-44511-1_4 10.1109/CEC.2012.6252893 10.1007/978-3-642-32937-1_18 10.1145/2330163.2330283 10.1109/TEVC.2014.2362558 10.1007/s11063-017-9718-z 10.1371/journal.pone.0150558 10.1109/CEC.2016.7748363 10.1162/EVCO_a_00056 10.1016/j.neucom.2017.02.065 10.1016/j.knosys.2011.05.015 10.1109/TEVC.2017.2664665 10.1109/CEC.2014.6900571 10.1109/TEVC.2011.2132725 10.1109/TEVC.2017.2694221 10.1007/978-3-540-85984-0_29 10.1109/TCYB.2016.2554622 10.1109/CEC.2017.7969596 10.1007/978-3-642-04898-2_327 10.1145/1276958.1277077 10.1007/978-3-319-45823-6_7 10.1007/978-3-642-32964-7_6 10.1038/srep02522 10.1109/SSCI.2016.7850038 10.1016/S0045-7825(01)00323-1 10.1007/s12293-009-0011-1 10.1098/rspa.2007.1900 10.1109/CEC.2016.7744178 10.1109/TEVC.2015.2458037 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2017.2769104 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2471-285X |
| EndPage | 64 |
| ExternalDocumentID | 10_1109_TETCI_2017_2769104 8114198 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Data Science and Artificial Intelligence Research Centre – fundername: School of Computer Science and Engineering at Nanyang Technological University |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c339t-d43b07e9b1f4cce201ce3a2fb9b4c0fbbed4efd8af0cb5dcb0179028ad94d85f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 277 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679685100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2471-285X |
| IngestDate | Sun Nov 30 04:54:01 EST 2025 Tue Nov 18 21:32:25 EST 2025 Sat Nov 29 05:12:01 EST 2025 Wed Aug 27 02:52:39 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-d43b07e9b1f4cce201ce3a2fb9b4c0fbbed4efd8af0cb5dcb0179028ad94d85f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4480-169X 0000-0002-8356-7242 0000-0002-6080-855X |
| OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/147980/2/Insights%20on%20transfer%20optimization%20because%20experience%20is%20the%20best%20teacher.pdf |
| PQID | 2299161431 |
| PQPubID | 4437216 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TETCI_2017_2769104 crossref_primary_10_1109_TETCI_2017_2769104 proquest_journals_2299161431 ieee_primary_8114198 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref59 ref58 ref53 ref52 ref55 ref54 ehrgott (ref25) 2006 ref51 ref50 ref46 ref45 ref47 ref44 jiang (ref62) 0; 2005 leake (ref7) 1996 bonilla (ref43) 0 ref49 ref8 gomez (ref96) 0; 99 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref33 thrun (ref1) 0 ref32 ref38 ref24 ref23 ref26 ref22 ref21 feurer (ref20) 0 ref27 ref29 bardenet (ref42) 0 yogatama (ref41) 0 ref13 ref12 ref15 ref97 ref11 ref10 ref17 ref16 ref18 ref93 ref92 ref95 ref94 ref91 ref90 klein (ref39) 0; 134 ref89 ref86 wills (ref14) 0; 94 ref85 ref88 ref87 koçer (ref48) 2010; 37 tang (ref75) 0 jin (ref4) 2013; 167 ref82 ref81 ref84 ref83 ref78 caruana (ref36) 0 ref74 ref77 ref76 ref2 feng (ref56) 2013; 28 ref71 ref70 ref73 ref72 millington (ref79) 2016 ref68 ref67 ref69 ref64 ref63 ref66 ref65 swersky (ref19) 0 salimans (ref80) 2017 yi (ref28) 0 da (ref30) 0 ref60 ref61 |
| References_xml | – year: 2006 ident: ref25 publication-title: Multicriteria Optimization – ident: ref40 doi: 10.1109/JPROC.2015.2494218 – ident: ref66 doi: 10.1109/CEC.2015.7257018 – ident: ref71 doi: 10.1145/2908812.2908813 – ident: ref21 doi: 10.1007/s12559-016-9395-7 – ident: ref82 doi: 10.1109/TEVC.2016.2577593 – start-page: 2004 year: 0 ident: ref19 article-title: Multi-task Bayesian optimization publication-title: Proc Int Conf Neural Inf Process – ident: ref52 doi: 10.1109/MCI.2010.936309 – ident: ref63 doi: 10.1007/s12065-016-0146-1 – ident: ref16 doi: 10.1007/s12293-015-0166-x – ident: ref59 doi: 10.1145/1569901.1569959 – ident: ref22 doi: 10.1109/CEC.2017.7969454 – ident: ref9 doi: 10.1007/978-3-540-44511-1_2 – year: 1996 ident: ref7 publication-title: Case-Based Reasoning Experiences Lessons and Future Directions – ident: ref11 doi: 10.1007/978-3-540-44511-1_11 – ident: ref81 doi: 10.1109/TEVC.2005.856209 – ident: ref13 doi: 10.1016/j.knosys.2010.08.003 – year: 0 ident: ref30 article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results – ident: ref89 doi: 10.1109/MCI.2017.2742781 – ident: ref38 doi: 10.1145/1276958.1277114 – start-page: 153 year: 0 ident: ref43 article-title: Multi-task Gaussian process prediction publication-title: Proc Int Conf Neural Inf Process – ident: ref5 doi: 10.1007/978-3-540-44511-1_3 – ident: ref92 doi: 10.1007/s40747-016-0011-y – ident: ref32 doi: 10.1109/TEVC.2017.2672668 – ident: ref47 doi: 10.1109/TEVC.2009.2027359 – ident: ref31 doi: 10.1007/978-3-540-87700-4_4 – ident: ref2 doi: 10.1007/978-1-4615-5529-2_5 – volume: 37 start-page: 6997 year: 2010 ident: ref48 article-title: Genetic transfer learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.03.019 – ident: ref23 doi: 10.1109/TEVC.2017.2657556 – ident: ref85 doi: 10.1162/evco.2008.16.3.385 – ident: ref90 doi: 10.1080/09544820701802279 – ident: ref18 doi: 10.1109/CEC.2016.7743992 – ident: ref6 doi: 10.1109/TEVC.2004.823466 – ident: ref86 doi: 10.1109/TEVC.2007.913070 – ident: ref49 doi: 10.1016/j.knosys.2015.01.010 – ident: ref67 doi: 10.1109/CEC.2016.7744245 – start-page: 474 year: 0 ident: ref75 article-title: Evolutionary multi-task learning for modular extremal learning machine publication-title: Proc IEEE Congr Evol Comput – ident: ref93 doi: 10.1016/j.engappai.2017.05.008 – ident: ref3 doi: 10.1109/TKDE.2009.191 – volume: 2005 start-page: 370 year: 0 ident: ref62 article-title: PGMC: A framework for probabilistic graphical model combination publication-title: AMIA Annu Symp Proc – ident: ref64 doi: 10.1109/TEVC.2017.2682274 – ident: ref54 doi: 10.1137/1.9781611973594 – ident: ref94 doi: 10.1109/CEC.2017.7969579 – ident: ref60 doi: 10.1007/978-3-540-32373-0_6 – start-page: 1077 year: 0 ident: ref41 article-title: Efficient transfer learning method for automatic hyperparameter tuning publication-title: Proc Int Conf Artif Intell Statist – year: 2017 ident: ref80 article-title: Evolution strategies as a scalable alternative to reinforcement learning – volume: 134 start-page: 98 year: 0 ident: ref39 article-title: Towards efficient Bayesian optimization for big data publication-title: Proc NIPS Workshop Bayesian Optim – volume: 99 start-page: 1356 year: 0 ident: ref96 article-title: Solving non-Markovian control tasks with neuroevolution publication-title: Proc Int Joint Conf Artif Intell – ident: ref97 doi: 10.1023/A:1007331723572 – start-page: 1128 year: 0 ident: ref20 article-title: Initializing Bayesian hyperparameter optimization via meta-learning publication-title: Proc 29th AAAI Conf Artif Intell – ident: ref37 doi: 10.1023/A:1018784510310 – ident: ref26 doi: 10.1109/TCYB.2014.2307319 – ident: ref8 doi: 10.1007/BF00226293 – ident: ref87 doi: 10.1007/978-3-540-70928-2_62 – year: 2016 ident: ref79 publication-title: Artificial Intelligence for Games – ident: ref69 doi: 10.1109/TEVC.2013.2281537 – ident: ref88 doi: 10.1109/CEC.2017.7969403 – ident: ref68 doi: 10.1109/CEC.2017.7969453 – ident: ref46 doi: 10.1016/0167-8191(88)90098-1 – ident: ref72 doi: 10.1145/3067695.3075615 – ident: ref17 doi: 10.1007/978-3-319-42978-6_5 – ident: ref10 doi: 10.1007/978-3-540-44511-1_4 – ident: ref53 doi: 10.1109/CEC.2012.6252893 – ident: ref57 doi: 10.1007/978-3-642-32937-1_18 – ident: ref70 doi: 10.1145/2330163.2330283 – volume: 167 year: 2013 ident: ref4 publication-title: Knowledge Incorporation in Evolutionary Computation – ident: ref55 doi: 10.1109/TEVC.2014.2362558 – volume: 94 start-page: 50 year: 0 ident: ref14 article-title: Towards more creative case-based design systems publication-title: Proc Nat Conf Artif Intell – volume: 28 start-page: 38 year: 2013 ident: ref56 article-title: Extreme learning machine guided memetic computation for vehicle routing publication-title: IEEE Intell Syst – ident: ref74 doi: 10.1007/s11063-017-9718-z – ident: ref34 doi: 10.1371/journal.pone.0150558 – ident: ref73 doi: 10.1109/CEC.2016.7748363 – ident: ref58 doi: 10.1162/EVCO_a_00056 – ident: ref76 doi: 10.1016/j.neucom.2017.02.065 – ident: ref61 doi: 10.1016/j.knosys.2011.05.015 – start-page: 640 year: 0 ident: ref1 article-title: Is learning the n-th thing any easier than learning the first? publication-title: Proc 8th Int Conf Neural Inf Process Syst – ident: ref83 doi: 10.1109/TEVC.2017.2664665 – ident: ref78 doi: 10.1109/CEC.2014.6900571 – start-page: 657 year: 0 ident: ref36 article-title: Learning many related tasks at the same time with backpropagation publication-title: Proc Int Conf Neural Inf Process – ident: ref51 doi: 10.1109/TEVC.2011.2132725 – ident: ref45 doi: 10.1109/TEVC.2017.2694221 – ident: ref33 doi: 10.1007/978-3-540-85984-0_29 – start-page: 37 year: 0 ident: ref28 article-title: A survey of fog computing: Concepts, applications and issues publication-title: Proc Workshop Mobile Big Data – ident: ref91 doi: 10.1109/TCYB.2016.2554622 – ident: ref29 doi: 10.1109/CEC.2017.7969596 – ident: ref27 doi: 10.1007/978-3-642-04898-2_327 – ident: ref15 doi: 10.1145/1276958.1277077 – ident: ref44 doi: 10.1007/978-3-319-45823-6_7 – ident: ref77 doi: 10.1007/978-3-642-32964-7_6 – ident: ref95 doi: 10.1038/srep02522 – start-page: 199 year: 0 ident: ref42 article-title: Collaborative hyperparameter tuning publication-title: Proc 30th Int Conf Mach Learn – ident: ref84 doi: 10.1109/SSCI.2016.7850038 – ident: ref35 doi: 10.1016/S0045-7825(01)00323-1 – ident: ref12 doi: 10.1007/s12293-009-0011-1 – ident: ref65 doi: 10.1098/rspa.2007.1900 – ident: ref50 doi: 10.1109/CEC.2016.7744178 – ident: ref24 doi: 10.1109/TEVC.2015.2458037 |
| SSID | ssj0002951354 |
| Score | 2.5509152 |
| Snippet | Traditional optimization solvers tend to start the search from scratch by assuming zero prior knowledge about the task at hand. Generally speaking, the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Artificial intelligence Bayes methods Bayesian optimization Computational intelligence Computer science evolutionary algorithms Knowledge management Knowledge transfer multiform optimization Multitasking Optimization Problem-solving Solvers Transfer |
| Title | Insights on Transfer Optimization: Because Experience is the Best Teacher |
| URI | https://ieeexplore.ieee.org/document/8114198 https://www.proquest.com/docview/2299161431 |
| Volume | 2 |
| WOSCitedRecordID | wos000679685100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WxYMX3-L6IgdvWm2btGm8qbi4IKsHBW-lSSYgaFe2u_5-k2xaEUXwVkhSmpnOzDfJPACOZYoq54pFNCt0xHhqIsEqFeWYJZwaIU3mE4Xv-HhcPD-Lhx6cdrkwiOiDz_DMPfq7fD1Rc3dUdl5Y8G6d5CVY4jxf5Gp15ymphQo0Y21eTCzOH28er0cueIufpTy3ZpF9sz2-mcoPDezNynDtfx-0DqsBPpLLBb83oIf1Jqy1rRlIkNQtGI3qxrndDZnUxNsjY4fvrX54C4mXF-QKVTVvkHxVOyYvDbGA0I40MxJqPW_D09Bu8TYKXRMiRamYRZpRGXMUMjFMKbT7V0ir1EghmYqNlKgZGl1UJlYy00o6mbQoo9KC6SIzdAf69aTGXSCuMU-hJM0UCpZLq9a1NelJnhtjgQBLBpC09CxVKCnuOlu8lt61iEXpeVA6HpSBBwM46da8Lwpq_Dl7y1G9mxkIPoCDlm1lkLmmTFOHdS3-S_Z-X7UPK_bdxSLm-gD6s-kcD2FZfcxemumR_50-AcqhydE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8An1x6hSnU_Pgm1bbJv2IbyrKhnP6MMG30iQXGGgndvPvN8myiSiCb4UktLnr3f0uuQ-AYxGjTDPJAprkKmBZrAPOShmkmEQZ1VzoxCUK97J-P39-5o8LcDrPhUFEF3yGZ_bR3eWrkZzYo7Lz3IB34yQvwnLCWBxOs7XmJyqxAQs0YbPMmJCfD24G110bvpWdxVlqDCP7Zn1cO5UfOtgZltvG_z5pA9Y9gCSXU45vwgJWW9CYNWcgXlab0O1WtXW8azKqiLNI2gw_GA3x6lMvL8gVynJSI_mqd0yGNTGQ0IzUY-KrPW_D063ZYifwfRMCSSkfB4pREWbIRaSZlGj2L5GWsRZcMBlqIVAx1CovdShFoqSwUmlwRqk4U3mi6Q4sVaMKd4HY1jy5FDSRyFkqjGJXxqhHaaq1gQIsakE0o2chfVFx29vipXDORcgLx4PC8qDwPGjByXzN27Skxp-zm5bq85me4C1oz9hWeKmrizi2aNcgwGjv91VHsNoZ3PeKXrd_tw9r5j35NAK7DUvj9wkewIr8GA_r90P3a30Ccn_NGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+on+Transfer+Optimization%3A+Because+Experience+is+the+Best+Teacher&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Gupta%2C+Abhishek&rft.au=Yew-Soon+Ong&rft.au=Liang%2C+Feng&rft.date=2018-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=2&rft.issue=1&rft.spage=51&rft_id=info:doi/10.1109%2FTETCI.2017.2769104&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |