A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction

When the state of the sensors of the wind turbine, especially the anemometer, is abnormal, it will affect the correctness of other parameters of the whole power system. To recognize and reconstruct the abnormal data accurately and efficiently, this study proposes an improved complete ensemble empiri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 312; S. 133510
Hauptverfasser: Zhu, Anfeng, Zhao, Qiancheng, Shi, Zhaoyao, Yang, Tianlong, Zhou, Ling, Zeng, Bing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.12.2024
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract When the state of the sensors of the wind turbine, especially the anemometer, is abnormal, it will affect the correctness of other parameters of the whole power system. To recognize and reconstruct the abnormal data accurately and efficiently, this study proposes an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), extreme learning machine (ELM), crazy improve butterfly optimization algorithm (CIBOA), and bi-directional long short-term memory (BILSTM). In this system, the ICEEMDAN is utilized to decompose the original wind speed sequence, and then the ELM is employed as the initial prediction engine to extract the features of each sub-sequence to achieve the preliminary prediction outcomes. The CIBOA is employed to optimize the BILSTM model parameters. To further explore the unsteady features in the wind speed series, the residual results of the preliminary prediction are modeled using BILSTM, and the predicted residuals and preliminary results are integrated to obtain the final reconstructed values. In addition, the combined model is discussed in detail employing six assessment indicators, improvements of the reconstruction model, Diebold-Mariano test, operation time, and sensitivity analysis. The results indicate that the Pearson correlation coefficient (PCC) values of the proposed model are 0.9986, 0.9978, and 0.9979, respectively. It is concluded that the proposed hybrid reconstruction model accurately identifies and reconstructs abnormal wind speed, which provides a new technique for the reasonable utilization of wind energy. •Combines signal decomposition, multiple reconstruction modeling, intelligent optimization, and deep learning.•Initial and residual forecasts are applied simultaneously to identify and reconstruct abnormal wind speeds.•Improved intelligent optimization algorithm for parameter optimization.•Developed an abnormal wind speed identification and reconstruction system.
AbstractList When the state of the sensors of the wind turbine, especially the anemometer, is abnormal, it will affect the correctness of other parameters of the whole power system. To recognize and reconstruct the abnormal data accurately and efficiently, this study proposes an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), extreme learning machine (ELM), crazy improve butterfly optimization algorithm (CIBOA), and bi-directional long short-term memory (BILSTM). In this system, the ICEEMDAN is utilized to decompose the original wind speed sequence, and then the ELM is employed as the initial prediction engine to extract the features of each sub-sequence to achieve the preliminary prediction outcomes. The CIBOA is employed to optimize the BILSTM model parameters. To further explore the unsteady features in the wind speed series, the residual results of the preliminary prediction are modeled using BILSTM, and the predicted residuals and preliminary results are integrated to obtain the final reconstructed values. In addition, the combined model is discussed in detail employing six assessment indicators, improvements of the reconstruction model, Diebold-Mariano test, operation time, and sensitivity analysis. The results indicate that the Pearson correlation coefficient (PCC) values of the proposed model are 0.9986, 0.9978, and 0.9979, respectively. It is concluded that the proposed hybrid reconstruction model accurately identifies and reconstructs abnormal wind speed, which provides a new technique for the reasonable utilization of wind energy.
When the state of the sensors of the wind turbine, especially the anemometer, is abnormal, it will affect the correctness of other parameters of the whole power system. To recognize and reconstruct the abnormal data accurately and efficiently, this study proposes an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), extreme learning machine (ELM), crazy improve butterfly optimization algorithm (CIBOA), and bi-directional long short-term memory (BILSTM). In this system, the ICEEMDAN is utilized to decompose the original wind speed sequence, and then the ELM is employed as the initial prediction engine to extract the features of each sub-sequence to achieve the preliminary prediction outcomes. The CIBOA is employed to optimize the BILSTM model parameters. To further explore the unsteady features in the wind speed series, the residual results of the preliminary prediction are modeled using BILSTM, and the predicted residuals and preliminary results are integrated to obtain the final reconstructed values. In addition, the combined model is discussed in detail employing six assessment indicators, improvements of the reconstruction model, Diebold-Mariano test, operation time, and sensitivity analysis. The results indicate that the Pearson correlation coefficient (PCC) values of the proposed model are 0.9986, 0.9978, and 0.9979, respectively. It is concluded that the proposed hybrid reconstruction model accurately identifies and reconstructs abnormal wind speed, which provides a new technique for the reasonable utilization of wind energy. •Combines signal decomposition, multiple reconstruction modeling, intelligent optimization, and deep learning.•Initial and residual forecasts are applied simultaneously to identify and reconstruct abnormal wind speeds.•Improved intelligent optimization algorithm for parameter optimization.•Developed an abnormal wind speed identification and reconstruction system.
ArticleNumber 133510
Author Zhou, Ling
Zhao, Qiancheng
Zeng, Bing
Yang, Tianlong
Shi, Zhaoyao
Zhu, Anfeng
Author_xml – sequence: 1
  givenname: Anfeng
  surname: Zhu
  fullname: Zhu, Anfeng
  organization: Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan, 411201, China
– sequence: 2
  givenname: Qiancheng
  surname: Zhao
  fullname: Zhao, Qiancheng
  email: qczhao@hnust.edu.cn
  organization: Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan, 411201, China
– sequence: 3
  givenname: Zhaoyao
  surname: Shi
  fullname: Shi, Zhaoyao
  organization: Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan, 411201, China
– sequence: 4
  givenname: Tianlong
  surname: Yang
  fullname: Yang, Tianlong
  organization: Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan, 411201, China
– sequence: 5
  givenname: Ling
  surname: Zhou
  fullname: Zhou, Ling
  organization: Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan, 411201, China
– sequence: 6
  givenname: Bing
  surname: Zeng
  fullname: Zeng, Bing
  organization: XEMC Wind Power Co., Ltd., Xiangtan, 411102, China
BookMark eNqFkb1uFDEUhV0kEvnhDShcUrCLf8azOxRIUZSESJFooLY89vVyVzP2YHsXJY_BE-NhtqIIla-PzznS_XxJzkIMQMg7ztac8fbjfg0B0u55LZho1lxKxdkZuWCyZSvVNOINucx5zxhT2667IL9vaIhHGKiNY48BHB2jq9fe5DrHQI07mmDneSo44ospOKvDLiYsP8YP1ARHHcBEBzApYNidGnxM1PQhptEM9BdWV56g9qCDUNCjPTXVhwQ2hlzSwc7SNTn3Zsjw9nReke_3d99uv6yevj483t48rayUXVlZazc9qFZJy6Dtt43bSC59I5wTDPzWGyEd76zn29Yb05kq9RuhnBCMSbORV-T90jul-PMAuegRs4VhMAHiIWvJVcNb1QlVrc1itSnmnMDrKeFo0rPmTM_Y9V4v2PWMXS_Ya-zTPzGL5e_aJRkc_hf-vIShMjgiJJ0twvwVWHkV7SK-XvAHrj-oxQ
CitedBy_id crossref_primary_10_1016_j_enconman_2025_119819
crossref_primary_10_1016_j_energy_2025_138466
crossref_primary_10_1016_j_compeleceng_2025_110465
crossref_primary_10_1109_TCE_2025_3577704
Cites_doi 10.1016/j.renene.2019.12.047
10.1016/j.ymssp.2022.109285
10.1016/j.renene.2020.08.077
10.1007/s13369-020-05311-x
10.1016/j.solener.2004.09.013
10.1016/j.egyr.2024.01.058
10.1016/j.atmosres.2023.107032
10.1016/j.energy.2022.123785
10.1016/j.renene.2018.02.092
10.1016/j.enconman.2019.02.086
10.5194/wes-9-1431-2024
10.1016/j.apenergy.2018.02.070
10.1016/j.enconman.2016.02.013
10.1002/stc.2783
10.1016/j.matcom.2022.08.020
10.1016/j.eswa.2022.117847
10.1016/j.compeleceng.2022.108538
10.1175/MWR-D-17-0198.1
10.1016/j.enconman.2021.115102
10.1016/j.renene.2016.03.103
10.1016/j.apenergy.2022.118777
10.3390/en9010011
10.1016/j.energy.2022.124249
10.1016/j.apenergy.2020.115561
10.1016/j.measurement.2023.113643
10.1016/j.apenergy.2019.02.015
10.1016/j.apenergy.2019.04.188
10.1016/j.energy.2022.123848
10.1016/j.egyr.2023.05.181
10.1002/jnm.2040
10.3390/en15093055
10.1016/j.compeleceng.2024.109074
10.1016/j.energy.2022.123761
10.1016/j.energy.2023.127865
10.1016/j.energy.2023.128947
10.1016/j.enconman.2017.11.067
10.1016/j.apenergy.2017.04.017
10.1198/073500102753410444
10.1016/j.enconman.2018.07.070
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.133510
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_133510
S0360544224032869
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-ccc7be5653c0e6b84d7313f42dd20ef8fa23d19cf186faa9af8fb725d22003a73
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001343853900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Mon Sep 29 05:59:17 EDT 2025
Sat Nov 29 06:36:12 EST 2025
Tue Nov 18 22:36:14 EST 2025
Sat Feb 08 15:52:28 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Combination strategy
Wind speed reconstruction
Improved optimization algorithms
Deep learning algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-ccc7be5653c0e6b84d7313f42dd20ef8fa23d19cf186faa9af8fb725d22003a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3154165925
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154165925
crossref_primary_10_1016_j_energy_2024_133510
crossref_citationtrail_10_1016_j_energy_2024_133510
elsevier_sciencedirect_doi_10_1016_j_energy_2024_133510
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Wang (bib44) 2023; 278
Liu, Liu (bib32) 2023; 222
De, Kar, Mandal, Ghoshal (bib40) 2015; 28
Wang, Zhang, Wu, Wang (bib29) 2016; 94
Liu, Chen (bib2) 2022; 249
Wang, Tang, Zhao (bib22) 2024; 238
Leme Beu, Landulfo (bib42) 2024; 9
Li, Song, Wang, Wang, Jia (bib9) 2022; 251
Hua, Zhang, Peng, Ji, Nazir (bib20) 2022; 252
Meng, Ge, Yin, Chen (bib3) 2016; 114
Zhang, Zhang, Wang, Niu (bib4) 2020; 277
Gwec, Global Wind Energy Council (GWEC) 2024.
Movahed, Bidgoly, Manesh, Mirzaei (bib15) 2021; 127
Liu, Mi, Li (bib36) 2018; 123
Yang, Astitha, Delle Monache, Alessandrini (bib11) 2018; 146
Li, Zou (bib30) 2022; 47
Hu, Heng, Wen, Zhao (bib17) 2020; 162
Song, Wang, Lu (bib31) 2018; 215
Gao, Guo, Mei, Sha, Guo, Sun (bib28) 2023; 9
Li, Yu, Liu (bib38) 2023; 204
Zhao, Guo, Xiao, Wang, Chi, Guo (bib7) 2017; 197
Lin, Li (bib16) 2021; 28
Zhang, Pan, Chen (bib19) 2020; 156
Emeksiz, Tan (bib34) 2022; 249
Zhu, Zhao, Yang, Zhou, Zeng (bib5) 2023; 105
Fu, Wang, Li, Tan (bib33) 2019; 187
Wang, Zhang, Xu, Song, Fan (bib39) 2020; 37
Zhu, Zhao, Wang, Zhou (bib24) 2022; 15
Li, Zhu, Li (bib18) 2022; 178
Tian, Wang (bib1) 2022; 254
Liu, Lou, Yan, Qi, Jin, Yu, Yang, Zhao, Xia (bib13) 2023; 295
Han, Mi, Shen, Cai, Liu, Li, Xu (bib10) 2022; 312
Zhu, Zhao, Yang, Zhou, Zeng (bib27) 2024; 114
Bali, Kumar, Gangwar (bib41) 2019
Sun, Wang, Yan (bib23) 2024; 11
Liang, Lin, Lu (bib35) 2022; 206
Sun, Wang (bib25) 2018; 157
Wang, Zhang, Wu, Wang (bib26) 2016; 94
Yang, Guo, Huang (bib12) 2023; 282
Liang, Chai, Sun, Tan (bib43) 2022; 250
Lucheroni, Boland, Ragno (bib8) 2019; 239
Zhu, Li, Sun, Nie, Yao, Zhao (bib21) 2015; 9
Hu, Chen (bib37) 2018; 173
Tang, Li, Gong (bib46) 2008; 30
Torres, Garcia, De Blas, De Francisco (bib14) 2005; 79
Diebold, Mariano (bib45) 2002; 20
Liu (10.1016/j.energy.2024.133510_bib13) 2023; 295
Leme Beu (10.1016/j.energy.2024.133510_bib42) 2024; 9
Tang (10.1016/j.energy.2024.133510_bib46) 2008; 30
Hua (10.1016/j.energy.2024.133510_bib20) 2022; 252
Zhu (10.1016/j.energy.2024.133510_bib24) 2022; 15
Movahed (10.1016/j.energy.2024.133510_bib15) 2021; 127
Liu (10.1016/j.energy.2024.133510_bib32) 2023; 222
De (10.1016/j.energy.2024.133510_bib40) 2015; 28
Gao (10.1016/j.energy.2024.133510_bib28) 2023; 9
Liu (10.1016/j.energy.2024.133510_bib2) 2022; 249
Zhang (10.1016/j.energy.2024.133510_bib19) 2020; 156
Wang (10.1016/j.energy.2024.133510_bib26) 2016; 94
Hu (10.1016/j.energy.2024.133510_bib37) 2018; 173
Wang (10.1016/j.energy.2024.133510_bib22) 2024; 238
Wang (10.1016/j.energy.2024.133510_bib39) 2020; 37
Bali (10.1016/j.energy.2024.133510_bib41) 2019
Sun (10.1016/j.energy.2024.133510_bib23) 2024; 11
Zhu (10.1016/j.energy.2024.133510_bib27) 2024; 114
Li (10.1016/j.energy.2024.133510_bib38) 2023; 204
Meng (10.1016/j.energy.2024.133510_bib3) 2016; 114
Li (10.1016/j.energy.2024.133510_bib18) 2022; 178
Zhang (10.1016/j.energy.2024.133510_bib4) 2020; 277
Lucheroni (10.1016/j.energy.2024.133510_bib8) 2019; 239
Wang (10.1016/j.energy.2024.133510_bib29) 2016; 94
Song (10.1016/j.energy.2024.133510_bib31) 2018; 215
Zhang (10.1016/j.energy.2024.133510_bib44) 2023; 278
Fu (10.1016/j.energy.2024.133510_bib33) 2019; 187
Liang (10.1016/j.energy.2024.133510_bib43) 2022; 250
Hu (10.1016/j.energy.2024.133510_bib17) 2020; 162
Sun (10.1016/j.energy.2024.133510_bib25) 2018; 157
Emeksiz (10.1016/j.energy.2024.133510_bib34) 2022; 249
Yang (10.1016/j.energy.2024.133510_bib11) 2018; 146
Liu (10.1016/j.energy.2024.133510_bib36) 2018; 123
Li (10.1016/j.energy.2024.133510_bib9) 2022; 251
Tian (10.1016/j.energy.2024.133510_bib1) 2022; 254
Liang (10.1016/j.energy.2024.133510_bib35) 2022; 206
10.1016/j.energy.2024.133510_bib6
Li (10.1016/j.energy.2024.133510_bib30) 2022; 47
Han (10.1016/j.energy.2024.133510_bib10) 2022; 312
Lin (10.1016/j.energy.2024.133510_bib16) 2021; 28
Torres (10.1016/j.energy.2024.133510_bib14) 2005; 79
Zhao (10.1016/j.energy.2024.133510_bib7) 2017; 197
Zhu (10.1016/j.energy.2024.133510_bib5) 2023; 105
Yang (10.1016/j.energy.2024.133510_bib12) 2023; 282
Zhu (10.1016/j.energy.2024.133510_bib21) 2015; 9
Diebold (10.1016/j.energy.2024.133510_bib45) 2002; 20
References_xml – volume: 277
  year: 2020
  ident: bib4
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Appl Energy
– start-page: 426
  year: 2019
  end-page: 431
  ident: bib41
  article-title: Deep learning based wind speed forecasting-A review
  publication-title: 9th international conference on cloud computing, data science & engineering confluence IEEE
– volume: 28
  year: 2021
  ident: bib16
  article-title: Nonstationary wind speed data reconstruction based on secondary correction of statistical characteristics
  publication-title: Struct Control Health Monit
– volume: 178
  year: 2022
  ident: bib18
  article-title: Comparative analysis of BPNN, SVR, LSTM, Random Forest, and LSTM-SVR for conditional simulation of non-Gaussian measured fluctuating wind pressures
  publication-title: Mech Syst Signal Process
– volume: 79
  start-page: 65
  year: 2005
  end-page: 77
  ident: bib14
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Sol Energy
– volume: 47
  start-page: 3669
  year: 2022
  end-page: 3682
  ident: bib30
  article-title: Short-term wind power prediction based on data reconstruction and improved extreme learning machine
  publication-title: Arabian J Sci Eng
– volume: 295
  year: 2023
  ident: bib13
  article-title: Deep-learning post-processing of short-term station precipitation based on NWP forecasts
  publication-title: Atmos Res
– volume: 252
  year: 2022
  ident: bib20
  article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction
  publication-title: Energy Convers Manag
– volume: 157
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib25
  article-title: Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network
  publication-title: Energy Convers Manag
– volume: 30
  start-page: 89
  year: 2008
  end-page: 92
  ident: bib46
  article-title: Research on properties of combination forecasting model based on absolute of grey incidence
  publication-title: Syst Eng Electron
– volume: 37
  start-page: 3276
  year: 2020
  end-page: 3280
  ident: bib39
  article-title: Crazy butterfly algorithm based on adaptive perturbation
  publication-title: Appl Res Comput
– volume: 28
  start-page: 593
  year: 2015
  end-page: 609
  ident: bib40
  article-title: Optimal analog active filter design using craziness‐based particle swarm optimization algorithm
  publication-title: Int J Numer Model Electron Network Dev Field
– volume: 250
  year: 2022
  ident: bib43
  article-title: Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC
  publication-title: Energy
– volume: 20
  start-page: 134
  year: 2002
  end-page: 144
  ident: bib45
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Statistics
– volume: 197
  start-page: 183
  year: 2017
  end-page: 202
  ident: bib7
  article-title: Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method
  publication-title: Applied energy
– volume: 162
  start-page: 1208
  year: 2020
  end-page: 1226
  ident: bib17
  article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm
  publication-title: Renew Energy
– volume: 187
  start-page: 356
  year: 2019
  end-page: 377
  ident: bib33
  article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM
  publication-title: Energy Convers Manag
– volume: 282
  year: 2023
  ident: bib12
  article-title: Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process
  publication-title: Energy
– volume: 9
  start-page: 1431
  year: 2024
  end-page: 1450
  ident: bib42
  article-title: Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
  publication-title: Wind Energy Science
– volume: 15
  start-page: 3055
  year: 2022
  ident: bib24
  article-title: Ultra-short-term wind power combined prediction based on complementary ensemble empirical mode decomposition, whale optimization algorithm, and Elman network
  publication-title: Energies
– volume: 11
  start-page: 2127
  year: 2024
  end-page: 2140
  ident: bib23
  article-title: Ultra-short-term wind speed prediction based on TCN-MCM-EKF
  publication-title: Energy Rep
– volume: 123
  start-page: 694
  year: 2018
  end-page: 705
  ident: bib36
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew Energy
– volume: 105
  year: 2023
  ident: bib5
  article-title: Condition monitoring of wind turbine based on deep learning networks and kernel principal component analysis
  publication-title: Comput Electr Eng
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: bib26
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: bib31
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Applied energy
– volume: 238
  year: 2024
  ident: bib22
  article-title: Robust multi-step wind speed forecasting based on a graph-based data reconstruction deep learning method
  publication-title: Expert Syst Appl
– volume: 156
  start-page: 1373
  year: 2020
  end-page: 1388
  ident: bib19
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew Energy
– volume: 249
  year: 2022
  ident: bib34
  article-title: Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)
  publication-title: Energy
– volume: 173
  start-page: 123
  year: 2018
  end-page: 142
  ident: bib37
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm
  publication-title: Energy Convers Manag
– reference: Gwec, Global Wind Energy Council (GWEC) 2024.
– volume: 278
  year: 2023
  ident: bib44
  article-title: Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting
  publication-title: Energy
– volume: 204
  start-page: 498
  year: 2023
  end-page: 528
  ident: bib38
  article-title: An opposition-based butterfly optimization algorithm with adaptive elite mutation in solving complex high-dimensional optimization problems
  publication-title: Math Comput Simulat
– volume: 114
  start-page: 75
  year: 2016
  end-page: 88
  ident: bib3
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manag
– volume: 146
  start-page: 4057
  year: 2018
  end-page: 4077
  ident: bib11
  article-title: An analog technique to improve storm wind speed prediction using a dual NWP model approach
  publication-title: Mon Weather Rev
– volume: 9
  start-page: 335
  year: 2023
  end-page: 344
  ident: bib28
  article-title: Short-term wind power forecasting based on SSA-VMD-LSTM
  publication-title: Energy Rep
– volume: 9
  start-page: 11
  year: 2015
  ident: bib21
  article-title: A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks
  publication-title: Energies
– volume: 251
  year: 2022
  ident: bib9
  article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD
  publication-title: Energy
– volume: 127
  year: 2021
  ident: bib15
  article-title: Predicting cancer cells progression via entropy generation based on AR and ARMA models
  publication-title: Int Commun Heat Mass Tran
– volume: 114
  year: 2024
  ident: bib27
  article-title: Wind speed prediction and reconstruction based on improved grey wolf optimization algorithm and deep learning networks
  publication-title: Comput Electr Eng
– volume: 222
  year: 2023
  ident: bib32
  article-title: A novel hybrid model based on GA-VMD, sample entropy reconstruction and BiLSTM for wind speed prediction
  publication-title: Measurement
– volume: 312
  year: 2022
  ident: bib10
  article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting
  publication-title: Appl Energy
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: bib29
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
– volume: 206
  year: 2022
  ident: bib35
  article-title: Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM
  publication-title: Expert Syst Appl
– volume: 254
  year: 2022
  ident: bib1
  article-title: Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm
  publication-title: Energy
– volume: 239
  start-page: 1226
  year: 2019
  end-page: 1241
  ident: bib8
  article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models
  publication-title: Appl Energy
– volume: 249
  start-page: 392
  year: 2022
  end-page: 408
  ident: bib2
  article-title: Data processing strategies in wind energy forecasting models and applications: a comprehensive review
  publication-title: Appl Energy
– volume: 156
  start-page: 1373
  year: 2020
  ident: 10.1016/j.energy.2024.133510_bib19
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.12.047
– volume: 37
  start-page: 3276
  issue: 11
  year: 2020
  ident: 10.1016/j.energy.2024.133510_bib39
  article-title: Crazy butterfly algorithm based on adaptive perturbation
  publication-title: Appl Res Comput
– volume: 178
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib18
  article-title: Comparative analysis of BPNN, SVR, LSTM, Random Forest, and LSTM-SVR for conditional simulation of non-Gaussian measured fluctuating wind pressures
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109285
– volume: 162
  start-page: 1208
  year: 2020
  ident: 10.1016/j.energy.2024.133510_bib17
  article-title: Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.08.077
– volume: 47
  start-page: 3669
  issue: 3
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib30
  article-title: Short-term wind power prediction based on data reconstruction and improved extreme learning machine
  publication-title: Arabian J Sci Eng
  doi: 10.1007/s13369-020-05311-x
– volume: 79
  start-page: 65
  issue: 1
  year: 2005
  ident: 10.1016/j.energy.2024.133510_bib14
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.013
– volume: 11
  start-page: 2127
  year: 2024
  ident: 10.1016/j.energy.2024.133510_bib23
  article-title: Ultra-short-term wind speed prediction based on TCN-MCM-EKF
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2024.01.058
– volume: 295
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib13
  article-title: Deep-learning post-processing of short-term station precipitation based on NWP forecasts
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2023.107032
– volume: 30
  start-page: 89
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2024.133510_bib46
  article-title: Research on properties of combination forecasting model based on absolute of grey incidence
  publication-title: Syst Eng Electron
– volume: 249
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib34
  article-title: Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123785
– volume: 123
  start-page: 694
  year: 2018
  ident: 10.1016/j.energy.2024.133510_bib36
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.02.092
– volume: 187
  start-page: 356
  year: 2019
  ident: 10.1016/j.energy.2024.133510_bib33
  article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.02.086
– volume: 9
  start-page: 1431
  issue: 6
  year: 2024
  ident: 10.1016/j.energy.2024.133510_bib42
  article-title: Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network
  publication-title: Wind Energy Science
  doi: 10.5194/wes-9-1431-2024
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.energy.2024.133510_bib31
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 114
  start-page: 75
  year: 2016
  ident: 10.1016/j.energy.2024.133510_bib3
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.02.013
– volume: 28
  issue: 9
  year: 2021
  ident: 10.1016/j.energy.2024.133510_bib16
  article-title: Nonstationary wind speed data reconstruction based on secondary correction of statistical characteristics
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2783
– volume: 238
  year: 2024
  ident: 10.1016/j.energy.2024.133510_bib22
  article-title: Robust multi-step wind speed forecasting based on a graph-based data reconstruction deep learning method
  publication-title: Expert Syst Appl
– volume: 204
  start-page: 498
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib38
  article-title: An opposition-based butterfly optimization algorithm with adaptive elite mutation in solving complex high-dimensional optimization problems
  publication-title: Math Comput Simulat
  doi: 10.1016/j.matcom.2022.08.020
– volume: 206
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib35
  article-title: Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117847
– volume: 127
  year: 2021
  ident: 10.1016/j.energy.2024.133510_bib15
  article-title: Predicting cancer cells progression via entropy generation based on AR and ARMA models
  publication-title: Int Commun Heat Mass Tran
– volume: 105
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib5
  article-title: Condition monitoring of wind turbine based on deep learning networks and kernel principal component analysis
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108538
– volume: 146
  start-page: 4057
  issue: 12
  year: 2018
  ident: 10.1016/j.energy.2024.133510_bib11
  article-title: An analog technique to improve storm wind speed prediction using a dual NWP model approach
  publication-title: Mon Weather Rev
  doi: 10.1175/MWR-D-17-0198.1
– start-page: 426
  year: 2019
  ident: 10.1016/j.energy.2024.133510_bib41
  article-title: Deep learning based wind speed forecasting-A review
– volume: 252
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib20
  article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115102
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.energy.2024.133510_bib26
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 312
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib10
  article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118777
– volume: 9
  start-page: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2024.133510_bib21
  article-title: A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks
  publication-title: Energies
  doi: 10.3390/en9010011
– volume: 254
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib1
  article-title: Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124249
– volume: 277
  year: 2020
  ident: 10.1016/j.energy.2024.133510_bib4
  article-title: Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115561
– volume: 222
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib32
  article-title: A novel hybrid model based on GA-VMD, sample entropy reconstruction and BiLSTM for wind speed prediction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113643
– volume: 239
  start-page: 1226
  year: 2019
  ident: 10.1016/j.energy.2024.133510_bib8
  article-title: Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.015
– volume: 249
  start-page: 392
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib2
  article-title: Data processing strategies in wind energy forecasting models and applications: a comprehensive review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.188
– volume: 251
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib9
  article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123848
– volume: 9
  start-page: 335
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib28
  article-title: Short-term wind power forecasting based on SSA-VMD-LSTM
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.05.181
– volume: 28
  start-page: 593
  issue: 5
  year: 2015
  ident: 10.1016/j.energy.2024.133510_bib40
  article-title: Optimal analog active filter design using craziness‐based particle swarm optimization algorithm
  publication-title: Int J Numer Model Electron Network Dev Field
  doi: 10.1002/jnm.2040
– volume: 15
  start-page: 3055
  issue: 9
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib24
  article-title: Ultra-short-term wind power combined prediction based on complementary ensemble empirical mode decomposition, whale optimization algorithm, and Elman network
  publication-title: Energies
  doi: 10.3390/en15093055
– volume: 114
  year: 2024
  ident: 10.1016/j.energy.2024.133510_bib27
  article-title: Wind speed prediction and reconstruction based on improved grey wolf optimization algorithm and deep learning networks
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2024.109074
– volume: 250
  year: 2022
  ident: 10.1016/j.energy.2024.133510_bib43
  article-title: Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123761
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.energy.2024.133510_bib29
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 278
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib44
  article-title: Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127865
– ident: 10.1016/j.energy.2024.133510_bib6
– volume: 282
  year: 2023
  ident: 10.1016/j.energy.2024.133510_bib12
  article-title: Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128947
– volume: 157
  start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2024.133510_bib25
  article-title: Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.067
– volume: 197
  start-page: 183
  year: 2017
  ident: 10.1016/j.energy.2024.133510_bib7
  article-title: Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2017.04.017
– volume: 20
  start-page: 134
  issue: 1
  year: 2002
  ident: 10.1016/j.energy.2024.133510_bib45
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Statistics
  doi: 10.1198/073500102753410444
– volume: 173
  start-page: 123
  year: 2018
  ident: 10.1016/j.energy.2024.133510_bib37
  article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.07.070
SSID ssj0005899
Score 2.4841287
Snippet When the state of the sensors of the wind turbine, especially the anemometer, is abnormal, it will affect the correctness of other parameters of the whole...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133510
SubjectTerms algorithms
butterflies
Combination strategy
Deep learning algorithm
energy
Improved optimization algorithms
neural networks
prediction
wind power
wind speed
Wind speed reconstruction
wind turbines
Title A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction
URI https://dx.doi.org/10.1016/j.energy.2024.133510
https://www.proquest.com/docview/3154165925
Volume 312
WOSCitedRecordID wos001343853900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQvCAbTxk1GQryEVI2dxMljhToBqgqITqp4iRzHWTu1SVi7qvwN-MMc39KVizYeUKWoco6dtufrufkcH4ReglMlQVH1_DAuEz_MifRTQQo_iDkRqRQh6elC4SEbjZLJJP3Y6fxwtTDrOauqZLNJm__KahgDZqvS2X9gd7soDMB7YDpcge1wvRHj-15Vr6U69WMBXi_Yk7rZjafUVaG2Btpd_xqkxcKWYXp8flZfzFbThUvnLKRsXE-JM7uGzrjMK2XmquR2FXJvQPt5s8LmHNm1dEmMqLeH0-7E_021oTrmdGMy69tYxJfppUmyLKVVqCakrcO5n1T4ZXrlxmfdj9hT97_xuhVfNgA-BvJ5baltWIPowxNNYWdbztXzozDcEdU0IF7TBbcaJIn_RwVgYhHnXam_S1etbOm3Cs9t8o8-ZCenw2E2HkzGr5qvvmpFprbsbV-WW2ifsCgFab_ffzeYvN9mDiW6LWn7CV1Fpk4b_P3Bf7N4ftH92qAZ30f3rCeC-wZBD1BHVgfojitUXx6gw8G2CBIIrRZYPkTf-1hDDDuIYQ0PrCGG6wo7iOGrEMMtxF5jQAhWAMMOYHYFwAN2AMMKYFgDDO8CTE_fBdgjdHoyGL9569veHr6gNF35QgiWS_AmqOjJOE_CgtGAliEpCpAOZVJyQosgFWWQxCXnKYehnJGoICqbkjN6iPaqupJHCJesjGnAWZJHRQgvTlnEUhiDeT1Bk2NE3e-fCXvwveq_Ms9chuN5ZriWKa5lhmvHyG9nNebgl2vomWNtZo1XY5RmAM1rZr5wSMhAtqsNO17J-nKZUfBvApX3ED2-Ac0TdHf7R3qK9oAD8hm6Ldar2fLiuQXxT4MizYk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+combined+model+based+on+advanced+optimization+algorithm%2C+and+deep+learning+model+for+abnormal+wind+speed+identification+and+reconstruction&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhu%2C+Anfeng&rft.au=Zhao%2C+Qiancheng&rft.au=Shi%2C+Zhaoyao&rft.au=Yang%2C+Tianlong&rft.date=2024-12-15&rft.issn=0360-5442&rft.volume=312+p.133510-&rft_id=info:doi/10.1016%2Fj.energy.2024.133510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon