Molecular dynamics simulation based design of biomimetic membrane with artificial water channels
Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the...
Uloženo v:
| Vydáno v: | Journal of membrane science Ročník 630; s. 119279 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.07.2021
|
| Témata: | |
| ISSN: | 0376-7388, 1873-3123 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the key element in producing drinkable water from brackish or sea water; improved materials would help make this expensive process more widely applicable, increasing fresh water supplies worldwide. In this work, we simulated polybutadiene–polyethylene oxide (PB–PEO) bilayers containing peptide-appended pillar[5]arene (PAP5) channels. PB–PEO bilayers with PAP5 channels are a biomimetic alternative to aquaporin embedded lipid membranes, with high water permeability combined with excellent selectivity. In our simulations, we systematically varied the PB–PEO block copolymer structure to maximize water mobility. We measured water diffusivity in our best design by two complementary methods, and compared our values to that inferred from experimental channel permeability. In this design, we obtained a water diffusivity of 30.38 ± 0.19 × 10−8cm2s−1, comparable to the best experimentally reported result. We find that the highest permeability is achieved when the bilayer hydrophobic thickness matches the PAP[5] dimension, and the hydrophilic block is long enough that clogging the pore is entropically unlikely.
[Display omitted]
•Membrane hydrophobic thickness crucial for pore stability.•Entropic penalty disfavors long hydrophilic tails to clog the pore.•Einstein relation based short-time water diffusivity agrees with experiments.•Long-time diffusivity from kinetic model closely matches the short-time diffusivity. |
|---|---|
| AbstractList | Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the key element in producing drinkable water from brackish or sea water; improved materials would help make this expensive process more widely applicable, increasing fresh water supplies worldwide. In this work, we simulated polybutadiene–polyethylene oxide (PB–PEO) bilayers containing peptide-appended pillar[5]arene (PAP5) channels. PB–PEO bilayers with PAP5 channels are a biomimetic alternative to aquaporin embedded lipid membranes, with high water permeability combined with excellent selectivity. In our simulations, we systematically varied the PB–PEO block copolymer structure to maximize water mobility. We measured water diffusivity in our best design by two complementary methods, and compared our values to that inferred from experimental channel permeability. In this design, we obtained a water diffusivity of 30.38 ± 0.19 × 10−8cm2s−1, comparable to the best experimentally reported result. We find that the highest permeability is achieved when the bilayer hydrophobic thickness matches the PAP[5] dimension, and the hydrophilic block is long enough that clogging the pore is entropically unlikely.
[Display omitted]
•Membrane hydrophobic thickness crucial for pore stability.•Entropic penalty disfavors long hydrophilic tails to clog the pore.•Einstein relation based short-time water diffusivity agrees with experiments.•Long-time diffusivity from kinetic model closely matches the short-time diffusivity. Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the key element in producing drinkable water from brackish or sea water; improved materials would help make this expensive process more widely applicable, increasing fresh water supplies worldwide. In this work, we simulated polybutadiene–polyethylene oxide (PB–PEO) bilayers containing peptide-appended pillar[5]arene (PAP5) channels. PB–PEO bilayers with PAP5 channels are a biomimetic alternative to aquaporin embedded lipid membranes, with high water permeability combined with excellent selectivity. In our simulations, we systematically varied the PB–PEO block copolymer structure to maximize water mobility. We measured water diffusivity in our best design by two complementary methods, and compared our values to that inferred from experimental channel permeability. In this design, we obtained a water diffusivity of 30.38 ± 0.19 × 10−8cm2s−1, comparable to the best experimentally reported result. We find that the highest permeability is achieved when the bilayer hydrophobic thickness matches the PAP[5] dimension, and the hydrophilic block is long enough that clogging the pore is entropically unlikely. |
| ArticleNumber | 119279 |
| Author | Kali, Ritwick Milner, Scott T. Andini, Erha |
| Author_xml | – sequence: 1 givenname: Ritwick orcidid: 0000-0003-0386-7024 surname: Kali fullname: Kali, Ritwick organization: Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America – sequence: 2 givenname: Erha orcidid: 0000-0003-4898-9105 surname: Andini fullname: Andini, Erha organization: Department of Chemical Engineering, University of Delaware, Newark, DE 19716, United States of America – sequence: 3 givenname: Scott T. orcidid: 0000-0002-9774-3307 surname: Milner fullname: Milner, Scott T. email: stm9@psu.edu organization: Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America |
| BookMark | eNqFkEFP3DAQha2KSl0o_4CDj1yy9djrOOGAVKFCK1H10p5d25mUWSU2tb1F_PuGpicOcBrp6b03M98xO4opImNnILYgoP2w3844l0BbKSRsAXpp-jdsA51RjQKpjthGKNM2RnXdO3Zcyl4IMKLrN-zn1zRhOEwu8-ExuplC4YXmRaiUIveu4MAHLPQr8jRyT2mmGSsFvqz02UXkD1TvuMuVRgrkJv7gKmYe7lyMOJX37O3opoKn_-cJ-3H96fvV5-b2282Xq4-3TVCqr00IMOid2QE45fu-990Abhy09rJFpYX0wQipuxFGp3etaD36RTCtB-WCcuqEna-99zn9PmCpdqYScJqWE9OhWKk19FoYKRbrxWoNOZWScbSB6r9_a3Y0WRD2Cavd2xWrfcJqV6xLePcsfJ9pdvnxtdjlGluQ4B_CbBcHxoADZQzVDoleLvgLySOXcQ |
| CitedBy_id | crossref_primary_10_1039_D2ME00013J crossref_primary_10_1016_j_memsci_2024_122582 crossref_primary_10_1039_D2ME00212D crossref_primary_10_1002_smll_202201732 crossref_primary_10_1016_j_commatsci_2025_114046 crossref_primary_10_1016_j_memsci_2022_121029 crossref_primary_10_1016_j_memsci_2023_122060 crossref_primary_10_1021_acs_langmuir_4c05181 crossref_primary_10_1039_D1ME00129A crossref_primary_10_1016_j_memsci_2025_123841 |
| Cites_doi | 10.1021/ct700200b 10.1002/bit.1045 10.1007/BF01870707 10.1073/pnas.1508575112 10.1021/j100308a038 10.1021/j100782a510 10.1073/pnas.0708762104 10.1063/1.448118 10.1126/science.aab0530 10.1146/annurev-chembioeng-080615-033533 10.1016/j.desal.2006.12.009 10.1016/j.desal.2012.07.007 10.1002/1438-5171(200006)1:2<123::AID-SIMO123>3.0.CO;2-3 10.1021/ct200731v 10.1126/science.1066115 10.1016/S0005-2736(97)00176-4 10.1016/S0011-9164(97)00124-0 10.1039/C8FD00047F 10.1016/j.memsci.2013.12.019 10.1016/0022-2836(82)90515-0 10.1016/0376-7388(95)00102-I 10.1016/0263-7855(96)00018-5 10.1016/j.desal.2006.03.053 10.1016/j.desal.2004.06.035 10.1021/acsnano.9b03659 10.1186/1758-2946-4-17 10.1126/science.1074972 10.1146/annurev-matsci-070317-124544 10.1093/bioinformatics/btt055 10.1126/science.1200488 10.1002/anie.200460804 10.1039/C8FD00043C 10.1021/ja312704e 10.1063/1.464397 10.1021/ar400025e 10.1016/j.polymer.2005.02.083 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.memsci.2021.119279 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3123 |
| ExternalDocumentID | 10_1016_j_memsci_2021_119279 S0376738821002283 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-cc1d547411a3b999b8d1afd55b26e3502bc70258f1fa54606beb70276b13ac3a3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653043900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0376-7388 |
| IngestDate | Sat Sep 27 22:15:25 EDT 2025 Sat Nov 29 07:25:37 EST 2025 Tue Nov 18 22:22:05 EST 2025 Fri Feb 23 02:44:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water filtration Biomimetic membrane Kinetic modeling Diffusivity Artificial water-channel |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-cc1d547411a3b999b8d1afd55b26e3502bc70258f1fa54606beb70276b13ac3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9774-3307 0000-0003-4898-9105 0000-0003-0386-7024 |
| PQID | 2551950720 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2551950720 crossref_citationtrail_10_1016_j_memsci_2021_119279 crossref_primary_10_1016_j_memsci_2021_119279 elsevier_sciencedirect_doi_10_1016_j_memsci_2021_119279 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-15 |
| PublicationDateYYYYMMDD | 2021-07-15 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of membrane science |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Shen, Song, Ryan Barden, Ren, Lang, Feroz, Henderson, Saboe, Tsai, Yan, Butler, Bazan, Phillip, Hickey, Cremer, Vashisth, Kumar (b4) 2018; 9 Barboiu, Gilles (b18) 2013; 46 Wang (b39) 1965; 69 M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeerschd, E. Zurek, G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminformatics 4 (8) (2012), 17 Berendsen, Postma, Van Gunsteren, Dinola, Haak (b33) 1984; 81 Kita-Tokarczyk, Grumelard, Haefele, Meier (b21) 2005; 46 Caleman, Van Maaren, Hong, Hub, Costa, Van Der Spoel (b27) 2012; 8 Lang, Ye, Song, Yao, Tu, Capparelli, Lanasa, Hickner, Gomez, Gomez, Hickey, Kumar (b23) 2019; 13 Kyte, Doolittle (b37) 1982; 157 Agre (b1) 2004; 43 Busch, Mickols (b17) 2004; 165 Barden, Vashisth (b25) 2018; 209 Elimelech, Phillip (b15) 2011; 333 Shen, Si, Erbakan, Decker, De Zorzi, Saboe, Kang, Majd, Butler, Walz, Aksimentiev, Hou, Kumar (b34) 2015; 112 Tang, Zhao, Wang, Hélix-Nielsen, Fane (b7) 2013; 308 Bowen (b8) 2006; 199 Darden, York, Pedersen (b32) 1993; 98 De Groot, Grubmüller (b5) 2001; 294 van Heeswijk, van Os (b38) 1986; 92 Newman, Barkema (b40) 2001 Pronk, S.Páll, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (b26) 2013; 29 Kumar, Grzelakowski, Zilles, Clark, Meier (b9) 2007; 104 Lee James, Bermudez, Discher, Sheehan, Won, Bates, Discher (b20) 2001; 73 Chen, Si, Zhang, Tang, Li, Hou (b24) 2013; 135 Kienberger, Pastushenko, Kada, Gruber, Riener, Schindler, Hinterdorfer (b36) 2000; 1 Berendsen, Grigera, Straatsma (b29) 1987; 91 Song, Shen, Lang, Saha, Zenyuk, Hickey, Kumar (b12) 2018; 209 Fetters, Lohse, Colby (b35) 2007 . Humphrey, Dalke, Schulten (b30) 1996; 14 Fritzmann, Löwenberg, Wintgens, Melin (b11) 2007; 216 Sabirov, Morishima, Okada (b14) 1998; 1368 Discher, Eisenberg (b22) 2002; 297 Park, Kamcev, Robeson, Elimelech, Freeman (b3) 2017; 356 Wilf (b16) 1997; 113 Hess (b31) 2008; 4 Song, Lang, Shen, Kumar (b19) 2018; 48 Wijmans, Baker (b13) 1995; 107 Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky, Darnell (b2) 2000 Kamcev, Freeman (b10) 2016; 7 Shen, Saboe, Sines, Erbakan, Kumar (b6) 2014; 454 Kita-Tokarczyk (10.1016/j.memsci.2021.119279_b21) 2005; 46 Newman (10.1016/j.memsci.2021.119279_b40) 2001 Hess (10.1016/j.memsci.2021.119279_b31) 2008; 4 Barboiu (10.1016/j.memsci.2021.119279_b18) 2013; 46 Berendsen (10.1016/j.memsci.2021.119279_b29) 1987; 91 Darden (10.1016/j.memsci.2021.119279_b32) 1993; 98 Fritzmann (10.1016/j.memsci.2021.119279_b11) 2007; 216 van Heeswijk (10.1016/j.memsci.2021.119279_b38) 1986; 92 Lodish (10.1016/j.memsci.2021.119279_b2) 2000 Bowen (10.1016/j.memsci.2021.119279_b8) 2006; 199 Humphrey (10.1016/j.memsci.2021.119279_b30) 1996; 14 Shen (10.1016/j.memsci.2021.119279_b6) 2014; 454 Kumar (10.1016/j.memsci.2021.119279_b9) 2007; 104 Kienberger (10.1016/j.memsci.2021.119279_b36) 2000; 1 Caleman (10.1016/j.memsci.2021.119279_b27) 2012; 8 Shen (10.1016/j.memsci.2021.119279_b34) 2015; 112 Pronk (10.1016/j.memsci.2021.119279_b26) 2013; 29 Berendsen (10.1016/j.memsci.2021.119279_b33) 1984; 81 Wilf (10.1016/j.memsci.2021.119279_b16) 1997; 113 Tang (10.1016/j.memsci.2021.119279_b7) 2013; 308 Barden (10.1016/j.memsci.2021.119279_b25) 2018; 209 Fetters (10.1016/j.memsci.2021.119279_b35) 2007 Busch (10.1016/j.memsci.2021.119279_b17) 2004; 165 Shen (10.1016/j.memsci.2021.119279_b4) 2018; 9 De Groot (10.1016/j.memsci.2021.119279_b5) 2001; 294 Sabirov (10.1016/j.memsci.2021.119279_b14) 1998; 1368 Lee James (10.1016/j.memsci.2021.119279_b20) 2001; 73 Chen (10.1016/j.memsci.2021.119279_b24) 2013; 135 10.1016/j.memsci.2021.119279_b28 Wang (10.1016/j.memsci.2021.119279_b39) 1965; 69 Lang (10.1016/j.memsci.2021.119279_b23) 2019; 13 Wijmans (10.1016/j.memsci.2021.119279_b13) 1995; 107 Song (10.1016/j.memsci.2021.119279_b19) 2018; 48 Agre (10.1016/j.memsci.2021.119279_b1) 2004; 43 Discher (10.1016/j.memsci.2021.119279_b22) 2002; 297 Song (10.1016/j.memsci.2021.119279_b12) 2018; 209 Kyte (10.1016/j.memsci.2021.119279_b37) 1982; 157 Kamcev (10.1016/j.memsci.2021.119279_b10) 2016; 7 Elimelech (10.1016/j.memsci.2021.119279_b15) 2011; 333 Park (10.1016/j.memsci.2021.119279_b3) 2017; 356 |
| References_xml | – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: b30 article-title: Vmd: visual molecular dynamics publication-title: J. Mol. Graph. – volume: 294 start-page: 2353 year: 2001 end-page: 2357 ident: b5 article-title: Water permeation across biological membranes: mechanism and dynamics of Aquaporin-1 and GlpF publication-title: Science – volume: 113 start-page: 157 year: 1997 end-page: 163 ident: b16 article-title: Design consequences of recent improvements in membrane performance publication-title: Desalination – volume: 92 start-page: 183 year: 1986 end-page: 193 ident: b38 article-title: Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine publication-title: J. Membr. Biol. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: b33 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. – volume: 98 start-page: 10089 year: 1993 end-page: 10092 ident: b32 article-title: Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. – volume: 454 start-page: 359 year: 2014 end-page: 381 ident: b6 article-title: Biomimetic membranes: A review publication-title: J. Membr. Sci. – volume: 216 start-page: 1 year: 2007 end-page: 76 ident: b11 article-title: State-of-the-art of reverse osmosis desalination publication-title: Desalination – volume: 91 start-page: 6269 year: 1987 end-page: 6271 ident: b29 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. – volume: 112 start-page: 9810 year: 2015 end-page: 9815 ident: b34 article-title: Highly permeable artificial water channels that can self-assemble into two-dimensional arrays publication-title: Proc. Natl. Acad. Sci. USA – year: 2001 ident: b40 article-title: Monte Carlo Methods in Statistical Physics – volume: 8 start-page: 61 year: 2012 end-page: 74 ident: b27 article-title: Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant publication-title: J. Chem. Theory Comput. – volume: 157 start-page: 105 year: 1982 end-page: 132 ident: b37 article-title: A simple method for displaying the hydropathic character of a protein publication-title: J. Mol. Biol. – volume: 356 start-page: 1138 year: 2017 end-page: 1148 ident: b3 article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity publication-title: Science – volume: 1 start-page: 123 year: 2000 end-page: 128 ident: b36 article-title: Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy publication-title: Single Mol. – reference: M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeerschd, E. Zurek, G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminformatics 4 (8) (2012), 17 – volume: 209 start-page: 161 year: 2018 end-page: 178 ident: b25 article-title: Parameterization and atomistic simulations of biomimetic membranes publication-title: Faraday Discuss. – volume: 297 start-page: 967 year: 2002 end-page: 973 ident: b22 article-title: Polymer vesicles publication-title: Science – volume: 308 start-page: 34 year: 2013 end-page: 40 ident: b7 article-title: Desalination by biomimetic aquaporin membranes: Review of status and prospects publication-title: Desalination – volume: 73 start-page: 135 year: 2001 end-page: 145 ident: b20 article-title: Preparation, stability and in vitro performance of vesicles made with diblock copolymers publication-title: Biotechnol. Bioeng. – volume: 7 start-page: 111 year: 2016 end-page: 133 ident: b10 article-title: Charged polymer membranes for environmental/energy applications publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 29 start-page: 845 year: 2013 end-page: 854 ident: b26 article-title: GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit publication-title: Bioinformatics – volume: 4 start-page: 116 year: 2008 end-page: 122 ident: b31 article-title: P-LINCS: A parallel linear constraint solver for molecular simulation publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: b4 article-title: Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes publication-title: Nature Commun. – volume: 48 start-page: 57 year: 2018 end-page: 82 ident: b19 article-title: Design considerations for artificial water channel-based membranes publication-title: Annu. Rev. Mater. Res. – volume: 13 start-page: 8292 year: 2019 end-page: 8302 ident: b23 article-title: Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes publication-title: ACS Nano – volume: 46 start-page: 2814 year: 2013 end-page: 2823 ident: b18 article-title: From natural to bioassisted and biomimetic artificial water channel systems publication-title: Acc. Chem. Res. – volume: 135 start-page: 2152 year: 2013 end-page: 2155 ident: b24 article-title: Chiral selective transmembrane transport of amino acids through artificial channels publication-title: J. Am. Chem. Soc. – year: 2000 ident: b2 article-title: Molecular Cell Biology – volume: 209 start-page: 193 year: 2018 end-page: 204 ident: b12 article-title: Unique selectivity trends of highly permeable PAP[5] water channel membranes publication-title: Faraday Discuss. – volume: 199 start-page: 225 year: 2006 end-page: 227 ident: b8 article-title: Biomimetic separations - learning from the early development of biological membranes publication-title: Desalination – volume: 1368 start-page: 19 year: 1998 end-page: 26 ident: b14 article-title: Probing the water permeability of ROMK1 and Amphotericin B channels using Xenopus oocytes publication-title: Biochim. Biophys. Acta Biomembr. – volume: 46 start-page: 3540 year: 2005 end-page: 3563 ident: b21 article-title: Block copolymer vesicles - using concepts from polymer chemistry to mimic biomembranes publication-title: Polymer – year: 2007 ident: b35 article-title: Physical Properties of Polymers – reference: . – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: b15 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science – volume: 165 start-page: 299 year: 2004 end-page: 312 ident: b17 article-title: Reducing energy consumption in seawater desalination publication-title: Desalination – volume: 43 start-page: 4278 year: 2004 end-page: 4290 ident: b1 article-title: Aquaporin water channels (nobel lecture) publication-title: Angew. Chem. Int. Ed. – volume: 69 start-page: 4412 year: 1965 ident: b39 article-title: Self-diffusion coefficients of water publication-title: J. Phys. Chem. – volume: 104 start-page: 20719 year: 2007 end-page: 20724 ident: b9 article-title: Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z publication-title: Proc. Natl. Acad. Sci. USA – volume: 107 start-page: 1 year: 1995 end-page: 21 ident: b13 article-title: The solution-diffusion model: A review publication-title: J. Membr. Sci. – volume: 4 start-page: 116 issue: 1 year: 2008 ident: 10.1016/j.memsci.2021.119279_b31 article-title: P-LINCS: A parallel linear constraint solver for molecular simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700200b – volume: 73 start-page: 135 issue: 2 year: 2001 ident: 10.1016/j.memsci.2021.119279_b20 article-title: Preparation, stability and in vitro performance of vesicles made with diblock copolymers publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.1045 – volume: 92 start-page: 183 issue: 2 year: 1986 ident: 10.1016/j.memsci.2021.119279_b38 article-title: Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine publication-title: J. Membr. Biol. doi: 10.1007/BF01870707 – volume: 112 start-page: 9810 issue: 32 year: 2015 ident: 10.1016/j.memsci.2021.119279_b34 article-title: Highly permeable artificial water channels that can self-assemble into two-dimensional arrays publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508575112 – volume: 91 start-page: 6269 issue: 24 year: 1987 ident: 10.1016/j.memsci.2021.119279_b29 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 69 start-page: 4412 issue: 12 year: 1965 ident: 10.1016/j.memsci.2021.119279_b39 article-title: Self-diffusion coefficients of water publication-title: J. Phys. Chem. doi: 10.1021/j100782a510 – volume: 104 start-page: 20719 issue: 52 year: 2007 ident: 10.1016/j.memsci.2021.119279_b9 article-title: Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708762104 – volume: 81 start-page: 3684 issue: 8 year: 1984 ident: 10.1016/j.memsci.2021.119279_b33 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 356 start-page: 1138 issue: 6343 year: 2017 ident: 10.1016/j.memsci.2021.119279_b3 article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity publication-title: Science doi: 10.1126/science.aab0530 – year: 2007 ident: 10.1016/j.memsci.2021.119279_b35 – volume: 7 start-page: 111 issue: 1 year: 2016 ident: 10.1016/j.memsci.2021.119279_b10 article-title: Charged polymer membranes for environmental/energy applications publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-080615-033533 – year: 2001 ident: 10.1016/j.memsci.2021.119279_b40 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.memsci.2021.119279_b4 article-title: Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes publication-title: Nature Commun. – volume: 216 start-page: 1 issue: 1–3 year: 2007 ident: 10.1016/j.memsci.2021.119279_b11 article-title: State-of-the-art of reverse osmosis desalination publication-title: Desalination doi: 10.1016/j.desal.2006.12.009 – year: 2000 ident: 10.1016/j.memsci.2021.119279_b2 – volume: 308 start-page: 34 year: 2013 ident: 10.1016/j.memsci.2021.119279_b7 article-title: Desalination by biomimetic aquaporin membranes: Review of status and prospects publication-title: Desalination doi: 10.1016/j.desal.2012.07.007 – volume: 1 start-page: 123 issue: 2 year: 2000 ident: 10.1016/j.memsci.2021.119279_b36 article-title: Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy publication-title: Single Mol. doi: 10.1002/1438-5171(200006)1:2<123::AID-SIMO123>3.0.CO;2-3 – volume: 8 start-page: 61 issue: 1 year: 2012 ident: 10.1016/j.memsci.2021.119279_b27 article-title: Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200731v – volume: 294 start-page: 2353 issue: 5550 year: 2001 ident: 10.1016/j.memsci.2021.119279_b5 article-title: Water permeation across biological membranes: mechanism and dynamics of Aquaporin-1 and GlpF publication-title: Science doi: 10.1126/science.1066115 – volume: 1368 start-page: 19 issue: 1 year: 1998 ident: 10.1016/j.memsci.2021.119279_b14 article-title: Probing the water permeability of ROMK1 and Amphotericin B channels using Xenopus oocytes publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/S0005-2736(97)00176-4 – volume: 113 start-page: 157 issue: 2–3 year: 1997 ident: 10.1016/j.memsci.2021.119279_b16 article-title: Design consequences of recent improvements in membrane performance publication-title: Desalination doi: 10.1016/S0011-9164(97)00124-0 – volume: 209 start-page: 161 year: 2018 ident: 10.1016/j.memsci.2021.119279_b25 article-title: Parameterization and atomistic simulations of biomimetic membranes publication-title: Faraday Discuss. doi: 10.1039/C8FD00047F – volume: 454 start-page: 359 year: 2014 ident: 10.1016/j.memsci.2021.119279_b6 article-title: Biomimetic membranes: A review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.12.019 – volume: 157 start-page: 105 issue: 1 year: 1982 ident: 10.1016/j.memsci.2021.119279_b37 article-title: A simple method for displaying the hydropathic character of a protein publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(82)90515-0 – volume: 107 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.memsci.2021.119279_b13 article-title: The solution-diffusion model: A review publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00102-I – volume: 14 start-page: 33 issue: 1 year: 1996 ident: 10.1016/j.memsci.2021.119279_b30 article-title: Vmd: visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 199 start-page: 225 issue: 1–3 year: 2006 ident: 10.1016/j.memsci.2021.119279_b8 article-title: Biomimetic separations - learning from the early development of biological membranes publication-title: Desalination doi: 10.1016/j.desal.2006.03.053 – volume: 165 start-page: 299 issue: Suppl year: 2004 ident: 10.1016/j.memsci.2021.119279_b17 article-title: Reducing energy consumption in seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2004.06.035 – volume: 13 start-page: 8292 issue: 7 year: 2019 ident: 10.1016/j.memsci.2021.119279_b23 article-title: Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes publication-title: ACS Nano doi: 10.1021/acsnano.9b03659 – ident: 10.1016/j.memsci.2021.119279_b28 doi: 10.1186/1758-2946-4-17 – volume: 297 start-page: 967 issue: 5583 year: 2002 ident: 10.1016/j.memsci.2021.119279_b22 article-title: Polymer vesicles publication-title: Science doi: 10.1126/science.1074972 – volume: 48 start-page: 57 year: 2018 ident: 10.1016/j.memsci.2021.119279_b19 article-title: Design considerations for artificial water channel-based membranes publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124544 – volume: 29 start-page: 845 issue: 7 year: 2013 ident: 10.1016/j.memsci.2021.119279_b26 article-title: GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt055 – volume: 333 start-page: 712 issue: 6043 year: 2011 ident: 10.1016/j.memsci.2021.119279_b15 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science doi: 10.1126/science.1200488 – volume: 43 start-page: 4278 issue: 33 year: 2004 ident: 10.1016/j.memsci.2021.119279_b1 article-title: Aquaporin water channels (nobel lecture) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200460804 – volume: 209 start-page: 193 year: 2018 ident: 10.1016/j.memsci.2021.119279_b12 article-title: Unique selectivity trends of highly permeable PAP[5] water channel membranes publication-title: Faraday Discuss. doi: 10.1039/C8FD00043C – volume: 135 start-page: 2152 issue: 6 year: 2013 ident: 10.1016/j.memsci.2021.119279_b24 article-title: Chiral selective transmembrane transport of amino acids through artificial channels publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312704e – volume: 98 start-page: 10089 issue: 12 year: 1993 ident: 10.1016/j.memsci.2021.119279_b32 article-title: Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 46 start-page: 2814 issue: 12 year: 2013 ident: 10.1016/j.memsci.2021.119279_b18 article-title: From natural to bioassisted and biomimetic artificial water channel systems publication-title: Acc. Chem. Res. doi: 10.1021/ar400025e – volume: 46 start-page: 3540 issue: 11 year: 2005 ident: 10.1016/j.memsci.2021.119279_b21 article-title: Block copolymer vesicles - using concepts from polymer chemistry to mimic biomembranes publication-title: Polymer doi: 10.1016/j.polymer.2005.02.083 |
| SSID | ssj0017089 |
| Score | 2.4411113 |
| Snippet | Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119279 |
| SubjectTerms | aquaporins aromatic hydrocarbons artificial membranes Artificial water-channel Biomimetic membrane biomimetics composite polymers Diffusivity drinking water freshwater hydrophilicity hydrophobicity Kinetic modeling lipids membrane permeability molecular dynamics reverse osmosis seawater Water filtration |
| Title | Molecular dynamics simulation based design of biomimetic membrane with artificial water channels |
| URI | https://dx.doi.org/10.1016/j.memsci.2021.119279 https://www.proquest.com/docview/2551950720 |
| Volume | 630 |
| WOSCitedRecordID | wos000653043900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3123 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017089 issn: 0376-7388 databaseCode: AIEXJ dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFMtLxmJW5RVbCdxcqxQESBaIbRIezO2Y4tU3Wy12dL-fMZ2nJQWKD1wiVZR7LXyfZkZP2Y-hN7Y2qi8siSlpjFpbqlJK2sMzFIYo5Y0mbReteQTPzysFov687Bj2ns5Ad511fl5ffJfoYZ7ALZLnb0B3GOncAN-A-hwBdjh-k_AH0TB26QJavN90rfLQaUrcV6rSRp_bsMFii79vl26TMZkaZYwdYagM-S7rf0pIregfiZdJUWXItyF4su_C2fH1oNPHS25DAnYX9rNWazA75cdwGm2wRJ_H13DQXsclcB8zYj57OKqBCVuuTPkZcZsLF6mnAXJvmhpy2ELJthKAsFlEJK5YsbDisLRDIYOg565P5hNj_9aNfuSNxvPGMbja0ci9CJcLyL0chttU17UYAW39z7sLz6O-04886KJ4-hjsqU_EXh1NH8KZi65dR-rzB-g-wMqeC-Q4yG6ZbpH6N6F0pOP0beRJjjSBE80wZ4mONAEryyeaIIj0NjRBE80wZ4mONLkCfr6bn_-9n06qG2kmrF6k2pNmiKHAJNIpmDaoKqGSNsUhaKlYUVGleYQIMN3bWWRw7xXGQU3eKkIk5pJ9hRtdavO7CCsqeYQ5VQklzrPNVFWVtxkZVbJTKmM7yIWX5vQQyl6p4hyLP4G2i5Kx1YnoRTLNc_ziIgYqB_CRAE0u6bl6wigAGvrttDgta5OewETcKebzGn27IajeY7uTt_JC7S1WZ-al-iO_rFp-_WrgYc_Aeppp_k |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+based+design+of+biomimetic+membrane+with+artificial+water+channels&rft.jtitle=Journal+of+membrane+science&rft.au=Kali%2C+Ritwick&rft.au=Andini%2C+Erha&rft.au=Milner%2C+Scott+T.&rft.date=2021-07-15&rft.issn=0376-7388&rft.volume=630&rft.spage=119279&rft_id=info:doi/10.1016%2Fj.memsci.2021.119279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2021_119279 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |