Molecular dynamics simulation based design of biomimetic membrane with artificial water channels

Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of membrane science Ročník 630; s. 119279
Hlavní autoři: Kali, Ritwick, Andini, Erha, Milner, Scott T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.07.2021
Témata:
ISSN:0376-7388, 1873-3123
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the key element in producing drinkable water from brackish or sea water; improved materials would help make this expensive process more widely applicable, increasing fresh water supplies worldwide. In this work, we simulated polybutadiene–polyethylene oxide (PB–PEO) bilayers containing peptide-appended pillar[5]arene (PAP5) channels. PB–PEO bilayers with PAP5 channels are a biomimetic alternative to aquaporin embedded lipid membranes, with high water permeability combined with excellent selectivity. In our simulations, we systematically varied the PB–PEO block copolymer structure to maximize water mobility. We measured water diffusivity in our best design by two complementary methods, and compared our values to that inferred from experimental channel permeability. In this design, we obtained a water diffusivity of 30.38 ± 0.19 × 10−8cm2s−1, comparable to the best experimentally reported result. We find that the highest permeability is achieved when the bilayer hydrophobic thickness matches the PAP[5] dimension, and the hydrophilic block is long enough that clogging the pore is entropically unlikely. [Display omitted] •Membrane hydrophobic thickness crucial for pore stability.•Entropic penalty disfavors long hydrophilic tails to clog the pore.•Einstein relation based short-time water diffusivity agrees with experiments.•Long-time diffusivity from kinetic model closely matches the short-time diffusivity.
AbstractList Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the key element in producing drinkable water from brackish or sea water; improved materials would help make this expensive process more widely applicable, increasing fresh water supplies worldwide. In this work, we simulated polybutadiene–polyethylene oxide (PB–PEO) bilayers containing peptide-appended pillar[5]arene (PAP5) channels. PB–PEO bilayers with PAP5 channels are a biomimetic alternative to aquaporin embedded lipid membranes, with high water permeability combined with excellent selectivity. In our simulations, we systematically varied the PB–PEO block copolymer structure to maximize water mobility. We measured water diffusivity in our best design by two complementary methods, and compared our values to that inferred from experimental channel permeability. In this design, we obtained a water diffusivity of 30.38 ± 0.19 × 10−8cm2s−1, comparable to the best experimentally reported result. We find that the highest permeability is achieved when the bilayer hydrophobic thickness matches the PAP[5] dimension, and the hydrophilic block is long enough that clogging the pore is entropically unlikely. [Display omitted] •Membrane hydrophobic thickness crucial for pore stability.•Entropic penalty disfavors long hydrophilic tails to clog the pore.•Einstein relation based short-time water diffusivity agrees with experiments.•Long-time diffusivity from kinetic model closely matches the short-time diffusivity.
Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer membranes are the subject of intensive current research, as a possible route to more efficient reverse osmosis (RO) membranes. RO membranes are the key element in producing drinkable water from brackish or sea water; improved materials would help make this expensive process more widely applicable, increasing fresh water supplies worldwide. In this work, we simulated polybutadiene–polyethylene oxide (PB–PEO) bilayers containing peptide-appended pillar[5]arene (PAP5) channels. PB–PEO bilayers with PAP5 channels are a biomimetic alternative to aquaporin embedded lipid membranes, with high water permeability combined with excellent selectivity. In our simulations, we systematically varied the PB–PEO block copolymer structure to maximize water mobility. We measured water diffusivity in our best design by two complementary methods, and compared our values to that inferred from experimental channel permeability. In this design, we obtained a water diffusivity of 30.38 ± 0.19 × 10−8cm2s−1, comparable to the best experimentally reported result. We find that the highest permeability is achieved when the bilayer hydrophobic thickness matches the PAP[5] dimension, and the hydrophilic block is long enough that clogging the pore is entropically unlikely.
ArticleNumber 119279
Author Kali, Ritwick
Milner, Scott T.
Andini, Erha
Author_xml – sequence: 1
  givenname: Ritwick
  orcidid: 0000-0003-0386-7024
  surname: Kali
  fullname: Kali, Ritwick
  organization: Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
– sequence: 2
  givenname: Erha
  orcidid: 0000-0003-4898-9105
  surname: Andini
  fullname: Andini, Erha
  organization: Department of Chemical Engineering, University of Delaware, Newark, DE 19716, United States of America
– sequence: 3
  givenname: Scott T.
  orcidid: 0000-0002-9774-3307
  surname: Milner
  fullname: Milner, Scott T.
  email: stm9@psu.edu
  organization: Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
BookMark eNqFkEFP3DAQha2KSl0o_4CDj1yy9djrOOGAVKFCK1H10p5d25mUWSU2tb1F_PuGpicOcBrp6b03M98xO4opImNnILYgoP2w3844l0BbKSRsAXpp-jdsA51RjQKpjthGKNM2RnXdO3Zcyl4IMKLrN-zn1zRhOEwu8-ExuplC4YXmRaiUIveu4MAHLPQr8jRyT2mmGSsFvqz02UXkD1TvuMuVRgrkJv7gKmYe7lyMOJX37O3opoKn_-cJ-3H96fvV5-b2282Xq4-3TVCqr00IMOid2QE45fu-990Abhy09rJFpYX0wQipuxFGp3etaD36RTCtB-WCcuqEna-99zn9PmCpdqYScJqWE9OhWKk19FoYKRbrxWoNOZWScbSB6r9_a3Y0WRD2Cavd2xWrfcJqV6xLePcsfJ9pdvnxtdjlGluQ4B_CbBcHxoADZQzVDoleLvgLySOXcQ
CitedBy_id crossref_primary_10_1039_D2ME00013J
crossref_primary_10_1016_j_memsci_2024_122582
crossref_primary_10_1039_D2ME00212D
crossref_primary_10_1002_smll_202201732
crossref_primary_10_1016_j_commatsci_2025_114046
crossref_primary_10_1016_j_memsci_2022_121029
crossref_primary_10_1016_j_memsci_2023_122060
crossref_primary_10_1021_acs_langmuir_4c05181
crossref_primary_10_1039_D1ME00129A
crossref_primary_10_1016_j_memsci_2025_123841
Cites_doi 10.1021/ct700200b
10.1002/bit.1045
10.1007/BF01870707
10.1073/pnas.1508575112
10.1021/j100308a038
10.1021/j100782a510
10.1073/pnas.0708762104
10.1063/1.448118
10.1126/science.aab0530
10.1146/annurev-chembioeng-080615-033533
10.1016/j.desal.2006.12.009
10.1016/j.desal.2012.07.007
10.1002/1438-5171(200006)1:2<123::AID-SIMO123>3.0.CO;2-3
10.1021/ct200731v
10.1126/science.1066115
10.1016/S0005-2736(97)00176-4
10.1016/S0011-9164(97)00124-0
10.1039/C8FD00047F
10.1016/j.memsci.2013.12.019
10.1016/0022-2836(82)90515-0
10.1016/0376-7388(95)00102-I
10.1016/0263-7855(96)00018-5
10.1016/j.desal.2006.03.053
10.1016/j.desal.2004.06.035
10.1021/acsnano.9b03659
10.1186/1758-2946-4-17
10.1126/science.1074972
10.1146/annurev-matsci-070317-124544
10.1093/bioinformatics/btt055
10.1126/science.1200488
10.1002/anie.200460804
10.1039/C8FD00043C
10.1021/ja312704e
10.1063/1.464397
10.1021/ar400025e
10.1016/j.polymer.2005.02.083
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2021.119279
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
ExternalDocumentID 10_1016_j_memsci_2021_119279
S0376738821002283
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-cc1d547411a3b999b8d1afd55b26e3502bc70258f1fa54606beb70276b13ac3a3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653043900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0376-7388
IngestDate Sat Sep 27 22:15:25 EDT 2025
Sat Nov 29 07:25:37 EST 2025
Tue Nov 18 22:22:05 EST 2025
Fri Feb 23 02:44:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water filtration
Biomimetic membrane
Kinetic modeling
Diffusivity
Artificial water-channel
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-cc1d547411a3b999b8d1afd55b26e3502bc70258f1fa54606beb70276b13ac3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9774-3307
0000-0003-4898-9105
0000-0003-0386-7024
PQID 2551950720
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551950720
crossref_citationtrail_10_1016_j_memsci_2021_119279
crossref_primary_10_1016_j_memsci_2021_119279
elsevier_sciencedirect_doi_10_1016_j_memsci_2021_119279
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of membrane science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shen, Song, Ryan Barden, Ren, Lang, Feroz, Henderson, Saboe, Tsai, Yan, Butler, Bazan, Phillip, Hickey, Cremer, Vashisth, Kumar (b4) 2018; 9
Barboiu, Gilles (b18) 2013; 46
Wang (b39) 1965; 69
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeerschd, E. Zurek, G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminformatics 4 (8) (2012), 17
Berendsen, Postma, Van Gunsteren, Dinola, Haak (b33) 1984; 81
Kita-Tokarczyk, Grumelard, Haefele, Meier (b21) 2005; 46
Caleman, Van Maaren, Hong, Hub, Costa, Van Der Spoel (b27) 2012; 8
Lang, Ye, Song, Yao, Tu, Capparelli, Lanasa, Hickner, Gomez, Gomez, Hickey, Kumar (b23) 2019; 13
Kyte, Doolittle (b37) 1982; 157
Agre (b1) 2004; 43
Busch, Mickols (b17) 2004; 165
Barden, Vashisth (b25) 2018; 209
Elimelech, Phillip (b15) 2011; 333
Shen, Si, Erbakan, Decker, De Zorzi, Saboe, Kang, Majd, Butler, Walz, Aksimentiev, Hou, Kumar (b34) 2015; 112
Tang, Zhao, Wang, Hélix-Nielsen, Fane (b7) 2013; 308
Bowen (b8) 2006; 199
Darden, York, Pedersen (b32) 1993; 98
De Groot, Grubmüller (b5) 2001; 294
van Heeswijk, van Os (b38) 1986; 92
Newman, Barkema (b40) 2001
Pronk, S.Páll, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (b26) 2013; 29
Kumar, Grzelakowski, Zilles, Clark, Meier (b9) 2007; 104
Lee James, Bermudez, Discher, Sheehan, Won, Bates, Discher (b20) 2001; 73
Chen, Si, Zhang, Tang, Li, Hou (b24) 2013; 135
Kienberger, Pastushenko, Kada, Gruber, Riener, Schindler, Hinterdorfer (b36) 2000; 1
Berendsen, Grigera, Straatsma (b29) 1987; 91
Song, Shen, Lang, Saha, Zenyuk, Hickey, Kumar (b12) 2018; 209
Fetters, Lohse, Colby (b35) 2007
.
Humphrey, Dalke, Schulten (b30) 1996; 14
Fritzmann, Löwenberg, Wintgens, Melin (b11) 2007; 216
Sabirov, Morishima, Okada (b14) 1998; 1368
Discher, Eisenberg (b22) 2002; 297
Park, Kamcev, Robeson, Elimelech, Freeman (b3) 2017; 356
Wilf (b16) 1997; 113
Hess (b31) 2008; 4
Song, Lang, Shen, Kumar (b19) 2018; 48
Wijmans, Baker (b13) 1995; 107
Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky, Darnell (b2) 2000
Kamcev, Freeman (b10) 2016; 7
Shen, Saboe, Sines, Erbakan, Kumar (b6) 2014; 454
Kita-Tokarczyk (10.1016/j.memsci.2021.119279_b21) 2005; 46
Newman (10.1016/j.memsci.2021.119279_b40) 2001
Hess (10.1016/j.memsci.2021.119279_b31) 2008; 4
Barboiu (10.1016/j.memsci.2021.119279_b18) 2013; 46
Berendsen (10.1016/j.memsci.2021.119279_b29) 1987; 91
Darden (10.1016/j.memsci.2021.119279_b32) 1993; 98
Fritzmann (10.1016/j.memsci.2021.119279_b11) 2007; 216
van Heeswijk (10.1016/j.memsci.2021.119279_b38) 1986; 92
Lodish (10.1016/j.memsci.2021.119279_b2) 2000
Bowen (10.1016/j.memsci.2021.119279_b8) 2006; 199
Humphrey (10.1016/j.memsci.2021.119279_b30) 1996; 14
Shen (10.1016/j.memsci.2021.119279_b6) 2014; 454
Kumar (10.1016/j.memsci.2021.119279_b9) 2007; 104
Kienberger (10.1016/j.memsci.2021.119279_b36) 2000; 1
Caleman (10.1016/j.memsci.2021.119279_b27) 2012; 8
Shen (10.1016/j.memsci.2021.119279_b34) 2015; 112
Pronk (10.1016/j.memsci.2021.119279_b26) 2013; 29
Berendsen (10.1016/j.memsci.2021.119279_b33) 1984; 81
Wilf (10.1016/j.memsci.2021.119279_b16) 1997; 113
Tang (10.1016/j.memsci.2021.119279_b7) 2013; 308
Barden (10.1016/j.memsci.2021.119279_b25) 2018; 209
Fetters (10.1016/j.memsci.2021.119279_b35) 2007
Busch (10.1016/j.memsci.2021.119279_b17) 2004; 165
Shen (10.1016/j.memsci.2021.119279_b4) 2018; 9
De Groot (10.1016/j.memsci.2021.119279_b5) 2001; 294
Sabirov (10.1016/j.memsci.2021.119279_b14) 1998; 1368
Lee James (10.1016/j.memsci.2021.119279_b20) 2001; 73
Chen (10.1016/j.memsci.2021.119279_b24) 2013; 135
10.1016/j.memsci.2021.119279_b28
Wang (10.1016/j.memsci.2021.119279_b39) 1965; 69
Lang (10.1016/j.memsci.2021.119279_b23) 2019; 13
Wijmans (10.1016/j.memsci.2021.119279_b13) 1995; 107
Song (10.1016/j.memsci.2021.119279_b19) 2018; 48
Agre (10.1016/j.memsci.2021.119279_b1) 2004; 43
Discher (10.1016/j.memsci.2021.119279_b22) 2002; 297
Song (10.1016/j.memsci.2021.119279_b12) 2018; 209
Kyte (10.1016/j.memsci.2021.119279_b37) 1982; 157
Kamcev (10.1016/j.memsci.2021.119279_b10) 2016; 7
Elimelech (10.1016/j.memsci.2021.119279_b15) 2011; 333
Park (10.1016/j.memsci.2021.119279_b3) 2017; 356
References_xml – volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: b30
  article-title: Vmd: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 294
  start-page: 2353
  year: 2001
  end-page: 2357
  ident: b5
  article-title: Water permeation across biological membranes: mechanism and dynamics of Aquaporin-1 and GlpF
  publication-title: Science
– volume: 113
  start-page: 157
  year: 1997
  end-page: 163
  ident: b16
  article-title: Design consequences of recent improvements in membrane performance
  publication-title: Desalination
– volume: 92
  start-page: 183
  year: 1986
  end-page: 193
  ident: b38
  article-title: Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine
  publication-title: J. Membr. Biol.
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: b33
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  ident: b32
  article-title: Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
– volume: 454
  start-page: 359
  year: 2014
  end-page: 381
  ident: b6
  article-title: Biomimetic membranes: A review
  publication-title: J. Membr. Sci.
– volume: 216
  start-page: 1
  year: 2007
  end-page: 76
  ident: b11
  article-title: State-of-the-art of reverse osmosis desalination
  publication-title: Desalination
– volume: 91
  start-page: 6269
  year: 1987
  end-page: 6271
  ident: b29
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
– volume: 112
  start-page: 9810
  year: 2015
  end-page: 9815
  ident: b34
  article-title: Highly permeable artificial water channels that can self-assemble into two-dimensional arrays
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2001
  ident: b40
  article-title: Monte Carlo Methods in Statistical Physics
– volume: 8
  start-page: 61
  year: 2012
  end-page: 74
  ident: b27
  article-title: Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant
  publication-title: J. Chem. Theory Comput.
– volume: 157
  start-page: 105
  year: 1982
  end-page: 132
  ident: b37
  article-title: A simple method for displaying the hydropathic character of a protein
  publication-title: J. Mol. Biol.
– volume: 356
  start-page: 1138
  year: 2017
  end-page: 1148
  ident: b3
  article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity
  publication-title: Science
– volume: 1
  start-page: 123
  year: 2000
  end-page: 128
  ident: b36
  article-title: Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy
  publication-title: Single Mol.
– reference: M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeerschd, E. Zurek, G.R. Hutchison, Avogadro: An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminformatics 4 (8) (2012), 17
– volume: 209
  start-page: 161
  year: 2018
  end-page: 178
  ident: b25
  article-title: Parameterization and atomistic simulations of biomimetic membranes
  publication-title: Faraday Discuss.
– volume: 297
  start-page: 967
  year: 2002
  end-page: 973
  ident: b22
  article-title: Polymer vesicles
  publication-title: Science
– volume: 308
  start-page: 34
  year: 2013
  end-page: 40
  ident: b7
  article-title: Desalination by biomimetic aquaporin membranes: Review of status and prospects
  publication-title: Desalination
– volume: 73
  start-page: 135
  year: 2001
  end-page: 145
  ident: b20
  article-title: Preparation, stability and in vitro performance of vesicles made with diblock copolymers
  publication-title: Biotechnol. Bioeng.
– volume: 7
  start-page: 111
  year: 2016
  end-page: 133
  ident: b10
  article-title: Charged polymer membranes for environmental/energy applications
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 29
  start-page: 845
  year: 2013
  end-page: 854
  ident: b26
  article-title: GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
  publication-title: Bioinformatics
– volume: 4
  start-page: 116
  year: 2008
  end-page: 122
  ident: b31
  article-title: P-LINCS: A parallel linear constraint solver for molecular simulation
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 11
  ident: b4
  article-title: Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes
  publication-title: Nature Commun.
– volume: 48
  start-page: 57
  year: 2018
  end-page: 82
  ident: b19
  article-title: Design considerations for artificial water channel-based membranes
  publication-title: Annu. Rev. Mater. Res.
– volume: 13
  start-page: 8292
  year: 2019
  end-page: 8302
  ident: b23
  article-title: Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes
  publication-title: ACS Nano
– volume: 46
  start-page: 2814
  year: 2013
  end-page: 2823
  ident: b18
  article-title: From natural to bioassisted and biomimetic artificial water channel systems
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 2152
  year: 2013
  end-page: 2155
  ident: b24
  article-title: Chiral selective transmembrane transport of amino acids through artificial channels
  publication-title: J. Am. Chem. Soc.
– year: 2000
  ident: b2
  article-title: Molecular Cell Biology
– volume: 209
  start-page: 193
  year: 2018
  end-page: 204
  ident: b12
  article-title: Unique selectivity trends of highly permeable PAP[5] water channel membranes
  publication-title: Faraday Discuss.
– volume: 199
  start-page: 225
  year: 2006
  end-page: 227
  ident: b8
  article-title: Biomimetic separations - learning from the early development of biological membranes
  publication-title: Desalination
– volume: 1368
  start-page: 19
  year: 1998
  end-page: 26
  ident: b14
  article-title: Probing the water permeability of ROMK1 and Amphotericin B channels using Xenopus oocytes
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 46
  start-page: 3540
  year: 2005
  end-page: 3563
  ident: b21
  article-title: Block copolymer vesicles - using concepts from polymer chemistry to mimic biomembranes
  publication-title: Polymer
– year: 2007
  ident: b35
  article-title: Physical Properties of Polymers
– reference: .
– volume: 333
  start-page: 712
  year: 2011
  end-page: 717
  ident: b15
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
– volume: 165
  start-page: 299
  year: 2004
  end-page: 312
  ident: b17
  article-title: Reducing energy consumption in seawater desalination
  publication-title: Desalination
– volume: 43
  start-page: 4278
  year: 2004
  end-page: 4290
  ident: b1
  article-title: Aquaporin water channels (nobel lecture)
  publication-title: Angew. Chem. Int. Ed.
– volume: 69
  start-page: 4412
  year: 1965
  ident: b39
  article-title: Self-diffusion coefficients of water
  publication-title: J. Phys. Chem.
– volume: 104
  start-page: 20719
  year: 2007
  end-page: 20724
  ident: b9
  article-title: Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 107
  start-page: 1
  year: 1995
  end-page: 21
  ident: b13
  article-title: The solution-diffusion model: A review
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 116
  issue: 1
  year: 2008
  ident: 10.1016/j.memsci.2021.119279_b31
  article-title: P-LINCS: A parallel linear constraint solver for molecular simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700200b
– volume: 73
  start-page: 135
  issue: 2
  year: 2001
  ident: 10.1016/j.memsci.2021.119279_b20
  article-title: Preparation, stability and in vitro performance of vesicles made with diblock copolymers
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.1045
– volume: 92
  start-page: 183
  issue: 2
  year: 1986
  ident: 10.1016/j.memsci.2021.119279_b38
  article-title: Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01870707
– volume: 112
  start-page: 9810
  issue: 32
  year: 2015
  ident: 10.1016/j.memsci.2021.119279_b34
  article-title: Highly permeable artificial water channels that can self-assemble into two-dimensional arrays
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508575112
– volume: 91
  start-page: 6269
  issue: 24
  year: 1987
  ident: 10.1016/j.memsci.2021.119279_b29
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 69
  start-page: 4412
  issue: 12
  year: 1965
  ident: 10.1016/j.memsci.2021.119279_b39
  article-title: Self-diffusion coefficients of water
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100782a510
– volume: 104
  start-page: 20719
  issue: 52
  year: 2007
  ident: 10.1016/j.memsci.2021.119279_b9
  article-title: Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708762104
– volume: 81
  start-page: 3684
  issue: 8
  year: 1984
  ident: 10.1016/j.memsci.2021.119279_b33
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 356
  start-page: 1138
  issue: 6343
  year: 2017
  ident: 10.1016/j.memsci.2021.119279_b3
  article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity
  publication-title: Science
  doi: 10.1126/science.aab0530
– year: 2007
  ident: 10.1016/j.memsci.2021.119279_b35
– volume: 7
  start-page: 111
  issue: 1
  year: 2016
  ident: 10.1016/j.memsci.2021.119279_b10
  article-title: Charged polymer membranes for environmental/energy applications
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-080615-033533
– year: 2001
  ident: 10.1016/j.memsci.2021.119279_b40
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.memsci.2021.119279_b4
  article-title: Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes
  publication-title: Nature Commun.
– volume: 216
  start-page: 1
  issue: 1–3
  year: 2007
  ident: 10.1016/j.memsci.2021.119279_b11
  article-title: State-of-the-art of reverse osmosis desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.12.009
– year: 2000
  ident: 10.1016/j.memsci.2021.119279_b2
– volume: 308
  start-page: 34
  year: 2013
  ident: 10.1016/j.memsci.2021.119279_b7
  article-title: Desalination by biomimetic aquaporin membranes: Review of status and prospects
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.07.007
– volume: 1
  start-page: 123
  issue: 2
  year: 2000
  ident: 10.1016/j.memsci.2021.119279_b36
  article-title: Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy
  publication-title: Single Mol.
  doi: 10.1002/1438-5171(200006)1:2<123::AID-SIMO123>3.0.CO;2-3
– volume: 8
  start-page: 61
  issue: 1
  year: 2012
  ident: 10.1016/j.memsci.2021.119279_b27
  article-title: Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200731v
– volume: 294
  start-page: 2353
  issue: 5550
  year: 2001
  ident: 10.1016/j.memsci.2021.119279_b5
  article-title: Water permeation across biological membranes: mechanism and dynamics of Aquaporin-1 and GlpF
  publication-title: Science
  doi: 10.1126/science.1066115
– volume: 1368
  start-page: 19
  issue: 1
  year: 1998
  ident: 10.1016/j.memsci.2021.119279_b14
  article-title: Probing the water permeability of ROMK1 and Amphotericin B channels using Xenopus oocytes
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/S0005-2736(97)00176-4
– volume: 113
  start-page: 157
  issue: 2–3
  year: 1997
  ident: 10.1016/j.memsci.2021.119279_b16
  article-title: Design consequences of recent improvements in membrane performance
  publication-title: Desalination
  doi: 10.1016/S0011-9164(97)00124-0
– volume: 209
  start-page: 161
  year: 2018
  ident: 10.1016/j.memsci.2021.119279_b25
  article-title: Parameterization and atomistic simulations of biomimetic membranes
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00047F
– volume: 454
  start-page: 359
  year: 2014
  ident: 10.1016/j.memsci.2021.119279_b6
  article-title: Biomimetic membranes: A review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.12.019
– volume: 157
  start-page: 105
  issue: 1
  year: 1982
  ident: 10.1016/j.memsci.2021.119279_b37
  article-title: A simple method for displaying the hydropathic character of a protein
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(82)90515-0
– volume: 107
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.memsci.2021.119279_b13
  article-title: The solution-diffusion model: A review
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(95)00102-I
– volume: 14
  start-page: 33
  issue: 1
  year: 1996
  ident: 10.1016/j.memsci.2021.119279_b30
  article-title: Vmd: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 199
  start-page: 225
  issue: 1–3
  year: 2006
  ident: 10.1016/j.memsci.2021.119279_b8
  article-title: Biomimetic separations - learning from the early development of biological membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.03.053
– volume: 165
  start-page: 299
  issue: Suppl
  year: 2004
  ident: 10.1016/j.memsci.2021.119279_b17
  article-title: Reducing energy consumption in seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.06.035
– volume: 13
  start-page: 8292
  issue: 7
  year: 2019
  ident: 10.1016/j.memsci.2021.119279_b23
  article-title: Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03659
– ident: 10.1016/j.memsci.2021.119279_b28
  doi: 10.1186/1758-2946-4-17
– volume: 297
  start-page: 967
  issue: 5583
  year: 2002
  ident: 10.1016/j.memsci.2021.119279_b22
  article-title: Polymer vesicles
  publication-title: Science
  doi: 10.1126/science.1074972
– volume: 48
  start-page: 57
  year: 2018
  ident: 10.1016/j.memsci.2021.119279_b19
  article-title: Design considerations for artificial water channel-based membranes
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124544
– volume: 29
  start-page: 845
  issue: 7
  year: 2013
  ident: 10.1016/j.memsci.2021.119279_b26
  article-title: GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt055
– volume: 333
  start-page: 712
  issue: 6043
  year: 2011
  ident: 10.1016/j.memsci.2021.119279_b15
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 43
  start-page: 4278
  issue: 33
  year: 2004
  ident: 10.1016/j.memsci.2021.119279_b1
  article-title: Aquaporin water channels (nobel lecture)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460804
– volume: 209
  start-page: 193
  year: 2018
  ident: 10.1016/j.memsci.2021.119279_b12
  article-title: Unique selectivity trends of highly permeable PAP[5] water channel membranes
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00043C
– volume: 135
  start-page: 2152
  issue: 6
  year: 2013
  ident: 10.1016/j.memsci.2021.119279_b24
  article-title: Chiral selective transmembrane transport of amino acids through artificial channels
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312704e
– volume: 98
  start-page: 10089
  issue: 12
  year: 1993
  ident: 10.1016/j.memsci.2021.119279_b32
  article-title: Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 46
  start-page: 2814
  issue: 12
  year: 2013
  ident: 10.1016/j.memsci.2021.119279_b18
  article-title: From natural to bioassisted and biomimetic artificial water channel systems
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400025e
– volume: 46
  start-page: 3540
  issue: 11
  year: 2005
  ident: 10.1016/j.memsci.2021.119279_b21
  article-title: Block copolymer vesicles - using concepts from polymer chemistry to mimic biomembranes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.02.083
SSID ssj0017089
Score 2.4411113
Snippet Inspired by nature’s design of pore proteins embedded in cell membranes, synthetic pore molecules embedded in self-assembled amphiphilic block copolymer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119279
SubjectTerms aquaporins
aromatic hydrocarbons
artificial membranes
Artificial water-channel
Biomimetic membrane
biomimetics
composite polymers
Diffusivity
drinking water
freshwater
hydrophilicity
hydrophobicity
Kinetic modeling
lipids
membrane permeability
molecular dynamics
reverse osmosis
seawater
Water filtration
Title Molecular dynamics simulation based design of biomimetic membrane with artificial water channels
URI https://dx.doi.org/10.1016/j.memsci.2021.119279
https://www.proquest.com/docview/2551950720
Volume 630
WOSCitedRecordID wos000653043900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3123
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017089
  issn: 0376-7388
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFMtLxmJW5RVbCdxcqxQESBaIbRIezO2Y4tU3Wy12dL-fMZ2nJQWKD1wiVZR7LXyfZkZP2Y-hN7Y2qi8siSlpjFpbqlJK2sMzFIYo5Y0mbReteQTPzysFov687Bj2ns5Ad511fl5ffJfoYZ7ALZLnb0B3GOncAN-A-hwBdjh-k_AH0TB26QJavN90rfLQaUrcV6rSRp_bsMFii79vl26TMZkaZYwdYagM-S7rf0pIregfiZdJUWXItyF4su_C2fH1oNPHS25DAnYX9rNWazA75cdwGm2wRJ_H13DQXsclcB8zYj57OKqBCVuuTPkZcZsLF6mnAXJvmhpy2ELJthKAsFlEJK5YsbDisLRDIYOg565P5hNj_9aNfuSNxvPGMbja0ci9CJcLyL0chttU17UYAW39z7sLz6O-04886KJ4-hjsqU_EXh1NH8KZi65dR-rzB-g-wMqeC-Q4yG6ZbpH6N6F0pOP0beRJjjSBE80wZ4mONAEryyeaIIj0NjRBE80wZ4mONLkCfr6bn_-9n06qG2kmrF6k2pNmiKHAJNIpmDaoKqGSNsUhaKlYUVGleYQIMN3bWWRw7xXGQU3eKkIk5pJ9hRtdavO7CCsqeYQ5VQklzrPNVFWVtxkZVbJTKmM7yIWX5vQQyl6p4hyLP4G2i5Kx1YnoRTLNc_ziIgYqB_CRAE0u6bl6wigAGvrttDgta5OewETcKebzGn27IajeY7uTt_JC7S1WZ-al-iO_rFp-_WrgYc_Aeppp_k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+based+design+of+biomimetic+membrane+with+artificial+water+channels&rft.jtitle=Journal+of+membrane+science&rft.au=Kali%2C+Ritwick&rft.au=Andini%2C+Erha&rft.au=Milner%2C+Scott+T.&rft.date=2021-07-15&rft.issn=0376-7388&rft.volume=630&rft.spage=119279&rft_id=info:doi/10.1016%2Fj.memsci.2021.119279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2021_119279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon