A centralized EMPC scheme for PV-powered alkaline electrolyzer
Photovoltaic (PV)-powered alkaline electrolyzer system (PVPAES) is an advanced technique to convert the off-grid and intermittent PV-based solar energy into storable and transportable electrolyzer-based hydrogen energy with zero carbon emissions. However, it is difficult to realize the coordinated c...
Saved in:
| Published in: | Renewable energy Vol. 229; p. 120688 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2024
|
| Subjects: | |
| ISSN: | 0960-1481, 1879-0682 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Photovoltaic (PV)-powered alkaline electrolyzer system (PVPAES) is an advanced technique to convert the off-grid and intermittent PV-based solar energy into storable and transportable electrolyzer-based hydrogen energy with zero carbon emissions. However, it is difficult to realize the coordinated control of the off-grid PV module and the alkaline electrolyzer, due to the multiple timescale dynamics. To address this challenge, the PVPAES is decomposed into the slow part and fast part based on the dynamic time scale. Exploiting the decomposed subsystems, the slow one is assumed to be managed well by the auxiliary controller. For the fast one, a centralized economic model predictive control (CEMPC) scheme is constituted. This CEMPC integrates the energy management system and local feedback control into a single optimal control framework. A mathematical model of the PVPAES is established, on the basis of which the CEMPC directly adopts the economic indices as the cost function to realize the flexible power point tracking, power supply-demand balance, and dynamic economic optimization. Moreover, the inherent strong nonlinearity of PVPAES results in the nonconvex mixed-integer nonlinear programming optimization problem in the CEMPC. The exhaustive search algorithm utilizing finite converter switching states is adopted to achieve the global economic optimum. The effectiveness of the proposed CEMPC controller is illustrated through simulations under varying irradiance conditions.
•A CEMPC scheme is developed for a PV-powered alkaline electrolyzer system.•A converter-based mathematical model is constructed for the system.•An efficient algorithm is proposed to solve non-convex CEMPC optimization problem.•The CEMPC is validated by simulations under varying irradiance conditions. |
|---|---|
| AbstractList | Photovoltaic (PV)-powered alkaline electrolyzer system (PVPAES) is an advanced technique to convert the off-grid and intermittent PV-based solar energy into storable and transportable electrolyzer-based hydrogen energy with zero carbon emissions. However, it is difficult to realize the coordinated control of the off-grid PV module and the alkaline electrolyzer, due to the multiple timescale dynamics. To address this challenge, the PVPAES is decomposed into the slow part and fast part based on the dynamic time scale. Exploiting the decomposed subsystems, the slow one is assumed to be managed well by the auxiliary controller. For the fast one, a centralized economic model predictive control (CEMPC) scheme is constituted. This CEMPC integrates the energy management system and local feedback control into a single optimal control framework. A mathematical model of the PVPAES is established, on the basis of which the CEMPC directly adopts the economic indices as the cost function to realize the flexible power point tracking, power supply-demand balance, and dynamic economic optimization. Moreover, the inherent strong nonlinearity of PVPAES results in the nonconvex mixed-integer nonlinear programming optimization problem in the CEMPC. The exhaustive search algorithm utilizing finite converter switching states is adopted to achieve the global economic optimum. The effectiveness of the proposed CEMPC controller is illustrated through simulations under varying irradiance conditions. Photovoltaic (PV)-powered alkaline electrolyzer system (PVPAES) is an advanced technique to convert the off-grid and intermittent PV-based solar energy into storable and transportable electrolyzer-based hydrogen energy with zero carbon emissions. However, it is difficult to realize the coordinated control of the off-grid PV module and the alkaline electrolyzer, due to the multiple timescale dynamics. To address this challenge, the PVPAES is decomposed into the slow part and fast part based on the dynamic time scale. Exploiting the decomposed subsystems, the slow one is assumed to be managed well by the auxiliary controller. For the fast one, a centralized economic model predictive control (CEMPC) scheme is constituted. This CEMPC integrates the energy management system and local feedback control into a single optimal control framework. A mathematical model of the PVPAES is established, on the basis of which the CEMPC directly adopts the economic indices as the cost function to realize the flexible power point tracking, power supply-demand balance, and dynamic economic optimization. Moreover, the inherent strong nonlinearity of PVPAES results in the nonconvex mixed-integer nonlinear programming optimization problem in the CEMPC. The exhaustive search algorithm utilizing finite converter switching states is adopted to achieve the global economic optimum. The effectiveness of the proposed CEMPC controller is illustrated through simulations under varying irradiance conditions. •A CEMPC scheme is developed for a PV-powered alkaline electrolyzer system.•A converter-based mathematical model is constructed for the system.•An efficient algorithm is proposed to solve non-convex CEMPC optimization problem.•The CEMPC is validated by simulations under varying irradiance conditions. |
| ArticleNumber | 120688 |
| Author | Ma, Lele Liu, Xiangjie Lee, Kwang Y. Chen, Sian Kong, Xiaobing Zhu, Zheng |
| Author_xml | – sequence: 1 givenname: Zheng orcidid: 0009-0004-5104-7578 surname: Zhu fullname: Zhu, Zheng organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China – sequence: 2 givenname: Sian surname: Chen fullname: Chen, Sian organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China – sequence: 3 givenname: Xiaobing surname: Kong fullname: Kong, Xiaobing email: kongxiaobing@ncepu.edu.cn organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China – sequence: 4 givenname: Lele surname: Ma fullname: Ma, Lele organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China – sequence: 5 givenname: Xiangjie surname: Liu fullname: Liu, Xiangjie organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China – sequence: 6 givenname: Kwang Y. surname: Lee fullname: Lee, Kwang Y. organization: Department of Electrical and Computer Engineering, Baylor University, Waco, 76798, TX, USA |
| BookMark | eNqFkE9PAjEQxRuDiYB-Aw979LLY7nZL64GEEPyTYOSgXpvSzsZi2WK7aODTW7KePGjmMJPMey95vwHqNb4BhC4JHhFM2PV6FKBJMypwQUekwIzzE9QnfCzydBc91MeC4ZxQTs7QIMY1xqTiY9pHk2mmoWmDcvYAJps_LmdZ1G-wgaz2IVu-5lv_BSG9lHtPogYycKDb4N3-AOEcndbKRbj42UP0cjt_nt3ni6e7h9l0keuyFG2uhYYVAa4qUxcV6LIQFVUrNWZMCWKgMrpkRCgDtGbMYG6oWFUCKsrSBawcoqsudxv8xw5iKzc2anBONeB3UZapc4F5WdIkvemkOvgYA9RS21a11h9bWicJlkdoci07aPIITXbQkpn-Mm-D3aiw_8826WyQGHxaCDJqC40GY0OCJY23fwd8A4RQimM |
| CitedBy_id | crossref_primary_10_1016_j_renene_2024_121935 crossref_primary_10_1155_er_5321698 crossref_primary_10_1016_j_renene_2025_124158 crossref_primary_10_1016_j_energy_2025_138178 crossref_primary_10_1016_j_ijhydene_2024_08_425 crossref_primary_10_1007_s00202_025_03232_2 crossref_primary_10_1016_j_jpowsour_2024_235010 crossref_primary_10_1061_JLEED9_EYENG_5992 |
| Cites_doi | 10.1109/TPEL.2020.2970447 10.1016/j.disopt.2006.10.011 10.1016/j.ijhydene.2016.06.071 10.1016/j.ijepes.2021.107075 10.1109/TSTE.2021.3132057 10.1016/j.ijhydene.2020.12.111 10.1109/TPWRS.2021.3105418 10.1016/j.ijhydene.2011.05.179 10.1016/j.apenergy.2022.120187 10.1016/j.energy.2021.121646 10.28991/ESJ-2023-07-04-02 10.28991/ESJ-2023-07-03-02 10.1016/j.jprocont.2018.02.010 10.28991/CEJ-2023-09-12-03 10.1109/TPEL.2023.3240186 10.1016/j.enconman.2023.117575 10.1016/j.energy.2023.128993 10.1016/j.enconman.2023.117404 10.1109/TPEL.2017.2764321 10.1016/j.ijhydene.2020.01.162 10.1109/TIE.2012.2202353 10.1016/j.renene.2019.12.131 10.1016/j.renene.2019.09.048 10.1016/S0005-1098(99)00214-9 10.1016/S0360-3199(02)00033-2 10.1002/er.4076 10.1109/TIE.2006.878328 10.1016/j.ijhydene.2022.06.098 10.1016/j.enconman.2022.116331 10.1016/j.renene.2023.119074 10.1016/j.ijhydene.2021.06.027 10.1016/j.ijhydene.2023.09.072 10.1109/TSG.2023.3266253 10.1016/j.renene.2023.119871 10.1016/j.ijhydene.2022.11.327 10.1016/j.enconman.2022.115697 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2024.120688 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| ExternalDocumentID | 10_1016_j_renene_2024_120688 S0960148124007560 |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2023JC002; 2023YQ002 – fundername: National Natural Science Foundation of China grantid: 62073136; 62203170 – fundername: National Key Research and Development Program of China grantid: 2021YFE0190900 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-c9ceb1e8a5df25ec32954aba766a91de5dc3619ade4f66d08d49b59e546d49e63 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253677400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 |
| IngestDate | Thu Oct 02 22:48:12 EDT 2025 Sat Nov 29 05:23:09 EST 2025 Tue Nov 18 21:46:23 EST 2025 Sat Jun 29 15:30:54 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Model predictive control (MPC) Solar photovoltaic power generation Centralized economic model predictive control (CEMPC) Hydrogen gas generation Alkaline electrolyzer |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-c9ceb1e8a5df25ec32954aba766a91de5dc3619ade4f66d08d49b59e546d49e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0004-5104-7578 |
| PQID | 3206208334 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3206208334 crossref_citationtrail_10_1016_j_renene_2024_120688 crossref_primary_10_1016_j_renene_2024_120688 elsevier_sciencedirect_doi_10_1016_j_renene_2024_120688 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mutoh, Ohno, Inoue (b37) 2006; 53 Varela, Mostafa, Zondervan (b11) 2021; 46 Ursúa, Barrios, Pascual, San Martín, Sanchis (b21) 2016; 41 Wu, Yin, Pan, Liu (b35) 2022; 328 Sharadga, Hajimirza, Balog (b6) 2020; 150 Widjaja, Asrol, Agustono, Djuana, Harito, Elwirehardja, Pardamean, Gunawan, Pasang, Speaks, Hossain, Budiman (b28) 2023; 7 Hu, Shan, Yang, Parisio, Li, Amjady, Islam, Cheng, Guerrero, Rodríguez (b36) 2024; 15 Zhang, Liu, Wang, Su, Wang, Feng (b8) 2022; 37 Mayne, Rawlings, Rao, Scokaert (b30) 2000; 36 Tafti, Konstantinou, Townsend, Farivar, Sangwongwanich, Yang, Pou, Blaabjerg (b23) 2020; 35 Ma, Wang, Li, Zhang, Gao, Sun (b9) 2021; 46 Liu, Zou, Long, Liu, Liu (b18) 2023; 216 Xia, Cheng, He, Hu, Wei (b12) 2023 Şahin (b16) 2020; 45 Yin, Su (b33) 2021; 131 Martinez Lopez, Ziar, Zeman, Isabella (b13) 2023; 48 Yin, Sun, Khosravi, Malekan, Shi (b10) 2022; 271 Khaligh, Ghezelbash, Zarei, Liu, Won (b20) 2023; 292 REN21 (b7) 2023 Vanti, Bana, D’Arco, Amin (b32) 2022; 13 Liu, Cui (b34) 2018; 66 Ulleberg (b38) 2003; 28 García-Valverde, Espinosa, Urbina (b14) 2011; 36 Sun, Li, Hua, Jin (b3) 2020; 147 Gallardo, García, Monforti Ferrario, Comodi, Chiu (b15) 2022; 47 Liu, Zhu, Kong, Ma, Lee (b26) 2023; 283 Zhao, Wang, Dong, Wang (b1) 2024 Narang, Farivar, Tafti, Ceballos, Beniwal, Pou, Townsend, Konstantinou (b25) 2023; 38 Prasetyo, Budiana, Prabowo, Arifin (b4) 2023; 9 Alhaj Omar (b17) 2023; 48 Zhu, Liu, Kong, Ma, Lee, Xu (b39) 2024; 222 Huang, Zong, You, Træholt (b19) 2022; 265 Hou, Ke, Huang (b24) 2021; 237 Balal, Pakzad Jafarabadi, Demir, Igene, Giesselmann, Bayne (b5) 2023; 7 Sander, Jung, Schindler (b2) 2023; 294 Palma, Molina, Díaz (b29) 2023 Beltran, Bilbao, Belenguer, Etxeberria-Otadui, Rodriguez (b27) 2013; 60 Lashab, Sera, Guerrero, Mathe, Bouzid (b31) 2018; 33 Bonami, Biegler, Conn, Cornuéjols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya, Wächter (b40) 2008; 5 Shen, Zhang, Li, Lie, Hong (b22) 2018; 42 Wu (10.1016/j.renene.2024.120688_b35) 2022; 328 Bonami (10.1016/j.renene.2024.120688_b40) 2008; 5 Hu (10.1016/j.renene.2024.120688_b36) 2024; 15 Ulleberg (10.1016/j.renene.2024.120688_b38) 2003; 28 García-Valverde (10.1016/j.renene.2024.120688_b14) 2011; 36 Ursúa (10.1016/j.renene.2024.120688_b21) 2016; 41 Lashab (10.1016/j.renene.2024.120688_b31) 2018; 33 Beltran (10.1016/j.renene.2024.120688_b27) 2013; 60 Zhang (10.1016/j.renene.2024.120688_b8) 2022; 37 Ma (10.1016/j.renene.2024.120688_b9) 2021; 46 Yin (10.1016/j.renene.2024.120688_b10) 2022; 271 Vanti (10.1016/j.renene.2024.120688_b32) 2022; 13 Huang (10.1016/j.renene.2024.120688_b19) 2022; 265 Alhaj Omar (10.1016/j.renene.2024.120688_b17) 2023; 48 Balal (10.1016/j.renene.2024.120688_b5) 2023; 7 Tafti (10.1016/j.renene.2024.120688_b23) 2020; 35 REN21 (10.1016/j.renene.2024.120688_b7) 2023 Mutoh (10.1016/j.renene.2024.120688_b37) 2006; 53 Narang (10.1016/j.renene.2024.120688_b25) 2023; 38 Zhu (10.1016/j.renene.2024.120688_b39) 2024; 222 Xia (10.1016/j.renene.2024.120688_b12) 2023 Liu (10.1016/j.renene.2024.120688_b18) 2023; 216 Liu (10.1016/j.renene.2024.120688_b34) 2018; 66 Widjaja (10.1016/j.renene.2024.120688_b28) 2023; 7 Mayne (10.1016/j.renene.2024.120688_b30) 2000; 36 Shen (10.1016/j.renene.2024.120688_b22) 2018; 42 Liu (10.1016/j.renene.2024.120688_b26) 2023; 283 Varela (10.1016/j.renene.2024.120688_b11) 2021; 46 Gallardo (10.1016/j.renene.2024.120688_b15) 2022; 47 Hou (10.1016/j.renene.2024.120688_b24) 2021; 237 Şahin (10.1016/j.renene.2024.120688_b16) 2020; 45 Sharadga (10.1016/j.renene.2024.120688_b6) 2020; 150 Zhao (10.1016/j.renene.2024.120688_b1) 2024 Palma (10.1016/j.renene.2024.120688_b29) 2023 Prasetyo (10.1016/j.renene.2024.120688_b4) 2023; 9 Sander (10.1016/j.renene.2024.120688_b2) 2023; 294 Martinez Lopez (10.1016/j.renene.2024.120688_b13) 2023; 48 Sun (10.1016/j.renene.2024.120688_b3) 2020; 147 Khaligh (10.1016/j.renene.2024.120688_b20) 2023; 292 Yin (10.1016/j.renene.2024.120688_b33) 2021; 131 |
| References_xml | – volume: 46 start-page: 9303 year: 2021 end-page: 9313 ident: b11 article-title: Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach publication-title: Int. J. Hydrog. Energy – start-page: 1 year: 2023 end-page: 10 ident: b12 article-title: Efficiency enhancement for alkaline water electrolyzers directly driven by fluctuating PV power publication-title: IEEE Trans. Ind. Electron. – volume: 150 start-page: 797 year: 2020 end-page: 807 ident: b6 article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants publication-title: Renew. Energy – volume: 45 start-page: 9293 year: 2020 end-page: 9304 ident: b16 article-title: A photovoltaic powered electrolysis converter system with maximum power point tracking control publication-title: Int. J. Hydrog. Energy – volume: 36 start-page: 10574 year: 2011 end-page: 10586 ident: b14 article-title: Optimized method for photovoltaic-water electrolyser direct coupling publication-title: Int. J. Hydrog. Energy – volume: 283 year: 2023 ident: b26 article-title: An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation publication-title: Energy – volume: 131 year: 2021 ident: b33 article-title: Multi-step depth model predictive control for photovoltaic power systems based on maximum power point tracking techniques publication-title: Int. J. Electr. Power Energy Syst. – year: 2023 ident: b7 article-title: Renewables 2023 Global Status Report – volume: 28 start-page: 21 year: 2003 end-page: 33 ident: b38 article-title: Modeling of advanced alkaline electrolyzers: A system simulation approach publication-title: Int. J. Hydrog. Energy – volume: 13 start-page: 791 year: 2022 end-page: 802 ident: b32 article-title: Single-stage grid-connected PV system with finite control set model predictive control and an improved maximum power point tracking publication-title: IEEE Trans. Sustain. Energy – volume: 47 start-page: 27303 year: 2022 end-page: 27325 ident: b15 article-title: Assessing sizing optimality of OFF-GRID AC-linked solar PV-PEM systems for hydrogen production publication-title: Int. J. Hydrog. Energy – volume: 15 start-page: 472 year: 2024 end-page: 484 ident: b36 article-title: Economic model predictive control for microgrid optimization: A review publication-title: IEEE Trans. Smart Grid – volume: 222 year: 2024 ident: b39 article-title: PV/Hydrogen DC microgrid control using distributed economic model predictive control publication-title: Renew. Energy – volume: 33 start-page: 7273 year: 2018 end-page: 7287 ident: b31 article-title: Discrete model-predictive-control-based maximum power point tracking for PV systems: Overview and evaluation publication-title: IEEE Trans. Power Electron. – volume: 48 start-page: 8768 year: 2023 end-page: 8782 ident: b17 article-title: A new approach for improving the efficiency of the indirectly coupled photovoltaic-electrolyzer system publication-title: Int. J. Hydrog. Energy – volume: 292 year: 2023 ident: b20 article-title: Efficient integration of alkaline water electrolyzer – A model predictive control approach for a sustainable low-carbon district heating system publication-title: Energy Convers. Manage. – volume: 53 start-page: 1055 year: 2006 end-page: 1065 ident: b37 article-title: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems publication-title: IEEE Trans. Ind. Electron. – volume: 7 start-page: 691 year: 2023 end-page: 703 ident: b28 article-title: State of charge estimation of lead acid battery using neural network for advanced renewable energy systems publication-title: Emerg. Sci. J. – volume: 46 start-page: 27330 year: 2021 end-page: 27348 ident: b9 article-title: Hydrogen and ethanol: Production, storage, and transportation publication-title: Int. J. Hydrog. Energy – volume: 35 start-page: 9342 year: 2020 end-page: 9356 ident: b23 article-title: Extended functionalities of photovoltaic systems with flexible power point tracking: Recent advances publication-title: IEEE Trans. Power Electron. – volume: 294 year: 2023 ident: b2 article-title: New concept of renewable energy priority zones for efficient onshore wind and solar expansion publication-title: Energy Convers. Manage. – volume: 37 start-page: 1311 year: 2022 end-page: 1325 ident: b8 article-title: Robust scheduling of virtual power plant under exogenous and endogenous uncertainties publication-title: IEEE Trans. Power Syst. – volume: 41 start-page: 12852 year: 2016 end-page: 12861 ident: b21 article-title: Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements publication-title: Int. J. Hydrog. Energy – volume: 48 start-page: 39298 year: 2023 end-page: 39314 ident: b13 article-title: Maximization of PV energy use and performance analysis of a stand-alone PV-hydrogen system publication-title: Int. J. Hydrog. Energy – volume: 38 start-page: 5939 year: 2023 end-page: 5951 ident: b25 article-title: Dynamic reserve power point tracking in grid-connected photovoltaic power plants publication-title: IEEE Trans. Power Electron. – volume: 271 year: 2022 ident: b10 article-title: Control-oriented dynamic modeling and thermodynamic analysis of solid oxide electrolysis system publication-title: Energy Convers. Manage. – volume: 42 start-page: 3244 year: 2018 end-page: 3257 ident: b22 article-title: Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer publication-title: Int. J. Energy Res. – volume: 7 start-page: 1052 year: 2023 end-page: 1062 ident: b5 article-title: Forecasting solar power generation utilizing machine learning models in Lubbock publication-title: Emerg. Sci. J. – start-page: 784 year: 2023 end-page: 788 ident: b29 article-title: Design and sizing of power conversion system with energy storage for improved PV-Electrolyzer energy coupling publication-title: 2023 International Conference on Clean Electrical Power – volume: 216 year: 2023 ident: b18 article-title: Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system publication-title: Renew. Energy – volume: 147 start-page: 1642 year: 2020 end-page: 1652 ident: b3 article-title: A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control publication-title: Renew. Energy – volume: 265 year: 2022 ident: b19 article-title: Economic model predictive control for multi-energy system considering hydrogen-thermal-electric dynamics and waste heat recovery of MW-level alkaline electrolyzer publication-title: Energy Convers. Manage. – volume: 328 year: 2022 ident: b35 article-title: Economic model predictive control of integrated energy systems: A multi-time-scale framework publication-title: Appl. Energy – volume: 237 year: 2021 ident: b24 article-title: A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe publication-title: Energy – volume: 36 start-page: 789 year: 2000 end-page: 814 ident: b30 article-title: Constrained model predictive control: Stability and optimality publication-title: Automatica – volume: 66 start-page: 59 year: 2018 end-page: 67 ident: b34 article-title: Economic model predictive control of boiler-turbine system publication-title: J. Process Control – volume: 5 start-page: 186 year: 2008 end-page: 204 ident: b40 article-title: An algorithmic framework for convex mixed integer nonlinear programs publication-title: Discrete Optim. – volume: 9 start-page: 2989 year: 2023 end-page: 3007 ident: b4 article-title: Modeling finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance publication-title: Civ. Eng. J. – year: 2024 ident: b1 article-title: Is renewable energy technology innovation an excellent strategy for reducing climate risk? The case of China publication-title: Renew. Energy – volume: 60 start-page: 1225 year: 2013 end-page: 1234 ident: b27 article-title: Evaluation of storage energy requirements for constant production in PV power plants publication-title: IEEE Trans. Ind. Electron. – volume: 35 start-page: 9342 issue: 9 year: 2020 ident: 10.1016/j.renene.2024.120688_b23 article-title: Extended functionalities of photovoltaic systems with flexible power point tracking: Recent advances publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2970447 – volume: 5 start-page: 186 issue: 2 year: 2008 ident: 10.1016/j.renene.2024.120688_b40 article-title: An algorithmic framework for convex mixed integer nonlinear programs publication-title: Discrete Optim. doi: 10.1016/j.disopt.2006.10.011 – volume: 41 start-page: 12852 issue: 30 year: 2016 ident: 10.1016/j.renene.2024.120688_b21 article-title: Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.06.071 – volume: 131 year: 2021 ident: 10.1016/j.renene.2024.120688_b33 article-title: Multi-step depth model predictive control for photovoltaic power systems based on maximum power point tracking techniques publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107075 – volume: 13 start-page: 791 issue: 2 year: 2022 ident: 10.1016/j.renene.2024.120688_b32 article-title: Single-stage grid-connected PV system with finite control set model predictive control and an improved maximum power point tracking publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2021.3132057 – start-page: 1 year: 2023 ident: 10.1016/j.renene.2024.120688_b12 article-title: Efficiency enhancement for alkaline water electrolyzers directly driven by fluctuating PV power publication-title: IEEE Trans. Ind. Electron. – volume: 46 start-page: 9303 issue: 14 year: 2021 ident: 10.1016/j.renene.2024.120688_b11 article-title: Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.12.111 – volume: 37 start-page: 1311 issue: 2 year: 2022 ident: 10.1016/j.renene.2024.120688_b8 article-title: Robust scheduling of virtual power plant under exogenous and endogenous uncertainties publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3105418 – volume: 36 start-page: 10574 issue: 17 year: 2011 ident: 10.1016/j.renene.2024.120688_b14 article-title: Optimized method for photovoltaic-water electrolyser direct coupling publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.05.179 – volume: 328 year: 2022 ident: 10.1016/j.renene.2024.120688_b35 article-title: Economic model predictive control of integrated energy systems: A multi-time-scale framework publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120187 – volume: 237 year: 2021 ident: 10.1016/j.renene.2024.120688_b24 article-title: A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe publication-title: Energy doi: 10.1016/j.energy.2021.121646 – volume: 7 start-page: 1052 issue: 4 year: 2023 ident: 10.1016/j.renene.2024.120688_b5 article-title: Forecasting solar power generation utilizing machine learning models in Lubbock publication-title: Emerg. Sci. J. doi: 10.28991/ESJ-2023-07-04-02 – volume: 7 start-page: 691 issue: 3 year: 2023 ident: 10.1016/j.renene.2024.120688_b28 article-title: State of charge estimation of lead acid battery using neural network for advanced renewable energy systems publication-title: Emerg. Sci. J. doi: 10.28991/ESJ-2023-07-03-02 – volume: 66 start-page: 59 year: 2018 ident: 10.1016/j.renene.2024.120688_b34 article-title: Economic model predictive control of boiler-turbine system publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.010 – volume: 9 start-page: 2989 issue: 12 year: 2023 ident: 10.1016/j.renene.2024.120688_b4 article-title: Modeling finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance publication-title: Civ. Eng. J. doi: 10.28991/CEJ-2023-09-12-03 – year: 2024 ident: 10.1016/j.renene.2024.120688_b1 article-title: Is renewable energy technology innovation an excellent strategy for reducing climate risk? The case of China publication-title: Renew. Energy – volume: 38 start-page: 5939 issue: 5 year: 2023 ident: 10.1016/j.renene.2024.120688_b25 article-title: Dynamic reserve power point tracking in grid-connected photovoltaic power plants publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2023.3240186 – volume: 294 year: 2023 ident: 10.1016/j.renene.2024.120688_b2 article-title: New concept of renewable energy priority zones for efficient onshore wind and solar expansion publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2023.117575 – volume: 283 year: 2023 ident: 10.1016/j.renene.2024.120688_b26 article-title: An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation publication-title: Energy doi: 10.1016/j.energy.2023.128993 – year: 2023 ident: 10.1016/j.renene.2024.120688_b7 – start-page: 784 year: 2023 ident: 10.1016/j.renene.2024.120688_b29 article-title: Design and sizing of power conversion system with energy storage for improved PV-Electrolyzer energy coupling – volume: 292 year: 2023 ident: 10.1016/j.renene.2024.120688_b20 article-title: Efficient integration of alkaline water electrolyzer – A model predictive control approach for a sustainable low-carbon district heating system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2023.117404 – volume: 33 start-page: 7273 issue: 8 year: 2018 ident: 10.1016/j.renene.2024.120688_b31 article-title: Discrete model-predictive-control-based maximum power point tracking for PV systems: Overview and evaluation publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2017.2764321 – volume: 45 start-page: 9293 issue: 16 year: 2020 ident: 10.1016/j.renene.2024.120688_b16 article-title: A photovoltaic powered electrolysis converter system with maximum power point tracking control publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.01.162 – volume: 60 start-page: 1225 issue: 3 year: 2013 ident: 10.1016/j.renene.2024.120688_b27 article-title: Evaluation of storage energy requirements for constant production in PV power plants publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2202353 – volume: 150 start-page: 797 year: 2020 ident: 10.1016/j.renene.2024.120688_b6 article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.131 – volume: 147 start-page: 1642 year: 2020 ident: 10.1016/j.renene.2024.120688_b3 article-title: A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control publication-title: Renew. Energy doi: 10.1016/j.renene.2019.09.048 – volume: 36 start-page: 789 issue: 6 year: 2000 ident: 10.1016/j.renene.2024.120688_b30 article-title: Constrained model predictive control: Stability and optimality publication-title: Automatica doi: 10.1016/S0005-1098(99)00214-9 – volume: 28 start-page: 21 issue: 1 year: 2003 ident: 10.1016/j.renene.2024.120688_b38 article-title: Modeling of advanced alkaline electrolyzers: A system simulation approach publication-title: Int. J. Hydrog. Energy doi: 10.1016/S0360-3199(02)00033-2 – volume: 42 start-page: 3244 issue: 10 year: 2018 ident: 10.1016/j.renene.2024.120688_b22 article-title: Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer publication-title: Int. J. Energy Res. doi: 10.1002/er.4076 – volume: 53 start-page: 1055 issue: 4 year: 2006 ident: 10.1016/j.renene.2024.120688_b37 article-title: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2006.878328 – volume: 47 start-page: 27303 issue: 64 year: 2022 ident: 10.1016/j.renene.2024.120688_b15 article-title: Assessing sizing optimality of OFF-GRID AC-linked solar PV-PEM systems for hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2022.06.098 – volume: 271 year: 2022 ident: 10.1016/j.renene.2024.120688_b10 article-title: Control-oriented dynamic modeling and thermodynamic analysis of solid oxide electrolysis system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.116331 – volume: 216 year: 2023 ident: 10.1016/j.renene.2024.120688_b18 article-title: Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119074 – volume: 46 start-page: 27330 issue: 54 year: 2021 ident: 10.1016/j.renene.2024.120688_b9 article-title: Hydrogen and ethanol: Production, storage, and transportation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.06.027 – volume: 48 start-page: 39298 issue: 99 year: 2023 ident: 10.1016/j.renene.2024.120688_b13 article-title: Maximization of PV energy use and performance analysis of a stand-alone PV-hydrogen system publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2023.09.072 – volume: 15 start-page: 472 issue: 1 year: 2024 ident: 10.1016/j.renene.2024.120688_b36 article-title: Economic model predictive control for microgrid optimization: A review publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3266253 – volume: 222 year: 2024 ident: 10.1016/j.renene.2024.120688_b39 article-title: PV/Hydrogen DC microgrid control using distributed economic model predictive control publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119871 – volume: 48 start-page: 8768 issue: 24 year: 2023 ident: 10.1016/j.renene.2024.120688_b17 article-title: A new approach for improving the efficiency of the indirectly coupled photovoltaic-electrolyzer system publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2022.11.327 – volume: 265 year: 2022 ident: 10.1016/j.renene.2024.120688_b19 article-title: Economic model predictive control for multi-energy system considering hydrogen-thermal-electric dynamics and waste heat recovery of MW-level alkaline electrolyzer publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.115697 |
| SSID | ssj0015874 |
| Score | 2.4928503 |
| Snippet | Photovoltaic (PV)-powered alkaline electrolyzer system (PVPAES) is an advanced technique to convert the off-grid and intermittent PV-based solar energy into... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120688 |
| SubjectTerms | algorithms Alkaline electrolyzer carbon Centralized economic model predictive control (CEMPC) econometric models energy hydrogen Hydrogen gas generation light intensity management systems mathematical models Model predictive control (MPC) solar collectors solar energy Solar photovoltaic power generation system optimization |
| Title | A centralized EMPC scheme for PV-powered alkaline electrolyzer |
| URI | https://dx.doi.org/10.1016/j.renene.2024.120688 https://www.proquest.com/docview/3206208334 |
| Volume | 229 |
| WOSCitedRecordID | wos001253677400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5BygEOiFWUTUbiVk2VeBaPL0hRFcTSVpFaUG6j8fhFpAQ3ahIo_fW82exAhQpIXCzLHnus943fNm8h5CXqAJUE1yMMZSvlYICanNe0ArQNKiE5TH3Xkv3i8FBNJuU4trhf-nYCRdOo8_Ny8V-hxmsItkud_Qu425fiBTxH0PGIsOPxj4Af7sSAy9kFKpOjg_HeDlqw8CVU9x5_pAvXGA1vmfln45XM2Apn_v0ihuqmgt3IB7_51CrwGYKdk3nt9zQ-QRR7Pjwg8K-jjeX2Pob7TmbGZZm1Yw-8wroP8bujzyHnbcRbdISlZJgu8sh7FGWfonUVxkHgp6pwRQ7UTww3Dz6OS8w7-BFOdl0tz8aVMM357iB3XXE6YdWGEB656dxsLgi2QL3tOtnKC1GqHtkavh1N3rV7SUKFWtzp81ICpY_yuzzX7xSUX0S11z-O75Db0XDIhgHwu-QaNPfIrY1ykvfJq2G2AX3moM8C9BlCn3XQZwn6bBP6B-TD69Hx3hsa-2NQy1i5ora0KGlBGVFPcwGWuT1bU5lCSlMOahC1ZWgfmxr4VMq6r2peVqIEwSWegWQPSa85beARyYS1lhtRVqrKObOgBobLqq8KwzivhN0mLBFF21g83vUwmesUJXiiAym1I6UOpNwmtH1qEYqnXDG-SPTWUQEMip3GJXLFky8SPBr5o9v0Mg2crpea4f0c7QzGH__z25-Qm91f8JT0VmdreEZu2K-r2fLseVxvPwAesYt4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+centralized+EMPC+scheme+for+PV-powered+alkaline+electrolyzer&rft.jtitle=Renewable+energy&rft.au=Zhu%2C+Zheng&rft.au=Chen%2C+Sian&rft.au=Kong%2C+Xiaobing&rft.au=Ma%2C+Lele&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=229&rft_id=info:doi/10.1016%2Fj.renene.2024.120688&rft.externalDocID=S0960148124007560 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |