Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events
Many fracture branches are generated during hydraulic fracturing to form complex fracture networks and the majority of the gas in the unstimulated region (USR) is left unexploited. Traditional models usually overlook the key effect of bifurcating fracture morphology on gas production from hydraulica...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 278; S. 127780 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2023
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many fracture branches are generated during hydraulic fracturing to form complex fracture networks and the majority of the gas in the unstimulated region (USR) is left unexploited. Traditional models usually overlook the key effect of bifurcating fracture morphology on gas production from hydraulically stimulated shale formation. Understanding the interaction behavior between the matrix system and the bifurcating fractures is important for exploiting shale reservoirs. In this regard, a modified quadruple-domain model with both the stimulated region (SR) and the USR, is established. The SR contains the bifurcating hydraulic fractures (BHF) which are captured by the Lindenmayer system (L-system) algorithm based on the coupling with microseismic events. Meanwhile, the effects of single layer and multiple layer sorption on gas transport are included in the new dynamic permeability equation. The model is validated against results from the experiment, field data, and numerical simulations. The results demonstrate that the initial axiom, bifurcating distance, deviation angle, and number of iterations have a significant influence on the morphology of the BHF and subsequently control its growth leading to complex network. BHF complexity, natural fracture geometry, and the amount of sorption gas simultaneously determine the flow behavior and cumulative production performance.
[Display omitted]
•A modified quadruple-domain model coupling microseismic events is established.•The reservoir domain is as an assembly of the unstimulated region and the stimulated region.•The stimulated region has the bifurcating hydraulic fractures generated using the L-system.•A new sorption equation for multi-layers is derived and added into the dynamic permeability.•The model is validated against results from the experiment, field data, and simulation. |
|---|---|
| AbstractList | Many fracture branches are generated during hydraulic fracturing to form complex fracture networks and the majority of the gas in the unstimulated region (USR) is left unexploited. Traditional models usually overlook the key effect of bifurcating fracture morphology on gas production from hydraulically stimulated shale formation. Understanding the interaction behavior between the matrix system and the bifurcating fractures is important for exploiting shale reservoirs. In this regard, a modified quadruple-domain model with both the stimulated region (SR) and the USR, is established. The SR contains the bifurcating hydraulic fractures (BHF) which are captured by the Lindenmayer system (L-system) algorithm based on the coupling with microseismic events. Meanwhile, the effects of single layer and multiple layer sorption on gas transport are included in the new dynamic permeability equation. The model is validated against results from the experiment, field data, and numerical simulations. The results demonstrate that the initial axiom, bifurcating distance, deviation angle, and number of iterations have a significant influence on the morphology of the BHF and subsequently control its growth leading to complex network. BHF complexity, natural fracture geometry, and the amount of sorption gas simultaneously determine the flow behavior and cumulative production performance. Many fracture branches are generated during hydraulic fracturing to form complex fracture networks and the majority of the gas in the unstimulated region (USR) is left unexploited. Traditional models usually overlook the key effect of bifurcating fracture morphology on gas production from hydraulically stimulated shale formation. Understanding the interaction behavior between the matrix system and the bifurcating fractures is important for exploiting shale reservoirs. In this regard, a modified quadruple-domain model with both the stimulated region (SR) and the USR, is established. The SR contains the bifurcating hydraulic fractures (BHF) which are captured by the Lindenmayer system (L-system) algorithm based on the coupling with microseismic events. Meanwhile, the effects of single layer and multiple layer sorption on gas transport are included in the new dynamic permeability equation. The model is validated against results from the experiment, field data, and numerical simulations. The results demonstrate that the initial axiom, bifurcating distance, deviation angle, and number of iterations have a significant influence on the morphology of the BHF and subsequently control its growth leading to complex network. BHF complexity, natural fracture geometry, and the amount of sorption gas simultaneously determine the flow behavior and cumulative production performance. [Display omitted] •A modified quadruple-domain model coupling microseismic events is established.•The reservoir domain is as an assembly of the unstimulated region and the stimulated region.•The stimulated region has the bifurcating hydraulic fractures generated using the L-system.•A new sorption equation for multi-layers is derived and added into the dynamic permeability.•The model is validated against results from the experiment, field data, and simulation. |
| ArticleNumber | 127780 |
| Author | Liu, He Wu, HengAn Meng, SiWei Zhang, HouLin Yu, Hao Xu, WenLong Micheal, Marembo Huang, HanWei Huang, MengCheng |
| Author_xml | – sequence: 1 givenname: Marembo surname: Micheal fullname: Micheal, Marembo organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 2 givenname: Hao surname: Yu fullname: Yu, Hao email: yuhaoo@ustc.edu.cn organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 3 givenname: SiWei surname: Meng fullname: Meng, SiWei organization: PetroChina Research Institute of Petroleum Exploration & Development, Beijing, 100083, China – sequence: 4 givenname: WenLong surname: Xu fullname: Xu, WenLong organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 5 givenname: HanWei surname: Huang fullname: Huang, HanWei organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 6 givenname: MengCheng surname: Huang fullname: Huang, MengCheng organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 7 givenname: HouLin surname: Zhang fullname: Zhang, HouLin organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 8 givenname: He surname: Liu fullname: Liu, He organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China – sequence: 9 givenname: HengAn orcidid: 0000-0003-0288-1617 surname: Wu fullname: Wu, HengAn organization: CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China |
| BookMark | eNqFkLFuHCEQhikcKfY5b5CC0s1egL1lDxeWLMtxIllKk9SIhcGe0y6cgb3IVV49rDaVi7hixPzfwHwX5CzEAIR85mzLGZdfDlsIkJ5et4KJdstF3-_ZGTlnrWRNt9uJj-Qi5wNjrNsrdU7-PJhMjym62RaMgfoUJ5qfzQg0QYZ0ipgy_Y3lmQ7o52RNwfBUY8aWuSau6S2dokOP4OjLbFyajyM0Lk4Gw9KBkdpY7xZqQptiBsy1oHCCUPIl-eDNmOHTv3NDfn29_3n3rXn88fD97vaxsW2rSmM73-9rJa0UTAnPQYq974aeCa4GLo1kve-VFHIA4ZW3jqsOhk461QkvXbshV-vcuuvLDLnoCbOFcTQB4px1y7uW9ztVH9mQ6zW6fDYn8NpiMYudkgyOmjO9mNYHvZrWi2m9mq7w7g18TDiZ9PoedrNiUB2cEJLOFiFYcJjAFu0i_n_AXyK2oYY |
| CitedBy_id | crossref_primary_10_1021_acs_energyfuels_5c02430 crossref_primary_10_1016_j_energy_2023_129285 crossref_primary_10_1016_j_energy_2024_131499 crossref_primary_10_1016_j_petsci_2025_03_034 crossref_primary_10_1016_j_measurement_2024_115088 crossref_primary_10_1016_j_energy_2024_131184 crossref_primary_10_1016_j_jgsce_2025_205618 crossref_primary_10_1038_s41598_025_12773_2 |
| Cites_doi | 10.1016/j.jngse.2021.104156 10.1016/j.fuel.2022.124741 10.2118/175107-PA 10.2118/191375-PA 10.1080/15567249.2013.771716 10.1016/0148-9062(93)90111-P 10.1038/s41598-018-20949-2 10.1002/ese3.852 10.1016/j.energy.2021.121666 10.1016/j.energy.2022.124005 10.1016/j.jngse.2018.05.026 10.1016/j.petrol.2020.107422 10.1007/s13202-016-0268-0 10.2118/146944-PA 10.1016/j.apenergy.2022.119415 10.1016/j.fuel.2018.09.101 10.1016/j.petrol.2021.109171 10.1016/0022-5193(68)90080-5 10.1016/j.cej.2022.135604 10.1016/j.cej.2018.11.185 10.1016/j.energy.2023.127443 10.1007/s12182-017-0180-3 10.1007/s12182-017-0202-1 10.1021/acsomega.0c02980 10.1016/j.petrol.2022.110419 10.1016/j.petrol.2019.106524 10.3390/pr11030806 10.1016/j.energy.2022.124242 10.1111/j.1468-8123.2009.00244.x 10.1103/PhysRevLett.54.1325 10.3390/app112412064 10.1016/j.fuel.2013.08.032 10.1016/j.coal.2011.12.009 10.1002/2017WR020943 10.2118/170801-PA 10.1007/s12182-019-0333-7 10.1016/j.fuel.2020.118214 10.1016/j.cma.2022.115366 10.1016/j.jngse.2015.03.032 10.1016/j.ijheatmasstransfer.2018.03.003 10.1080/15567031003716725 10.1016/j.fuel.2018.08.023 10.1038/s41598-017-12123-x 10.1007/s10450-021-00350-8 10.1021/ja02242a004 10.1306/05110504114 10.1016/j.coal.2015.10.004 10.1016/j.jngse.2015.09.031 10.1016/j.engfracmech.2022.108621 10.1016/j.energy.2022.124727 10.1016/j.energy.2021.122707 10.1007/s40948-021-00260-7 10.1016/j.petrol.2020.107370 10.1016/j.egyr.2021.05.060 10.2118/174996-PA 10.1021/acs.energyfuels.6b00683 10.1016/j.fuel.2022.124953 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2023.127780 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2023_127780 S036054422301174X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-c5f783396c62092f1e628f5b70219b16a607f79626be2f9fcd195eb56d952f6d3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001009663700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 00:07:34 EDT 2025 Tue Nov 18 21:59:32 EST 2025 Sat Nov 29 07:19:10 EST 2025 Fri Feb 23 02:37:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stimulated/unstimulated region Lindenmayer system algorithm Modified quadruple-domain model Bifurcating fractures Microseismic events |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-c5f783396c62092f1e628f5b70219b16a607f79626be2f9fcd195eb56d952f6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0288-1617 |
| PQID | 3153174983 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153174983 crossref_citationtrail_10_1016_j_energy_2023_127780 crossref_primary_10_1016_j_energy_2023_127780 elsevier_sciencedirect_doi_10_1016_j_energy_2023_127780 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yu, Sepehrnoori (bib19) 2014; 116 Wan, Rasouli, Damjanac, Yu, Xie, Li, Rabiei, Miao, Liu (bib22) 2020; 193 Wang, Luo, Liu (bib8) 2017; 22 Cao, Liu, Leong (bib11) 2016; 30 Mandelbrot, Aizenman (bib61) 1979; 32 Pan, Connell (bib7) 2012; 92 Cossio, Moridis, Blasingame (bib59) 2010 Wang, Wang, Shi, Zhang, Ren, Wang, Tan (bib65) 2021; 11 Wang, Liu, Wang, Zhang, Luo, Gao (bib9) 2015; 152 Zhang, Yu, Xu, Lv, Micheal, Shi, Wu (bib41) 2022; 271 Hu, Mischo (bib38) 2022; 28 Xu, Yu, Micheal, Huang, Liu, Wu (bib40) 2022; 263 Zhang, Gao, Dong, Xiong (bib10) 2021; 7 Riewchotisakul, Akkutlu (bib29) 2016; 2 Tian, Yan, Jin (bib34) 2017; 7 Chen, Zuo, Jiang, Jiang, Liu, Tan, Zhang (bib37) 2019; 361 Lu, Liu, Li (bib16) 2019; 237 Qin, Hu, Liu, Shi, Cui (bib66) 2023; 11 Xu, Yu, Zhang, Lv, Quan, Micheal, Wu (bib42) 2022; 399 Micheal, Xu, Xu, Zhang, Jin, Yu, Wu (bib1) 2021; 95 Yu, Sepehrnoori, Patzek (bib39) 2016; 21 Afagwu, Alafnan, Mahmoud, Patil (bib30) 2021; 7 Raterman, Farrell, Mora, Janssen, Gomez, Busetti, McEwen, Friehauf, Rutherford, Reid, Jin, Roy, Warren (bib46) 2018; 21 Yang, Liu, Yu, Hu, Duan (bib64) 2022; 322 Warren, Root (bib50) 1963; 2118 Memon, Li, Jacqueline, Kashif, Ma (bib32) 2020; 193 Sakhaee-Pour, Bryant (bib6) 2012; 15 Zeng, Liu, Guo (bib5) 2022; 438 Yu, Liu, Meng, Wang, Quan, Zhai (bib24) 2022; 324 Xie, Wang, Chen, Vandeginste, Yu, Wang (bib31) 2022; 254 Huang, Kunsoo (bib49) 1993; 30 Cui, Bustin, Bustin (bib52) 2009; 9 Cui, Jiang, Wang, Liu (bib54) 2021; 207 Zhan, Yang, Qin, Meng, Chen, Miao, Zhao, Yue (bib25) 2022; 252 Zhang, Yao, Sun, Zhao, Fan, Huang, Wang (bib15) 2015; 24 Yu, Fan, Chen, Zhu, Wu (bib26) 2018; 123 Aydin (bib17) 2015; 10 Nandlal, Weijermars (bib44) 2019; 16 Yu, Xu, Fan, Zhu, Wang, Wu (bib14) 2021; 35 Cui, Bustin (bib27) 2005; 89 Tian, Wei, Zhou, Sun, Rezaee, Cai (bib56) 2022; 244 Wang, Su, Zhang, Xiang, Cui (bib48) 2018; 15 Zhou, Su, Wang, Yan (bib47) 2017; 7 Cui, Feng, Pan, Chen, Liu, Elsworth, Tan, Wang (bib53) 2020; 184 Peng, Liu, Pan, Connell (bib20) 2015; 27 Hu, Liu, Luo, Gao, Yue (bib23) 2022; 238 Li, Liu, Zeng, Leong, Elsworth, Tian (bib12) 2022; 325 Katz, Thompson (bib60) 1985; 54 Micheal, Xu, Jin, Yu, Liu, Jiang, Wu (bib4) 2022; 213 Gao, Han, Cheng, Shi, Yan, Han (bib51) 2022; 257 Li, Liu, Zeng, Leong, Elsworth, Tian, Li (bib3) 2020; 278 Lindenmayer (bib58) 1968; 18 Tian, Liu, Elsworth, Leong, Li, Zeng (bib21) 2022; 280 Aydin, Karakurt, Aydiner (bib18) 2012; 34 Saevik, Nixon (bib62) 2017; 53 Wang, Yu, Xu, Lv, Zhang, Micheal, Wu (bib43) 2023 Wu, Zhao, Tesson, Firoozabadi (bib36) 2019; 235 Wang, James (bib33) 2017; 14 Shen, Pang, Shen, Tian, Ge (bib57) 2018; 8 Li, Wang, Zeng, Lyu, Zhou, Zhang (bib2) 2020; 9 Langmuir (bib28) 1918; 40 Niu, Sun, Zhang, Lu, Liu, Li, Mu (bib63) 2023; 275 Tian, Liu (bib35) 2020; 5 Wang, Su, Zhou, Sheng, Zhou, Tang, Du, An (bib45) 2017 Wang, Shi, Wang, Sun, Miao, Hou (bib13) 2018; 55 Detournay, Cheng (bib55) 1993 Xie (10.1016/j.energy.2023.127780_bib31) 2022; 254 Yu (10.1016/j.energy.2023.127780_bib39) 2016; 21 Qin (10.1016/j.energy.2023.127780_bib66) 2023; 11 Zhang (10.1016/j.energy.2023.127780_bib41) 2022; 271 Mandelbrot (10.1016/j.energy.2023.127780_bib61) 1979; 32 Micheal (10.1016/j.energy.2023.127780_bib1) 2021; 95 Zhan (10.1016/j.energy.2023.127780_bib25) 2022; 252 Tian (10.1016/j.energy.2023.127780_bib35) 2020; 5 Cossio (10.1016/j.energy.2023.127780_bib59) 2010 Wang (10.1016/j.energy.2023.127780_bib9) 2015; 152 Micheal (10.1016/j.energy.2023.127780_bib4) 2022; 213 Li (10.1016/j.energy.2023.127780_bib12) 2022; 325 Wang (10.1016/j.energy.2023.127780_bib43) 2023 Wang (10.1016/j.energy.2023.127780_bib48) 2018; 15 Lindenmayer (10.1016/j.energy.2023.127780_bib58) 1968; 18 Wan (10.1016/j.energy.2023.127780_bib22) 2020; 193 Yu (10.1016/j.energy.2023.127780_bib26) 2018; 123 Zeng (10.1016/j.energy.2023.127780_bib5) 2022; 438 Li (10.1016/j.energy.2023.127780_bib3) 2020; 278 Cao (10.1016/j.energy.2023.127780_bib11) 2016; 30 Memon (10.1016/j.energy.2023.127780_bib32) 2020; 193 Shen (10.1016/j.energy.2023.127780_bib57) 2018; 8 Xu (10.1016/j.energy.2023.127780_bib40) 2022; 263 Cui (10.1016/j.energy.2023.127780_bib54) 2021; 207 Wang (10.1016/j.energy.2023.127780_bib65) 2021; 11 Cui (10.1016/j.energy.2023.127780_bib52) 2009; 9 Wang (10.1016/j.energy.2023.127780_bib8) 2017; 22 Katz (10.1016/j.energy.2023.127780_bib60) 1985; 54 Yu (10.1016/j.energy.2023.127780_bib24) 2022; 324 Nandlal (10.1016/j.energy.2023.127780_bib44) 2019; 16 Langmuir (10.1016/j.energy.2023.127780_bib28) 1918; 40 Wang (10.1016/j.energy.2023.127780_bib33) 2017; 14 Gao (10.1016/j.energy.2023.127780_bib51) 2022; 257 Niu (10.1016/j.energy.2023.127780_bib63) 2023; 275 Aydin (10.1016/j.energy.2023.127780_bib18) 2012; 34 Warren (10.1016/j.energy.2023.127780_bib50) 1963; 2118 Yang (10.1016/j.energy.2023.127780_bib64) 2022; 322 Wu (10.1016/j.energy.2023.127780_bib36) 2019; 235 Raterman (10.1016/j.energy.2023.127780_bib46) 2018; 21 Tian (10.1016/j.energy.2023.127780_bib34) 2017; 7 Riewchotisakul (10.1016/j.energy.2023.127780_bib29) 2016; 2 Peng (10.1016/j.energy.2023.127780_bib20) 2015; 27 Hu (10.1016/j.energy.2023.127780_bib23) 2022; 238 Wang (10.1016/j.energy.2023.127780_bib13) 2018; 55 Zhou (10.1016/j.energy.2023.127780_bib47) 2017; 7 Detournay (10.1016/j.energy.2023.127780_bib55) 1993 Wang (10.1016/j.energy.2023.127780_bib45) 2017 Tian (10.1016/j.energy.2023.127780_bib56) 2022; 244 Yu (10.1016/j.energy.2023.127780_bib14) 2021; 35 Cui (10.1016/j.energy.2023.127780_bib27) 2005; 89 Saevik (10.1016/j.energy.2023.127780_bib62) 2017; 53 Li (10.1016/j.energy.2023.127780_bib2) 2020; 9 Chen (10.1016/j.energy.2023.127780_bib37) 2019; 361 Huang (10.1016/j.energy.2023.127780_bib49) 1993; 30 Lu (10.1016/j.energy.2023.127780_bib16) 2019; 237 Sakhaee-Pour (10.1016/j.energy.2023.127780_bib6) 2012; 15 Yu (10.1016/j.energy.2023.127780_bib19) 2014; 116 Pan (10.1016/j.energy.2023.127780_bib7) 2012; 92 Zhang (10.1016/j.energy.2023.127780_bib10) 2021; 7 Hu (10.1016/j.energy.2023.127780_bib38) 2022; 28 Afagwu (10.1016/j.energy.2023.127780_bib30) 2021; 7 Cui (10.1016/j.energy.2023.127780_bib53) 2020; 184 Aydin (10.1016/j.energy.2023.127780_bib17) 2015; 10 Zhang (10.1016/j.energy.2023.127780_bib15) 2015; 24 Tian (10.1016/j.energy.2023.127780_bib21) 2022; 280 Xu (10.1016/j.energy.2023.127780_bib42) 2022; 399 |
| References_xml | – volume: 28 start-page: 27 year: 2022 end-page: 39 ident: bib38 article-title: Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale publication-title: Adsorption – volume: 271 year: 2022 ident: bib41 article-title: A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model publication-title: Eng Fract Mech – volume: 324 year: 2022 ident: bib24 article-title: Desorption of CH publication-title: Fuel – volume: 35 start-page: 911 year: 2021 end-page: 943 ident: bib14 article-title: Transport of shale gas in microporous/nanoporous media: molecular to pore-scale simulations publication-title: Energy – start-page: 1 year: 2023 end-page: 27 ident: bib43 article-title: Spatial and temporal constraints of the cohesive modeling: a unified criterion for fluid-driven fracture publication-title: Int J Numer Methods Eng – volume: 325 year: 2022 ident: bib12 article-title: Water liberating/sealing effects on shale gas extraction: a fully coupled multidomain and multiphysics model publication-title: Fuel – volume: 7 start-page: 63 year: 2021 ident: bib10 article-title: Numerical study of forward and reverse flow characteristics of rough-walled tree-like fracture networks publication-title: Geomech Geophys Geo-energy Geo-resour – volume: 438 year: 2022 ident: bib5 article-title: Characterization of gas transport in shale: a multi-mechanism permeability modeling approach publication-title: Chem Eng J – volume: 7 start-page: 3302 year: 2021 end-page: 3316 ident: bib30 article-title: Permeability model for shale and ultra-tight gas formations: critical insights into the impact of dynamic adsorption publication-title: Energy Rep – volume: 21 start-page: 589 year: 2016 end-page: 600 ident: bib39 article-title: Modeling gas adsorption in Marcellus shale with Langmuir and BET isotherms publication-title: SPE J – volume: 361 start-page: 559 year: 2019 end-page: 570 ident: bib37 article-title: Mechanisms of shale gas adsorption: evidence from thermodynamics and kinetics study of methane adsorption on shale publication-title: Chem Eng J – volume: 7 year: 2017 ident: bib34 article-title: Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation publication-title: Sci Rep – volume: 18 start-page: 300 year: 1968 end-page: 315 ident: bib58 article-title: Mathematical methods for cellular interactions in development II. Simple and branching filaments with two-sided inputs publication-title: J Theor Biol – volume: 278 year: 2020 ident: bib3 article-title: A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction publication-title: Fuel – volume: 22 start-page: 244 year: 2017 end-page: 264 ident: bib8 article-title: An integrative model to simulate gas transport and production coupled with gas adsorption, non-Darcy flow, surface diffusion, and stress dependence in organic-shale reservoirs publication-title: SPE J – year: 2017 ident: bib45 article-title: Method of characterization of complex fracture network with combination of microseismic using bifurcating theory – volume: 11 year: 2021 ident: bib65 article-title: Productivity prediction of fractured horizontal well in shale gas reservoirs with machine learning algorithms publication-title: Appl Sci – volume: 193 year: 2020 ident: bib22 article-title: Coupling of fracture model with reservoir simulation to simulate shale gas production with complex fractures and nanopores publication-title: J Petrol Sci Eng – volume: 11 start-page: 806 year: 2023 ident: bib66 article-title: A combined gated recurrent unit and multi-layer perceptron neural network model for predicting shale gas production publication-title: Processes – volume: 213 year: 2022 ident: bib4 article-title: A multi-scale quadruple-continuum model for production evaluation of shale gas reservoirs considering complex gas transfer mechanisms and geomechanics publication-title: J Petrol Sci Eng – volume: 15 start-page: 401 year: 2012 end-page: 409 ident: bib6 article-title: Gas permeability of shale publication-title: SPE Reservoir Eval Eng – volume: 116 start-page: 455 year: 2014 end-page: 464 ident: bib19 article-title: Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs publication-title: Fuel – year: 2010 ident: bib59 article-title: A semi-analytic solution for flow in finite-conductivity vertical fractures using fractal theory – volume: 27 start-page: 808 year: 2015 end-page: 821 ident: bib20 article-title: A sequential model of shale gas transport under the influence of fully coupled multiple processes publication-title: J Nat Gas Sci Eng – volume: 40 start-page: 1361 year: 1918 end-page: 1403 ident: bib28 article-title: The adsorption of gases on plane surfaces of glass, mica, and platinum publication-title: J Am Chem Soc – volume: 2118 start-page: 426 year: 1963 ident: bib50 article-title: The behavior of naturally fractured reservoirs publication-title: SPE J – volume: 207 year: 2021 ident: bib54 article-title: Production performance analysis of multi-fractured horizontal well in shale gas reservoir considering space variable and stress-sensitive fractures publication-title: J Petrol Sci Eng – volume: 254 year: 2022 ident: bib31 article-title: Effects of gas components, reservoir property and pore structure of shale gas reservoir on the competitive adsorption behavior of CO publication-title: Energy – volume: 89 start-page: 1181 year: 2005 end-page: 1202 ident: bib27 article-title: Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams publication-title: AAPG Bull – volume: 237 start-page: 283 year: 2019 end-page: 297 ident: bib16 article-title: A new approach to model shale gas production behavior by considering coupled multiple flow mechanisms for multiple fractured horizontal well publication-title: Fuel – volume: 8 start-page: 2601 year: 2018 ident: bib57 article-title: Multiparameter analysis of gas transport phenomena in shale gas reservoirs: apparent permeability characterization publication-title: Sci Rep – volume: 244 year: 2022 ident: bib56 article-title: Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale publication-title: Energy – volume: 32 start-page: 5 year: 1979 end-page: 65 ident: bib61 article-title: fractals: form, chance and dimension publication-title: Phys – volume: 7 start-page: 487 year: 2017 end-page: 496 ident: bib47 article-title: Application of the fractal geometry theory on fracture network simulation publication-title: J Pet Explor Prod Technol – volume: 15 start-page: 126 year: 2018 end-page: 134 ident: bib48 article-title: Performance-based fractal fracture network model for complex fracture network simulation publication-title: Petrol Sci – volume: 34 start-page: 967 year: 2012 end-page: 982 ident: bib18 article-title: Analysis and mitigation opportunities of methane emissions from the energy sector publication-title: Energy Sources, Part A – volume: 252 year: 2022 ident: bib25 article-title: Comprehensive preparation and multiscale characterization of organic matrix in oil shale publication-title: Energy – volume: 238 year: 2022 ident: bib23 article-title: Multi-field coupling deformation of rock and multi-scale flow of gas in shale gas extraction publication-title: Energy – volume: 16 start-page: 1064 year: 2019 end-page: 1085 ident: bib44 article-title: Drained rock volume around hydraulic fractures in porous media: planar fractures versus fractal networks publication-title: Petrol Sci – volume: 5 start-page: 31508 year: 2020 end-page: 31517 ident: bib35 article-title: Insight into the adsorption of methane on gas shales and the induced shale swelling publication-title: ACS Omega – volume: 123 start-page: 657 year: 2018 end-page: 667 ident: bib26 article-title: Pressure-dependent transport characteristic of methane gas in slit nanopores publication-title: Int J Heat Mass Tran – volume: 9 start-page: 208 year: 2009 end-page: 223 ident: bib52 article-title: Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications publication-title: Geofluids – volume: 95 year: 2021 ident: bib1 article-title: Multi-scale modelling of gas transport and production evaluation in shale reservoirs considering crisscrossing fractures publication-title: J Nat Gas Sci Eng – volume: 322 year: 2022 ident: bib64 article-title: Long short-term memory suggests a model for predicting shale gas production publication-title: Appl Energy – volume: 399 year: 2022 ident: bib42 article-title: Phase-field method of crack branching during SC-CO publication-title: Comput Methods Appl Mech Eng – volume: 54 start-page: 1325 year: 1985 ident: bib60 article-title: Fractal sandstone pores: implications for conductivity and pore formation publication-title: Phsy Rev Lett – volume: 193 year: 2020 ident: bib32 article-title: Study of gas sorption, stress effects and analysis of effective porosity and permeability for shale gas reservoirs publication-title: J Petrol Sci Eng – volume: 92 start-page: 1 year: 2012 end-page: 44 ident: bib7 article-title: Modelling permeability for coal reservoirs: a review of analytical models and testing data publication-title: Int J Coal Geol – volume: 263 year: 2022 ident: bib40 article-title: An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery publication-title: Energy – volume: 10 start-page: 67 year: 2015 end-page: 74 ident: bib17 article-title: The modeling and projection of primary energy consumption by the sources publication-title: Energy Sources, Part B – volume: 24 start-page: 252 year: 2015 end-page: 263 ident: bib15 article-title: Triple-continuum modeling of shale gas reservoirs considering the effect of organic matrix publication-title: J Nat Gas Sci Eng – volume: 235 start-page: 855 year: 2019 end-page: 867 ident: bib36 article-title: Absolute adsorption of light hydrocarbons and carbon dioxide in shale rock and isolated organic matrix publication-title: Fuel – volume: 55 start-page: 508 year: 2018 end-page: 519 ident: bib13 article-title: Apparent permeability model for gas transport in shale reservoirs with nano-scale porous media publication-title: J Nat Gas Sci Eng – volume: 280 year: 2022 ident: bib21 article-title: Shale gas production from reservoirs with hierarchical multiscale structural heterogeneities publication-title: J Petrol Sci Eng – volume: 30 start-page: 1295 year: 1993 end-page: 1298 ident: bib49 article-title: Fracture process zone development during hydraulic fracturing publication-title: Int J Rock Mech Min Sci Geomech Abstr – start-page: 113 year: 1993 end-page: 171 ident: bib55 article-title: Fundamentals of poroelasticity. Analysis and design methods – volume: 275 year: 2023 ident: bib63 article-title: An ensemble transfer learning strategy for production prediction of shale gas wells publication-title: Energy – volume: 30 start-page: 502 year: 2016 end-page: 505 ident: bib11 article-title: General gas permeability model for porous media: bridging the gaps between conventional and unconventional natural gas reservoirs publication-title: Energy Fuel – volume: 152 start-page: 50 year: 2015 end-page: 62 ident: bib9 article-title: Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects publication-title: Int J Coal Geol – volume: 53 start-page: 9424 year: 2017 end-page: 9443 ident: bib62 article-title: Inclusion of topological measurements into analytic estimates of effective permeability in fractured media publication-title: Water Resour Res – volume: 14 start-page: 746 year: 2017 end-page: 754 ident: bib33 article-title: Gas sorption and non-Darcy flow in shale reservoirs publication-title: Petrol Sci – volume: 257 year: 2022 ident: bib51 article-title: Flow-coupled-geomechanical modelling of CO publication-title: Energy – volume: 21 start-page: 927 year: 2018 end-page: 941 ident: bib46 article-title: Sampling a stimulated rock volume: an Eagle Ford example publication-title: SPE Reservoir Eval Eng – volume: 184 year: 2020 ident: bib53 article-title: Impacts of shale matrix mechanical interactions on gas transport during production publication-title: J Petrol Sci Eng – volume: 9 start-page: 676 year: 2020 end-page: 693 ident: bib2 article-title: Optimization of the shale gas reservoir fracture parameters based on the fully coupled gas flow and effective stress model publication-title: Energy Sci Eng – volume: 2 start-page: 1960 year: 2016 end-page: 1969 ident: bib29 article-title: Adsorption-enhanced transport of hydrocarbons in organic nanopores publication-title: SPE J – volume: 95 year: 2021 ident: 10.1016/j.energy.2023.127780_bib1 article-title: Multi-scale modelling of gas transport and production evaluation in shale reservoirs considering crisscrossing fractures publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2021.104156 – volume: 324 year: 2022 ident: 10.1016/j.energy.2023.127780_bib24 article-title: Desorption of CH4/CO2 from organic matrix during explosive fracturing publication-title: Fuel doi: 10.1016/j.fuel.2022.124741 – volume: 2 start-page: 1960 year: 2016 ident: 10.1016/j.energy.2023.127780_bib29 article-title: Adsorption-enhanced transport of hydrocarbons in organic nanopores publication-title: SPE J doi: 10.2118/175107-PA – volume: 21 start-page: 927 issue: 4 year: 2018 ident: 10.1016/j.energy.2023.127780_bib46 article-title: Sampling a stimulated rock volume: an Eagle Ford example publication-title: SPE Reservoir Eval Eng doi: 10.2118/191375-PA – volume: 10 start-page: 67 year: 2015 ident: 10.1016/j.energy.2023.127780_bib17 article-title: The modeling and projection of primary energy consumption by the sources publication-title: Energy Sources, Part B doi: 10.1080/15567249.2013.771716 – volume: 30 start-page: 1295 issue: 7 year: 1993 ident: 10.1016/j.energy.2023.127780_bib49 article-title: Fracture process zone development during hydraulic fracturing publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(93)90111-P – volume: 8 start-page: 2601 year: 2018 ident: 10.1016/j.energy.2023.127780_bib57 article-title: Multiparameter analysis of gas transport phenomena in shale gas reservoirs: apparent permeability characterization publication-title: Sci Rep doi: 10.1038/s41598-018-20949-2 – volume: 9 start-page: 676 year: 2020 ident: 10.1016/j.energy.2023.127780_bib2 article-title: Optimization of the shale gas reservoir fracture parameters based on the fully coupled gas flow and effective stress model publication-title: Energy Sci Eng doi: 10.1002/ese3.852 – volume: 238 year: 2022 ident: 10.1016/j.energy.2023.127780_bib23 article-title: Multi-field coupling deformation of rock and multi-scale flow of gas in shale gas extraction publication-title: Energy doi: 10.1016/j.energy.2021.121666 – volume: 252 year: 2022 ident: 10.1016/j.energy.2023.127780_bib25 article-title: Comprehensive preparation and multiscale characterization of organic matrix in oil shale publication-title: Energy doi: 10.1016/j.energy.2022.124005 – start-page: 113 year: 1993 ident: 10.1016/j.energy.2023.127780_bib55 – volume: 55 start-page: 508 year: 2018 ident: 10.1016/j.energy.2023.127780_bib13 article-title: Apparent permeability model for gas transport in shale reservoirs with nano-scale porous media publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2018.05.026 – volume: 193 year: 2020 ident: 10.1016/j.energy.2023.127780_bib22 article-title: Coupling of fracture model with reservoir simulation to simulate shale gas production with complex fractures and nanopores publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2020.107422 – volume: 7 start-page: 487 year: 2017 ident: 10.1016/j.energy.2023.127780_bib47 article-title: Application of the fractal geometry theory on fracture network simulation publication-title: J Pet Explor Prod Technol doi: 10.1007/s13202-016-0268-0 – volume: 15 start-page: 401 year: 2012 ident: 10.1016/j.energy.2023.127780_bib6 article-title: Gas permeability of shale publication-title: SPE Reservoir Eval Eng doi: 10.2118/146944-PA – volume: 322 year: 2022 ident: 10.1016/j.energy.2023.127780_bib64 article-title: Long short-term memory suggests a model for predicting shale gas production publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119415 – volume: 237 start-page: 283 year: 2019 ident: 10.1016/j.energy.2023.127780_bib16 article-title: A new approach to model shale gas production behavior by considering coupled multiple flow mechanisms for multiple fractured horizontal well publication-title: Fuel doi: 10.1016/j.fuel.2018.09.101 – volume: 207 year: 2021 ident: 10.1016/j.energy.2023.127780_bib54 article-title: Production performance analysis of multi-fractured horizontal well in shale gas reservoir considering space variable and stress-sensitive fractures publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2021.109171 – volume: 18 start-page: 300 year: 1968 ident: 10.1016/j.energy.2023.127780_bib58 article-title: Mathematical methods for cellular interactions in development II. Simple and branching filaments with two-sided inputs publication-title: J Theor Biol doi: 10.1016/0022-5193(68)90080-5 – volume: 438 year: 2022 ident: 10.1016/j.energy.2023.127780_bib5 article-title: Characterization of gas transport in shale: a multi-mechanism permeability modeling approach publication-title: Chem Eng J doi: 10.1016/j.cej.2022.135604 – volume: 361 start-page: 559 year: 2019 ident: 10.1016/j.energy.2023.127780_bib37 article-title: Mechanisms of shale gas adsorption: evidence from thermodynamics and kinetics study of methane adsorption on shale publication-title: Chem Eng J doi: 10.1016/j.cej.2018.11.185 – volume: 275 year: 2023 ident: 10.1016/j.energy.2023.127780_bib63 article-title: An ensemble transfer learning strategy for production prediction of shale gas wells publication-title: Energy doi: 10.1016/j.energy.2023.127443 – volume: 14 start-page: 746 year: 2017 ident: 10.1016/j.energy.2023.127780_bib33 article-title: Gas sorption and non-Darcy flow in shale reservoirs publication-title: Petrol Sci doi: 10.1007/s12182-017-0180-3 – volume: 15 start-page: 126 year: 2018 ident: 10.1016/j.energy.2023.127780_bib48 article-title: Performance-based fractal fracture network model for complex fracture network simulation publication-title: Petrol Sci doi: 10.1007/s12182-017-0202-1 – volume: 5 start-page: 31508 year: 2020 ident: 10.1016/j.energy.2023.127780_bib35 article-title: Insight into the adsorption of methane on gas shales and the induced shale swelling publication-title: ACS Omega doi: 10.1021/acsomega.0c02980 – volume: 263 year: 2022 ident: 10.1016/j.energy.2023.127780_bib40 article-title: An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery publication-title: Energy – volume: 213 year: 2022 ident: 10.1016/j.energy.2023.127780_bib4 article-title: A multi-scale quadruple-continuum model for production evaluation of shale gas reservoirs considering complex gas transfer mechanisms and geomechanics publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2022.110419 – volume: 184 year: 2020 ident: 10.1016/j.energy.2023.127780_bib53 article-title: Impacts of shale matrix mechanical interactions on gas transport during production publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2019.106524 – volume: 11 start-page: 806 issue: 3 year: 2023 ident: 10.1016/j.energy.2023.127780_bib66 article-title: A combined gated recurrent unit and multi-layer perceptron neural network model for predicting shale gas production publication-title: Processes doi: 10.3390/pr11030806 – volume: 254 year: 2022 ident: 10.1016/j.energy.2023.127780_bib31 article-title: Effects of gas components, reservoir property and pore structure of shale gas reservoir on the competitive adsorption behavior of CO2 and CH4 publication-title: Energy doi: 10.1016/j.energy.2022.124242 – volume: 9 start-page: 208 year: 2009 ident: 10.1016/j.energy.2023.127780_bib52 article-title: Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications publication-title: Geofluids doi: 10.1111/j.1468-8123.2009.00244.x – volume: 54 start-page: 1325 year: 1985 ident: 10.1016/j.energy.2023.127780_bib60 article-title: Fractal sandstone pores: implications for conductivity and pore formation publication-title: Phsy Rev Lett doi: 10.1103/PhysRevLett.54.1325 – volume: 11 issue: 24 year: 2021 ident: 10.1016/j.energy.2023.127780_bib65 article-title: Productivity prediction of fractured horizontal well in shale gas reservoirs with machine learning algorithms publication-title: Appl Sci doi: 10.3390/app112412064 – volume: 116 start-page: 455 year: 2014 ident: 10.1016/j.energy.2023.127780_bib19 article-title: Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs publication-title: Fuel doi: 10.1016/j.fuel.2013.08.032 – volume: 92 start-page: 1 year: 2012 ident: 10.1016/j.energy.2023.127780_bib7 article-title: Modelling permeability for coal reservoirs: a review of analytical models and testing data publication-title: Int J Coal Geol doi: 10.1016/j.coal.2011.12.009 – volume: 53 start-page: 9424 year: 2017 ident: 10.1016/j.energy.2023.127780_bib62 article-title: Inclusion of topological measurements into analytic estimates of effective permeability in fractured media publication-title: Water Resour Res doi: 10.1002/2017WR020943 – volume: 32 start-page: 5 year: 1979 ident: 10.1016/j.energy.2023.127780_bib61 article-title: fractals: form, chance and dimension publication-title: Phys – volume: 21 start-page: 589 year: 2016 ident: 10.1016/j.energy.2023.127780_bib39 article-title: Modeling gas adsorption in Marcellus shale with Langmuir and BET isotherms publication-title: SPE J doi: 10.2118/170801-PA – volume: 16 start-page: 1064 year: 2019 ident: 10.1016/j.energy.2023.127780_bib44 article-title: Drained rock volume around hydraulic fractures in porous media: planar fractures versus fractal networks publication-title: Petrol Sci doi: 10.1007/s12182-019-0333-7 – volume: 278 year: 2020 ident: 10.1016/j.energy.2023.127780_bib3 article-title: A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction publication-title: Fuel doi: 10.1016/j.fuel.2020.118214 – volume: 399 year: 2022 ident: 10.1016/j.energy.2023.127780_bib42 article-title: Phase-field method of crack branching during SC-CO2 fracturing: a new energy release rate criterion coupling pore pressure gradient publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.115366 – volume: 24 start-page: 252 year: 2015 ident: 10.1016/j.energy.2023.127780_bib15 article-title: Triple-continuum modeling of shale gas reservoirs considering the effect of organic matrix publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2015.03.032 – volume: 2118 start-page: 426 year: 1963 ident: 10.1016/j.energy.2023.127780_bib50 article-title: The behavior of naturally fractured reservoirs publication-title: SPE J – volume: 123 start-page: 657 year: 2018 ident: 10.1016/j.energy.2023.127780_bib26 article-title: Pressure-dependent transport characteristic of methane gas in slit nanopores publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.03.003 – volume: 34 start-page: 967 year: 2012 ident: 10.1016/j.energy.2023.127780_bib18 article-title: Analysis and mitigation opportunities of methane emissions from the energy sector publication-title: Energy Sources, Part A doi: 10.1080/15567031003716725 – volume: 235 start-page: 855 year: 2019 ident: 10.1016/j.energy.2023.127780_bib36 article-title: Absolute adsorption of light hydrocarbons and carbon dioxide in shale rock and isolated organic matrix publication-title: Fuel doi: 10.1016/j.fuel.2018.08.023 – volume: 7 year: 2017 ident: 10.1016/j.energy.2023.127780_bib34 article-title: Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation publication-title: Sci Rep doi: 10.1038/s41598-017-12123-x – volume: 28 start-page: 27 year: 2022 ident: 10.1016/j.energy.2023.127780_bib38 article-title: Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale publication-title: Adsorption doi: 10.1007/s10450-021-00350-8 – year: 2017 ident: 10.1016/j.energy.2023.127780_bib45 – start-page: 1 year: 2023 ident: 10.1016/j.energy.2023.127780_bib43 article-title: Spatial and temporal constraints of the cohesive modeling: a unified criterion for fluid-driven fracture publication-title: Int J Numer Methods Eng – volume: 40 start-page: 1361 year: 1918 ident: 10.1016/j.energy.2023.127780_bib28 article-title: The adsorption of gases on plane surfaces of glass, mica, and platinum publication-title: J Am Chem Soc doi: 10.1021/ja02242a004 – volume: 89 start-page: 1181 issue: 9 year: 2005 ident: 10.1016/j.energy.2023.127780_bib27 article-title: Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams publication-title: AAPG Bull doi: 10.1306/05110504114 – volume: 152 start-page: 50 year: 2015 ident: 10.1016/j.energy.2023.127780_bib9 article-title: Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects publication-title: Int J Coal Geol doi: 10.1016/j.coal.2015.10.004 – volume: 27 start-page: 808 year: 2015 ident: 10.1016/j.energy.2023.127780_bib20 article-title: A sequential model of shale gas transport under the influence of fully coupled multiple processes publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2015.09.031 – volume: 271 year: 2022 ident: 10.1016/j.energy.2023.127780_bib41 article-title: A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2022.108621 – volume: 257 year: 2022 ident: 10.1016/j.energy.2023.127780_bib51 article-title: Flow-coupled-geomechanical modelling of CO2 transport in depleted shale from a microscopic perspective publication-title: Energy doi: 10.1016/j.energy.2022.124727 – year: 2010 ident: 10.1016/j.energy.2023.127780_bib59 – volume: 244 year: 2022 ident: 10.1016/j.energy.2023.127780_bib56 article-title: Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale publication-title: Energy doi: 10.1016/j.energy.2021.122707 – volume: 7 start-page: 63 year: 2021 ident: 10.1016/j.energy.2023.127780_bib10 article-title: Numerical study of forward and reverse flow characteristics of rough-walled tree-like fracture networks publication-title: Geomech Geophys Geo-energy Geo-resour doi: 10.1007/s40948-021-00260-7 – volume: 193 year: 2020 ident: 10.1016/j.energy.2023.127780_bib32 article-title: Study of gas sorption, stress effects and analysis of effective porosity and permeability for shale gas reservoirs publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2020.107370 – volume: 280 year: 2022 ident: 10.1016/j.energy.2023.127780_bib21 article-title: Shale gas production from reservoirs with hierarchical multiscale structural heterogeneities publication-title: J Petrol Sci Eng – volume: 7 start-page: 3302 year: 2021 ident: 10.1016/j.energy.2023.127780_bib30 article-title: Permeability model for shale and ultra-tight gas formations: critical insights into the impact of dynamic adsorption publication-title: Energy Rep doi: 10.1016/j.egyr.2021.05.060 – volume: 22 start-page: 244 year: 2017 ident: 10.1016/j.energy.2023.127780_bib8 article-title: An integrative model to simulate gas transport and production coupled with gas adsorption, non-Darcy flow, surface diffusion, and stress dependence in organic-shale reservoirs publication-title: SPE J doi: 10.2118/174996-PA – volume: 30 start-page: 502 year: 2016 ident: 10.1016/j.energy.2023.127780_bib11 article-title: General gas permeability model for porous media: bridging the gaps between conventional and unconventional natural gas reservoirs publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.6b00683 – volume: 35 start-page: 911 year: 2021 ident: 10.1016/j.energy.2023.127780_bib14 article-title: Transport of shale gas in microporous/nanoporous media: molecular to pore-scale simulations publication-title: Energy – volume: 325 year: 2022 ident: 10.1016/j.energy.2023.127780_bib12 article-title: Water liberating/sealing effects on shale gas extraction: a fully coupled multidomain and multiphysics model publication-title: Fuel doi: 10.1016/j.fuel.2022.124953 |
| SSID | ssj0005899 |
| Score | 2.476742 |
| Snippet | Many fracture branches are generated during hydraulic fracturing to form complex fracture networks and the majority of the gas in the unstimulated region (USR)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127780 |
| SubjectTerms | algorithms Bifurcating fractures energy equations geometry Lindenmayer system algorithm Microseismic events Modified quadruple-domain model permeability shale sorption Stimulated/unstimulated region |
| Title | Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events |
| URI | https://dx.doi.org/10.1016/j.energy.2023.127780 https://www.proquest.com/docview/3153174983 |
| Volume | 278 |
| WOSCitedRecordID | wos001009663700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQvCAbTxk1G4m1KlcRJbPNWoXLTNPEwtL5FSWyLTG1SkqbqG79i_3fHdi5rJxh74KFRZDmu2_P1-Nj9vnMQeh8ImgkmQkeRLIQNCnEdlgKWuXSjlKkEvKYRCp_SszM2m_Hvo9FVp4VZz2lRsM2GL_-rqaENjK2ls_cwdz8oNMA9GB2uYHa4_pPhPye1Zl0JmxbW6kfqn7AOnGilUbUu86qVtKW5aip9ZKfJlFot1VSWITfRBXJypaPTX00iqmY5l44oF0le2NI5J1nZLI2QfaEJfbXMa82xN9mg6q3Dfist1DlNN5ZG3x88GBKqKTegBUNykZa9B2rMgpj0DZp6a45p8wuZd40z0-tCFqdlu_q2hxc-6dlZg2jLdcIg2HLIvi3q07pUz6fUFnu65e3twcPlWJrPMtZvMB66byfX3ln0eipix3K7jO0osR4ltqM8QPs-DTk4y_3J1-ns28AdYqYwaT_7TpNpiIO3Z_OnmGdn9TchzflT9KTdi-CJxdAzNJLFAXrUSdXrA3Q4HWSQ0LFdB-rn6DeADA8gwxpk2IAMDyDDGmT4BshwD7IPeII7iOFdiGEDMdxBDN-EGLYQe4F-fJqef_zitKU8nIwQvnKyUFEGd1EW-S73lScjn6kwpRBi8tSLksilinLYXafSV1xlwuOhTMNI8NBXkSCHaK8oC3mEMKGCpjq7tmJBAK8kyagbCAGPcR646hiR7suOszbPvS63Mo__Zupj5PRPLW2elzv6086OcRur2hg0BnDe8eS7zuwxuHL9_1xSyLKpYwLRh0cDzsjLe87mFXo8_Lpeo71V1cg36GG2XuV19bZF7zXajMgO |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+production+from+shale+reservoirs+with+bifurcating+fractures%3A+A+modified+quadruple-domain+model+coupling+microseismic+events&rft.jtitle=Energy+%28Oxford%29&rft.au=Micheal%2C+Marembo&rft.au=Yu%2C+Hao&rft.au=Meng%2C+SiWei&rft.au=Xu%2C+WenLong&rft.date=2023-09-01&rft.issn=0360-5442&rft.volume=278&rft.spage=127780&rft_id=info:doi/10.1016%2Fj.energy.2023.127780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_127780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |