Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems

This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by fil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 128; s. 417 - 425
Hlavní autoři: Mao, Yawen, Ding, Feng, Alsaedi, Ahmed, Hayat, Tasawar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2016
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by filtering the input-output data. A linear filter based multi-innovation stochastic gradient (LF-MISG) algorithm is proposed by the innovation expansion, in order to improve the computational efficiency of the LF-RLS algorithm. Furthermore, a time-varying factor is introduced in the linear filter to improve the convergence speed of the LF-MISG algorithm. The efficiency of the proposed algorithms are shown in comparison with the conventional identification algorithms. •Two filtering based identification methods are discussed for Hammerstein systems.•A filter based recursive least squares method is presented for Hammerstein systems.•A filter based multi-innovation stochastic gradient method is given for comparison.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2016.05.009