Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging
•Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial effects evaluated by simulations, phantom experiments, and in-vivo experiments.•Reveals that the proposed method has the potential for ultrafas...
Gespeichert in:
| Veröffentlicht in: | Ultrasonics Jg. 126; S. 106823 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2022
|
| Schlagworte: | |
| ISSN: | 0041-624X, 1874-9968, 1874-9968 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial effects evaluated by simulations, phantom experiments, and in-vivo experiments.•Reveals that the proposed method has the potential for ultrafast ultrasound imaging in image quality, computational complexity, and real-time frame rate.
Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time. |
|---|---|
| AbstractList | Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time.Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time. •Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial effects evaluated by simulations, phantom experiments, and in-vivo experiments.•Reveals that the proposed method has the potential for ultrafast ultrasound imaging in image quality, computational complexity, and real-time frame rate. Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time. |
| ArticleNumber | 106823 |
| Author | Wang, Wenping Zhang, Ziyou He, Qiong Feng, Ziliang |
| Author_xml | – sequence: 1 givenname: Wenping surname: Wang fullname: Wang, Wenping organization: National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu 610065, China – sequence: 2 givenname: Qiong surname: He fullname: He, Qiong organization: Tsinghua-Peking Joint Center for Life Sciences Department, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Ziyou surname: Zhang fullname: Zhang, Ziyou organization: National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu 610065, China – sequence: 4 givenname: Ziliang orcidid: 0000-0001-6484-7612 surname: Feng fullname: Feng, Ziliang email: fengziliang@scu.edu.cn organization: National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu 610065, China |
| BookMark | eNqFkDtvFDEUhS0UJDaBf0DhMhSz-LVjDwXSEhFACqIBRGd57OvIy4y92J6N-Pd4GSoKqO5D5zu691yii5giIPScki0ltH952C5TzaZsGWGsrXrF-CO0oUqKbhh6dYE2hAja9Ux8e4IuSzkQQoWifIPy3pljDSfAI5jZpzyHeI9HU8DhFHGbwrzM-GRyMNECvt6_ue0-fn2Bl3IWOoAjjrBkM7VSH1L-jpsJ_n2PN6WuXUlLdDjM5r5BT9Fjb6YCz_7UK_Tl9u3nm_fd3ad3H272d53lfKidkdQTSwh3A9s5Ak4pAUyJ3ThKPsqeMmf6nekZ8UwoLwjIwVs6AHfeeEX4FbpefY85_VigVD2HYmGaTIS0FM0k4YJKKYcmfbVKbU6lZPDahmpqSLEdHyZNiT4HrQ96fUefg9Zr0A0Wf8HH3F7NP_-HvV4xaBmcAmRdbICWsQsZbNUuhX8b_AIGrZ2d |
| CitedBy_id | crossref_primary_10_1109_TUFFC_2024_3474091 crossref_primary_10_1016_j_ultras_2023_106940 crossref_primary_10_1016_j_engappai_2023_107384 crossref_primary_10_1016_j_ultras_2024_107451 crossref_primary_10_1016_j_ymssp_2025_113094 crossref_primary_10_1016_j_ultras_2022_106864 crossref_primary_10_1109_TNNLS_2023_3282231 crossref_primary_10_1109_TUFFC_2023_3297571 crossref_primary_10_1109_TUFFC_2025_3581915 crossref_primary_10_1088_1742_6596_2966_1_012013 crossref_primary_10_1109_TUFFC_2024_3404622 crossref_primary_10_1007_s11045_025_00899_5 |
| Cites_doi | 10.1109/JBHI.2019.2950334 10.1109/JPROC.2019.2932116 10.1109/TUFFC.2017.2757880 10.1109/TUFFC.2011.1780 10.1109/IUS46767.2020.9251399 10.1055/s-0028-1109572 10.1016/j.compbiomed.2019.103522 10.1016/j.bspc.2020.101964 10.1109/ULTSYM.2016.7728908 10.1109/58.68467 10.1109/TUFFC.2019.2903795 10.1016/j.ultras.2020.106345 10.1109/TUFFC.2020.2993779 10.1016/S0301-5629(98)00126-4 10.1016/j.media.2021.102018 10.1016/j.phpro.2015.03.013 10.1109/TUFFC.2017.2747219 10.1117/1.1352752 10.1109/TUFFC.2007.431 10.1016/j.ultras.2020.106069 10.1016/j.ultras.2021.106576 10.1109/TMI.2008.928179 10.1109/TSP.2005.845436 10.1038/nmeth.1641 10.1109/TUFFC.2017.2736890 10.1109/TUFFC.2012.2508 10.1016/j.ultrasmedbio.2019.05.034 10.1109/58.139123 10.1109/TMI.2016.2644654 10.1109/CVPR.2015.7299173 10.1109/TUFFC.2014.2882 10.1109/TUFFC.2009.1067 10.1016/S0301-5629(98)00110-0 10.1109/MM.2011.65 10.1016/j.media.2017.07.005 10.1121/1.4919302 10.1109/TMI.2020.3008537 10.1109/TUFFC.2004.1295425 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1016/j.ultras.2022.106823 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1874-9968 |
| ExternalDocumentID | 10_1016_j_ultras_2022_106823 S0041624X22001299 |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 |
| ID | FETCH-LOGICAL-c339t-a71f0c003d925d0ed884e2845bb73b7612da65a620f248f40e79fc19e3dfaf803 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843964500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0041-624X 1874-9968 |
| IngestDate | Sun Sep 28 08:02:57 EDT 2025 Tue Nov 18 22:54:51 EST 2025 Sat Nov 29 07:29:15 EST 2025 Fri Feb 23 02:36:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Minimum variance beamforming Deep neural network Low computation complexity Ultrafast ultrasound imaging Adaptive beamforming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-a71f0c003d925d0ed884e2845bb73b7612da65a620f248f40e79fc19e3dfaf803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6484-7612 |
| PQID | 2703417779 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2703417779 crossref_citationtrail_10_1016_j_ultras_2022_106823 crossref_primary_10_1016_j_ultras_2022_106823 elsevier_sciencedirect_doi_10_1016_j_ultras_2022_106823 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Ultrasonics |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mace, Montaldo, Cohen, Baulac, Fink, Tanter (b0050) July 2011; 8 Zhou, Guo, Wang (b0175) 2021; 7 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (b0190) December 2017; 42 Tanter, Fink (b0005) January 2014; 61 Hyun, Brickson, Looby, Dahl (b0160) May 2019; 66 van Sloun, Cohen, Eldar (b0185) January 2020; 108 Shen (b0130) 2021; 112 Wang, Peng, Zheng, Han, Qiao (b0105) 2020; 116 Brands, Willigers, Ledoux, Reneman, Hoeks (b0020) December 1998; 24 Couture, Fink, Tanter (b0045) December 2012; 59 Deylami, Asl (b0125) 2019; 45 H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. A. Jensen, and O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, September 2016. Chomas, Dayton, May, Ferrara (b0040) April 2001; 6 So, Chen, Yiu, Yu (b0070) July 2011; 31 Bercoff, Montaldo, Loupas, Saver, Mire, Fink (b0030) January 2011; 58 Liu, He, Luo (b0100) April 2017; 36 Mor, Bar-Hillel (b0170) 2020; 103 Nair, Washington, Tran, Reiter, Lediju Bell (b0155) December 2020; 67 Sarvazyan, Rudenko, Swanson, Fowlkes, Emelianov (b0010) December 1998; 24 Gong, Song, Chen (b0090) November 2017; 64 Lorenz, Boyd (b0115) May 2005; 53 Zhang, Li, He, Zhang, Luo (b0140) October 2018 K. He and J. Sun, “Convolutional neural networks at constrained time cost,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5353-5360, June 2015. von Ramm, Smith, Pavy (b0060) March 1991; 38 Hansen, Udesen, Gran, Jensen, Nielsen (b0035) October 2009; 30 Zhang, He, Xiao, Zheng, Wang, Luo (b0165) May 2021; 70 Gasse, Millioz, Roux, Garcia, Liebgott, Friboulet (b0135) October 2017; 64 David, Robert, Zhang, Laine (b0080) May 2015; 137 Montaldo, Tanter, Bercoff, Benech, Fink (b0075) March 2009; 56 Zhou, Wang, Guo, Jiang, Qi (b0145) April 2020; 24 Bercoff, Tanter, Fink (b0015) April 2004; 51 . Goudarzi, Asif, Rivaz (b0210) September 2020 Luo, Fujikura, Tyrie, Tilson, Konofagou (b0025) April 2009; 28 N. Chennakeshava, B. Luijten, O. Drori, M. Mischi, Y. C. Eldar and R. J. G. van Sloun, “High resolution plane wave compounding through deep proximal learning,” 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, September 2020. Ozkan, Vishnevsky, Goksel (b0085) March 2018; 65 Jensen, Svendsen (b0195) March 1992; 39 Edelman, Macé (b0055) 2021; 18 Shen (b0110) 2020; 60 Luijten, Cohen, de Bruijn, Schmeitz, Msichi, Eldar (b0180) December 2020; 39 Zhang, Wang, Liu, He, Wang, Liao, Luo (b0095) 2022; 118 Cruza, Perez, Moreno, Fritsch (b0065) 2015; 63 Synnevag, Austeng, Holm (b0120) August 2007; 54 Mace (10.1016/j.ultras.2022.106823_b0050) 2011; 8 So (10.1016/j.ultras.2022.106823_b0070) 2011; 31 Zhang (10.1016/j.ultras.2022.106823_b0095) 2022; 118 David (10.1016/j.ultras.2022.106823_b0080) 2015; 137 Gasse (10.1016/j.ultras.2022.106823_b0135) 2017; 64 Couture (10.1016/j.ultras.2022.106823_b0045) 2012; 59 Zhang (10.1016/j.ultras.2022.106823_b0140) 2018 Zhou (10.1016/j.ultras.2022.106823_b0145) 2020; 24 Shen (10.1016/j.ultras.2022.106823_b0110) 2020; 60 Deylami (10.1016/j.ultras.2022.106823_b0125) 2019; 45 10.1016/j.ultras.2022.106823_b0150 Zhang (10.1016/j.ultras.2022.106823_b0165) 2021; 70 Gong (10.1016/j.ultras.2022.106823_b0090) 2017; 64 Luijten (10.1016/j.ultras.2022.106823_b0180) 2020; 39 Goudarzi (10.1016/j.ultras.2022.106823_b0210) 2020 Bercoff (10.1016/j.ultras.2022.106823_b0015) 2004; 51 Nair (10.1016/j.ultras.2022.106823_b0155) 2020; 67 Bercoff (10.1016/j.ultras.2022.106823_b0030) 2011; 58 Montaldo (10.1016/j.ultras.2022.106823_b0075) 2009; 56 Wang (10.1016/j.ultras.2022.106823_b0105) 2020; 116 Chomas (10.1016/j.ultras.2022.106823_b0040) 2001; 6 Luo (10.1016/j.ultras.2022.106823_b0025) 2009; 28 Hyun (10.1016/j.ultras.2022.106823_b0160) 2019; 66 Liu (10.1016/j.ultras.2022.106823_b0100) 2017; 36 Tanter (10.1016/j.ultras.2022.106823_b0005) 2014; 61 Shen (10.1016/j.ultras.2022.106823_b0130) 2021; 112 Lorenz (10.1016/j.ultras.2022.106823_b0115) 2005; 53 Mor (10.1016/j.ultras.2022.106823_b0170) 2020; 103 Ozkan (10.1016/j.ultras.2022.106823_b0085) 2018; 65 10.1016/j.ultras.2022.106823_b0200 Hansen (10.1016/j.ultras.2022.106823_b0035) 2009; 30 Cruza (10.1016/j.ultras.2022.106823_b0065) 2015; 63 van Sloun (10.1016/j.ultras.2022.106823_b0185) 2020; 108 Edelman (10.1016/j.ultras.2022.106823_b0055) 2021; 18 von Ramm (10.1016/j.ultras.2022.106823_b0060) 1991; 38 10.1016/j.ultras.2022.106823_b0205 Litjens (10.1016/j.ultras.2022.106823_b0190) 2017; 42 Jensen (10.1016/j.ultras.2022.106823_b0195) 1992; 39 Sarvazyan (10.1016/j.ultras.2022.106823_b0010) 1998; 24 Zhou (10.1016/j.ultras.2022.106823_b0175) 2021; 7 Brands (10.1016/j.ultras.2022.106823_b0020) 1998; 24 Synnevag (10.1016/j.ultras.2022.106823_b0120) 2007; 54 |
| References_xml | – volume: 7 year: 2021 ident: b0175 article-title: Ultrasound deep beamforming using a multiconstrained hybrid generative adversarial network publication-title: Med. Image Anal. – volume: 64 start-page: 1674 year: November 2017 end-page: 1683 ident: b0090 article-title: Hadamard-encoded multipulses for contrast-enhanced ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 118 year: 2022 ident: b0095 article-title: Acceleration of reconstruction for compressed sensing based synthetic transmit aperture imaging by using in-phase/quadrature data publication-title: Ultrasonics – volume: 53 start-page: 1684 year: May 2005 end-page: 1696 ident: b0115 article-title: Robust minimum variance beamforming publication-title: IEEE Trans. Signal Process. – volume: 64 start-page: 1637 year: October 2017 end-page: 1639 ident: b0135 article-title: High-quality plane wave compounding using convolutional neural networks publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 51 start-page: 396 year: April 2004 end-page: 409 ident: b0015 article-title: Supersonic shear imaging: a new technique for soft tissue elasticity mapping publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 63 start-page: 79 year: 2015 end-page: 84 ident: b0065 article-title: Real Time Fast Ultrasound Imaging Technology and Possible Applications publication-title: Physics Procedia – volume: 39 start-page: 262 year: March 1992 end-page: 267 ident: b0195 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 42 start-page: 60 year: December 2017 end-page: 88 ident: b0190 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – volume: 30 start-page: 471 year: October 2009 end-page: 477 ident: b0035 article-title: In-vivo examples of flow patterns with the fast vector velocity ultrasound method publication-title: Ultraschall Med. – reference: H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. A. Jensen, and O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, September 2016. – reference: K. He and J. Sun, “Convolutional neural networks at constrained time cost,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5353-5360, June 2015. – volume: 24 start-page: 1419 year: December 1998 end-page: 1435 ident: b0010 article-title: Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics publication-title: Ultrasound Med. Biol. – volume: 56 start-page: 489 year: March 2009 end-page: 506 ident: b0075 article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 58 start-page: 134 year: January 2011 end-page: 147 ident: b0030 article-title: Ultrafast compound doppler imaging: providing full blood flow characterization publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 65 start-page: 356 year: March 2018 end-page: 365 ident: b0085 article-title: Inverse problem of ultrasound beamforming with sparsity constraints and regularization publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 6 start-page: 141 year: April 2001 end-page: 150 ident: b0040 article-title: Threshold of fragmentation for ultrasonic contrast agents publication-title: J. Biomed. Opt. – volume: 112 year: 2021 ident: b0130 article-title: Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution publication-title: Ultrasonics – volume: 54 start-page: 1606 year: August 2007 end-page: 1613 ident: b0120 article-title: Adaptive beamforming applied to medical ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – reference: N. Chennakeshava, B. Luijten, O. Drori, M. Mischi, Y. C. Eldar and R. J. G. van Sloun, “High resolution plane wave compounding through deep proximal learning,” 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, September 2020. – volume: 24 start-page: 1325 year: December 1998 end-page: 1335 ident: b0020 article-title: A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound publication-title: Ultrasound Med. Biol. – volume: 60 year: 2020 ident: b0110 article-title: A Study of Double-Stage DMAS and p-DMAS for Their Relation in Baseband Ultrasound Beamforming publication-title: Biomed. Signal Process. Control – start-page: 1 year: September 2020 end-page: 4 ident: b0210 article-title: Ultrasound Beamforming using MobileNetV2 publication-title: 2020 IEEE International Ultrasonics Symposium (IUS) – volume: 66 start-page: 898 year: May 2019 end-page: 910 ident: b0160 article-title: Beamforming and speckle reduction using neural networks publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 36 start-page: 878 year: April 2017 end-page: 891 ident: b0100 article-title: A compressed sensing strategy for synthetic transmit aperture ultrasound imaging publication-title: IEEE Trans. Med. Imag. – start-page: 1 year: October 2018 end-page: 4 ident: b0140 article-title: High-quality reconstruction of plane-wave imaging using generative adversarial network publication-title: 2018 IEEE International Ultrasonics Symposium (IUS) – volume: 45 start-page: 2805 year: 2019 end-page: 2818 ident: b0125 article-title: High Resolution Minimum Variance Beamformer With Low Complexity in Medical Ultrasound Imaging publication-title: Ultrasound Med. Biol. – volume: 103 year: 2020 ident: b0170 article-title: A unified deep network for beamforming and speckle reduction in plane wave imaging: A simulation study publication-title: Ultrasonics – volume: 8 start-page: 662 year: July 2011 end-page: 664 ident: b0050 article-title: Functional ultrasound imaging of the brain publication-title: Nat. Methods – volume: 31 start-page: 54 year: July 2011 end-page: 65 ident: b0070 article-title: Medical ultrasound imaging: To GPU or not to GPU? publication-title: Micro IEEE – reference: . – volume: 38 start-page: 109 year: March 1991 end-page: 115 ident: b0060 article-title: High-speed ultrasound volumetric imaging system. II. Parallel processing and image display publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 67 start-page: 2493 year: December 2020 end-page: 2509 ident: b0155 article-title: Deep learning to obtain simultaneous image and segmentation outputs from a single input of raw ultrasound channel data publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 137 start-page: 2773 year: May 2015 end-page: 2784 ident: b0080 article-title: Time domain compressive beam forming of ultrasound signals publication-title: J. Acoust. Soc. Am. – volume: 61 start-page: 102 year: January 2014 end-page: 119 ident: b0005 article-title: Ultrafast imaging in biomedical ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 108 start-page: 11 year: January 2020 end-page: 29 ident: b0185 article-title: Deep learning in ultrasound imaging publication-title: Proc. IEEE – volume: 116 year: 2020 ident: b0105 article-title: A dynamic generalized coherence factor for side lobe suppression in ultrasound imaging publication-title: Comput. Biol. Med. – volume: 24 start-page: 943 year: April 2020 end-page: 956 ident: b0145 article-title: Ultrafast plane wave imaging with line-scan-quality using an ultrasound-transfer generative adversarial network publication-title: IEEE J. Biomed. Health. Inf. – volume: 59 start-page: 2676 year: December 2012 end-page: 2683 ident: b0045 article-title: Ultrasound contrast plane wave imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 28 start-page: 477 year: April 2009 end-page: 486 ident: b0025 article-title: Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo publication-title: IEEE Trans. Med. Imag. – volume: 39 start-page: 3967 year: December 2020 end-page: 3978 ident: b0180 article-title: Adaptive ultrasound beamforming using deep learning publication-title: IEEE Trans. Med. Imag. – volume: 18 year: 2021 ident: b0055 article-title: Functional ultrasound brain imaging: Bridging networks, neurons, and behavior publication-title: Current Opin. Biomed. Eng. – volume: 70 year: May 2021 ident: b0165 article-title: Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network publication-title: Med. Image Anal. – start-page: 1 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0210 article-title: Ultrasound Beamforming using MobileNetV2 – volume: 24 start-page: 943 issue: 4 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0145 article-title: Ultrafast plane wave imaging with line-scan-quality using an ultrasound-transfer generative adversarial network publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2019.2950334 – volume: 108 start-page: 11 issue: 1 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0185 article-title: Deep learning in ultrasound imaging publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2932116 – volume: 65 start-page: 356 issue: 3 year: 2018 ident: 10.1016/j.ultras.2022.106823_b0085 article-title: Inverse problem of ultrasound beamforming with sparsity constraints and regularization publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2017.2757880 – volume: 58 start-page: 134 issue: 1 year: 2011 ident: 10.1016/j.ultras.2022.106823_b0030 article-title: Ultrafast compound doppler imaging: providing full blood flow characterization publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2011.1780 – ident: 10.1016/j.ultras.2022.106823_b0150 doi: 10.1109/IUS46767.2020.9251399 – volume: 30 start-page: 471 issue: 5 year: 2009 ident: 10.1016/j.ultras.2022.106823_b0035 article-title: In-vivo examples of flow patterns with the fast vector velocity ultrasound method publication-title: Ultraschall Med. doi: 10.1055/s-0028-1109572 – volume: 116 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0105 article-title: A dynamic generalized coherence factor for side lobe suppression in ultrasound imaging publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103522 – volume: 60 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0110 article-title: A Study of Double-Stage DMAS and p-DMAS for Their Relation in Baseband Ultrasound Beamforming publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101964 – ident: 10.1016/j.ultras.2022.106823_b0200 doi: 10.1109/ULTSYM.2016.7728908 – volume: 38 start-page: 109 issue: 2 year: 1991 ident: 10.1016/j.ultras.2022.106823_b0060 article-title: High-speed ultrasound volumetric imaging system. II. Parallel processing and image display publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.68467 – volume: 66 start-page: 898 issue: 5 year: 2019 ident: 10.1016/j.ultras.2022.106823_b0160 article-title: Beamforming and speckle reduction using neural networks publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2903795 – volume: 112 year: 2021 ident: 10.1016/j.ultras.2022.106823_b0130 article-title: Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106345 – volume: 67 start-page: 2493 issue: 12 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0155 article-title: Deep learning to obtain simultaneous image and segmentation outputs from a single input of raw ultrasound channel data publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2993779 – volume: 24 start-page: 1325 issue: 9 year: 1998 ident: 10.1016/j.ultras.2022.106823_b0020 article-title: A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(98)00126-4 – volume: 70 year: 2021 ident: 10.1016/j.ultras.2022.106823_b0165 article-title: Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102018 – volume: 63 start-page: 79 year: 2015 ident: 10.1016/j.ultras.2022.106823_b0065 article-title: Real Time Fast Ultrasound Imaging Technology and Possible Applications publication-title: Physics Procedia doi: 10.1016/j.phpro.2015.03.013 – volume: 64 start-page: 1674 issue: 11 year: 2017 ident: 10.1016/j.ultras.2022.106823_b0090 article-title: Hadamard-encoded multipulses for contrast-enhanced ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2017.2747219 – volume: 6 start-page: 141 issue: 2 year: 2001 ident: 10.1016/j.ultras.2022.106823_b0040 article-title: Threshold of fragmentation for ultrasonic contrast agents publication-title: J. Biomed. Opt. doi: 10.1117/1.1352752 – volume: 54 start-page: 1606 issue: 8 year: 2007 ident: 10.1016/j.ultras.2022.106823_b0120 article-title: Adaptive beamforming applied to medical ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2007.431 – volume: 103 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0170 article-title: A unified deep network for beamforming and speckle reduction in plane wave imaging: A simulation study publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106069 – volume: 118 year: 2022 ident: 10.1016/j.ultras.2022.106823_b0095 article-title: Acceleration of reconstruction for compressed sensing based synthetic transmit aperture imaging by using in-phase/quadrature data publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106576 – volume: 28 start-page: 477 issue: 4 year: 2009 ident: 10.1016/j.ultras.2022.106823_b0025 article-title: Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2008.928179 – volume: 53 start-page: 1684 issue: 5 year: 2005 ident: 10.1016/j.ultras.2022.106823_b0115 article-title: Robust minimum variance beamforming publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.845436 – volume: 7 year: 2021 ident: 10.1016/j.ultras.2022.106823_b0175 article-title: Ultrasound deep beamforming using a multiconstrained hybrid generative adversarial network publication-title: Med. Image Anal. – volume: 8 start-page: 662 issue: 8 year: 2011 ident: 10.1016/j.ultras.2022.106823_b0050 article-title: Functional ultrasound imaging of the brain publication-title: Nat. Methods doi: 10.1038/nmeth.1641 – volume: 64 start-page: 1637 issue: 10 year: 2017 ident: 10.1016/j.ultras.2022.106823_b0135 article-title: High-quality plane wave compounding using convolutional neural networks publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2017.2736890 – volume: 59 start-page: 2676 issue: 12 year: 2012 ident: 10.1016/j.ultras.2022.106823_b0045 article-title: Ultrasound contrast plane wave imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2508 – volume: 45 start-page: 2805 issue: 10 year: 2019 ident: 10.1016/j.ultras.2022.106823_b0125 article-title: High Resolution Minimum Variance Beamformer With Low Complexity in Medical Ultrasound Imaging publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2019.05.034 – volume: 39 start-page: 262 year: 1992 ident: 10.1016/j.ultras.2022.106823_b0195 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.139123 – volume: 36 start-page: 878 issue: 4 year: 2017 ident: 10.1016/j.ultras.2022.106823_b0100 article-title: A compressed sensing strategy for synthetic transmit aperture ultrasound imaging publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2644654 – ident: 10.1016/j.ultras.2022.106823_b0205 doi: 10.1109/CVPR.2015.7299173 – start-page: 1 year: 2018 ident: 10.1016/j.ultras.2022.106823_b0140 article-title: High-quality reconstruction of plane-wave imaging using generative adversarial network – volume: 61 start-page: 102 issue: 1 year: 2014 ident: 10.1016/j.ultras.2022.106823_b0005 article-title: Ultrafast imaging in biomedical ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.2882 – volume: 56 start-page: 489 issue: 3 year: 2009 ident: 10.1016/j.ultras.2022.106823_b0075 article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2009.1067 – volume: 24 start-page: 1419 issue: 9 year: 1998 ident: 10.1016/j.ultras.2022.106823_b0010 article-title: Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(98)00110-0 – volume: 31 start-page: 54 issue: 5 year: 2011 ident: 10.1016/j.ultras.2022.106823_b0070 article-title: Medical ultrasound imaging: To GPU or not to GPU? publication-title: Micro IEEE doi: 10.1109/MM.2011.65 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.ultras.2022.106823_b0190 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 18 year: 2021 ident: 10.1016/j.ultras.2022.106823_b0055 article-title: Functional ultrasound brain imaging: Bridging networks, neurons, and behavior publication-title: Current Opin. Biomed. Eng. – volume: 137 start-page: 2773 issue: 5 year: 2015 ident: 10.1016/j.ultras.2022.106823_b0080 article-title: Time domain compressive beam forming of ultrasound signals publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4919302 – volume: 39 start-page: 3967 issue: 12 year: 2020 ident: 10.1016/j.ultras.2022.106823_b0180 article-title: Adaptive ultrasound beamforming using deep learning publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2020.3008537 – volume: 51 start-page: 396 issue: 4 year: 2004 ident: 10.1016/j.ultras.2022.106823_b0015 article-title: Supersonic shear imaging: a new technique for soft tissue elasticity mapping publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2004.1295425 |
| SSID | ssj0014813 |
| Score | 2.428602 |
| Snippet | •Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial... Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106823 |
| SubjectTerms | Adaptive beamforming Deep neural network Low computation complexity Minimum variance beamforming Ultrafast ultrasound imaging |
| Title | Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging |
| URI | https://dx.doi.org/10.1016/j.ultras.2022.106823 https://www.proquest.com/docview/2703417779 |
| Volume | 126 |
| WOSCitedRecordID | wos000843964500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DiT2gGCA2IDJSDyAqlSNk9b2Y0GbAMEEYj8qXiIntlGnNq3aphr89dzZSVpaoQESL1Z0cew099X-fL47E_IC5jwRZUYEmD4qiK3NAhEDkcNCyyiNtDs_5eIDPz0Vg4H81Gj8qGJhliOe5-L6Wk7_q6pBBsrG0Nm_UHfdKAjgGpQOJagdyj9SfF-rqfMHSo0aIyVFYwBOVho3BjCVyLgYt5awRnbRAsAw-69Pgo8XaB8onOVAGzNtYaJLUF_u3cSdN2IxWsyUVfOFv5rjiUyt4didc7ROcs_93XzNkf6yNEtfmnxa1XYWWBR-hm9Ri2oL9tfh90mxYqqVEM0y39ZtFYxt-H1sB9H4QTkOgx7zjppt48dhweMAlmLil4Hax9ZvDfre_nDV9r-9jR2DsCd8IPNGOu0v2B32xpgzwskdsst4V4om2e2_Ox68r_egYhGW_gn-9arAS-cduN3X74jNxhTveMvZPXK3XHDQvgfKfdIw-T7ZW0tDuU9uOzfgbP6AzCrw0DXwUAceOslpCR5agYe-9NB5RR1wKAKHeuDQEjgUGqE1cOgKOLQEzkNyfnJ89uZtUJ7KEWRRJBeB4qHtZDAZaMm6umO0ELEBktNNUx6lHBizVr2u6rGOZbGwccdwabNQmkhbZUUnekSa-SQ3jwlVMotVaIXSLMP9daEim1ognYJZm2p5QKLqkyZZmbIeT04ZJZVv4lXi3ztBRSReEQckqJ-a-pQtN9TnlbaSknZ6OpkAwG548nml3ARGZdxqU7mZFFAJJtI45JzLw39u_Qm5s_oPPSXNxawwz8itbLkYzmdHZIcPxFGJ2Z-N1rel |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+beamforming+based+on+minimum+variance+%28ABF-MV%29+using+deep+neural+network+for+ultrafast+ultrasound+imaging&rft.jtitle=Ultrasonics&rft.au=Wang%2C+Wenping&rft.au=He%2C+Qiong&rft.au=Zhang%2C+Ziyou&rft.au=Feng%2C+Ziliang&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0041-624X&rft.eissn=1874-9968&rft.volume=126&rft_id=info:doi/10.1016%2Fj.ultras.2022.106823&rft.externalDocID=S0041624X22001299 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |