Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging

•Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial effects evaluated by simulations, phantom experiments, and in-vivo experiments.•Reveals that the proposed method has the potential for ultrafas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics Jg. 126; S. 106823
Hauptverfasser: Wang, Wenping, He, Qiong, Zhang, Ziyou, Feng, Ziliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2022
Schlagworte:
ISSN:0041-624X, 1874-9968, 1874-9968
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial effects evaluated by simulations, phantom experiments, and in-vivo experiments.•Reveals that the proposed method has the potential for ultrafast ultrasound imaging in image quality, computational complexity, and real-time frame rate. Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time.
AbstractList Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time.Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time.
•Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial effects evaluated by simulations, phantom experiments, and in-vivo experiments.•Reveals that the proposed method has the potential for ultrafast ultrasound imaging in image quality, computational complexity, and real-time frame rate. Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with traditional scanline focused imaging. Using adaptive beamforming techniques can improve image quality at cost of real-time performance. In this work, an adaptive beamforming based on minimum variance (ABF-MV) with deep neural network (DNN) is proposed to improve the image performance and to speed up the beamforming process of ultrafast ultrasound imaging. In particular, a DNN, with a combination architecture of fully-connected network (FCN) and convolutional autoencoder (CAE), is trained with channel radio-frequency (RF) data as input while minimum variance (MV) beamformed data as ground truth. Conventional delay-and-sum (DAS) beamformer and MV beamformer are utilized for comparison to evaluate the performance of the proposed method with simulations, phantom experiments, and in-vivo experiments. The results show that the proposed method can achieve superior resolution and contrast performance, compared with DAS. Moreover, it is remarkable that both in theoretical analysis and implementation, our proposed method has comparable image quality, lower computational complexity, and faster frame rate, compared with MV. In conclusion, the proposed method has the potential to be deployed in ultrafast ultrasound imaging systems in terms of imaging performance and processing time.
ArticleNumber 106823
Author Wang, Wenping
Zhang, Ziyou
He, Qiong
Feng, Ziliang
Author_xml – sequence: 1
  givenname: Wenping
  surname: Wang
  fullname: Wang, Wenping
  organization: National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Qiong
  surname: He
  fullname: He, Qiong
  organization: Tsinghua-Peking Joint Center for Life Sciences Department, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Ziyou
  surname: Zhang
  fullname: Zhang, Ziyou
  organization: National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 4
  givenname: Ziliang
  orcidid: 0000-0001-6484-7612
  surname: Feng
  fullname: Feng, Ziliang
  email: fengziliang@scu.edu.cn
  organization: National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu 610065, China
BookMark eNqFkDtvFDEUhS0UJDaBf0DhMhSz-LVjDwXSEhFACqIBRGd57OvIy4y92J6N-Pd4GSoKqO5D5zu691yii5giIPScki0ltH952C5TzaZsGWGsrXrF-CO0oUqKbhh6dYE2hAja9Ux8e4IuSzkQQoWifIPy3pljDSfAI5jZpzyHeI9HU8DhFHGbwrzM-GRyMNECvt6_ue0-fn2Bl3IWOoAjjrBkM7VSH1L-jpsJ_n2PN6WuXUlLdDjM5r5BT9Fjb6YCz_7UK_Tl9u3nm_fd3ad3H272d53lfKidkdQTSwh3A9s5Ak4pAUyJ3ThKPsqeMmf6nekZ8UwoLwjIwVs6AHfeeEX4FbpefY85_VigVD2HYmGaTIS0FM0k4YJKKYcmfbVKbU6lZPDahmpqSLEdHyZNiT4HrQ96fUefg9Zr0A0Wf8HH3F7NP_-HvV4xaBmcAmRdbICWsQsZbNUuhX8b_AIGrZ2d
CitedBy_id crossref_primary_10_1109_TUFFC_2024_3474091
crossref_primary_10_1016_j_ultras_2023_106940
crossref_primary_10_1016_j_engappai_2023_107384
crossref_primary_10_1016_j_ultras_2024_107451
crossref_primary_10_1016_j_ymssp_2025_113094
crossref_primary_10_1016_j_ultras_2022_106864
crossref_primary_10_1109_TNNLS_2023_3282231
crossref_primary_10_1109_TUFFC_2023_3297571
crossref_primary_10_1109_TUFFC_2025_3581915
crossref_primary_10_1088_1742_6596_2966_1_012013
crossref_primary_10_1109_TUFFC_2024_3404622
crossref_primary_10_1007_s11045_025_00899_5
Cites_doi 10.1109/JBHI.2019.2950334
10.1109/JPROC.2019.2932116
10.1109/TUFFC.2017.2757880
10.1109/TUFFC.2011.1780
10.1109/IUS46767.2020.9251399
10.1055/s-0028-1109572
10.1016/j.compbiomed.2019.103522
10.1016/j.bspc.2020.101964
10.1109/ULTSYM.2016.7728908
10.1109/58.68467
10.1109/TUFFC.2019.2903795
10.1016/j.ultras.2020.106345
10.1109/TUFFC.2020.2993779
10.1016/S0301-5629(98)00126-4
10.1016/j.media.2021.102018
10.1016/j.phpro.2015.03.013
10.1109/TUFFC.2017.2747219
10.1117/1.1352752
10.1109/TUFFC.2007.431
10.1016/j.ultras.2020.106069
10.1016/j.ultras.2021.106576
10.1109/TMI.2008.928179
10.1109/TSP.2005.845436
10.1038/nmeth.1641
10.1109/TUFFC.2017.2736890
10.1109/TUFFC.2012.2508
10.1016/j.ultrasmedbio.2019.05.034
10.1109/58.139123
10.1109/TMI.2016.2644654
10.1109/CVPR.2015.7299173
10.1109/TUFFC.2014.2882
10.1109/TUFFC.2009.1067
10.1016/S0301-5629(98)00110-0
10.1109/MM.2011.65
10.1016/j.media.2017.07.005
10.1121/1.4919302
10.1109/TMI.2020.3008537
10.1109/TUFFC.2004.1295425
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.ultras.2022.106823
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
ExternalDocumentID 10_1016_j_ultras_2022_106823
S0041624X22001299
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
ID FETCH-LOGICAL-c339t-a71f0c003d925d0ed884e2845bb73b7612da65a620f248f40e79fc19e3dfaf803
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843964500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0041-624X
1874-9968
IngestDate Sun Sep 28 08:02:57 EDT 2025
Tue Nov 18 22:54:51 EST 2025
Sat Nov 29 07:29:15 EST 2025
Fri Feb 23 02:36:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Minimum variance beamforming
Deep neural network
Low computation complexity
Ultrafast ultrasound imaging
Adaptive beamforming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-a71f0c003d925d0ed884e2845bb73b7612da65a620f248f40e79fc19e3dfaf803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6484-7612
PQID 2703417779
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2703417779
crossref_citationtrail_10_1016_j_ultras_2022_106823
crossref_primary_10_1016_j_ultras_2022_106823
elsevier_sciencedirect_doi_10_1016_j_ultras_2022_106823
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Ultrasonics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mace, Montaldo, Cohen, Baulac, Fink, Tanter (b0050) July 2011; 8
Zhou, Guo, Wang (b0175) 2021; 7
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (b0190) December 2017; 42
Tanter, Fink (b0005) January 2014; 61
Hyun, Brickson, Looby, Dahl (b0160) May 2019; 66
van Sloun, Cohen, Eldar (b0185) January 2020; 108
Shen (b0130) 2021; 112
Wang, Peng, Zheng, Han, Qiao (b0105) 2020; 116
Brands, Willigers, Ledoux, Reneman, Hoeks (b0020) December 1998; 24
Couture, Fink, Tanter (b0045) December 2012; 59
Deylami, Asl (b0125) 2019; 45
H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. A. Jensen, and O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, September 2016.
Chomas, Dayton, May, Ferrara (b0040) April 2001; 6
So, Chen, Yiu, Yu (b0070) July 2011; 31
Bercoff, Montaldo, Loupas, Saver, Mire, Fink (b0030) January 2011; 58
Liu, He, Luo (b0100) April 2017; 36
Mor, Bar-Hillel (b0170) 2020; 103
Nair, Washington, Tran, Reiter, Lediju Bell (b0155) December 2020; 67
Sarvazyan, Rudenko, Swanson, Fowlkes, Emelianov (b0010) December 1998; 24
Gong, Song, Chen (b0090) November 2017; 64
Lorenz, Boyd (b0115) May 2005; 53
Zhang, Li, He, Zhang, Luo (b0140) October 2018
K. He and J. Sun, “Convolutional neural networks at constrained time cost,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5353-5360, June 2015.
von Ramm, Smith, Pavy (b0060) March 1991; 38
Hansen, Udesen, Gran, Jensen, Nielsen (b0035) October 2009; 30
Zhang, He, Xiao, Zheng, Wang, Luo (b0165) May 2021; 70
Gasse, Millioz, Roux, Garcia, Liebgott, Friboulet (b0135) October 2017; 64
David, Robert, Zhang, Laine (b0080) May 2015; 137
Montaldo, Tanter, Bercoff, Benech, Fink (b0075) March 2009; 56
Zhou, Wang, Guo, Jiang, Qi (b0145) April 2020; 24
Bercoff, Tanter, Fink (b0015) April 2004; 51
.
Goudarzi, Asif, Rivaz (b0210) September 2020
Luo, Fujikura, Tyrie, Tilson, Konofagou (b0025) April 2009; 28
N. Chennakeshava, B. Luijten, O. Drori, M. Mischi, Y. C. Eldar and R. J. G. van Sloun, “High resolution plane wave compounding through deep proximal learning,” 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, September 2020.
Ozkan, Vishnevsky, Goksel (b0085) March 2018; 65
Jensen, Svendsen (b0195) March 1992; 39
Edelman, Macé (b0055) 2021; 18
Shen (b0110) 2020; 60
Luijten, Cohen, de Bruijn, Schmeitz, Msichi, Eldar (b0180) December 2020; 39
Zhang, Wang, Liu, He, Wang, Liao, Luo (b0095) 2022; 118
Cruza, Perez, Moreno, Fritsch (b0065) 2015; 63
Synnevag, Austeng, Holm (b0120) August 2007; 54
Mace (10.1016/j.ultras.2022.106823_b0050) 2011; 8
So (10.1016/j.ultras.2022.106823_b0070) 2011; 31
Zhang (10.1016/j.ultras.2022.106823_b0095) 2022; 118
David (10.1016/j.ultras.2022.106823_b0080) 2015; 137
Gasse (10.1016/j.ultras.2022.106823_b0135) 2017; 64
Couture (10.1016/j.ultras.2022.106823_b0045) 2012; 59
Zhang (10.1016/j.ultras.2022.106823_b0140) 2018
Zhou (10.1016/j.ultras.2022.106823_b0145) 2020; 24
Shen (10.1016/j.ultras.2022.106823_b0110) 2020; 60
Deylami (10.1016/j.ultras.2022.106823_b0125) 2019; 45
10.1016/j.ultras.2022.106823_b0150
Zhang (10.1016/j.ultras.2022.106823_b0165) 2021; 70
Gong (10.1016/j.ultras.2022.106823_b0090) 2017; 64
Luijten (10.1016/j.ultras.2022.106823_b0180) 2020; 39
Goudarzi (10.1016/j.ultras.2022.106823_b0210) 2020
Bercoff (10.1016/j.ultras.2022.106823_b0015) 2004; 51
Nair (10.1016/j.ultras.2022.106823_b0155) 2020; 67
Bercoff (10.1016/j.ultras.2022.106823_b0030) 2011; 58
Montaldo (10.1016/j.ultras.2022.106823_b0075) 2009; 56
Wang (10.1016/j.ultras.2022.106823_b0105) 2020; 116
Chomas (10.1016/j.ultras.2022.106823_b0040) 2001; 6
Luo (10.1016/j.ultras.2022.106823_b0025) 2009; 28
Hyun (10.1016/j.ultras.2022.106823_b0160) 2019; 66
Liu (10.1016/j.ultras.2022.106823_b0100) 2017; 36
Tanter (10.1016/j.ultras.2022.106823_b0005) 2014; 61
Shen (10.1016/j.ultras.2022.106823_b0130) 2021; 112
Lorenz (10.1016/j.ultras.2022.106823_b0115) 2005; 53
Mor (10.1016/j.ultras.2022.106823_b0170) 2020; 103
Ozkan (10.1016/j.ultras.2022.106823_b0085) 2018; 65
10.1016/j.ultras.2022.106823_b0200
Hansen (10.1016/j.ultras.2022.106823_b0035) 2009; 30
Cruza (10.1016/j.ultras.2022.106823_b0065) 2015; 63
van Sloun (10.1016/j.ultras.2022.106823_b0185) 2020; 108
Edelman (10.1016/j.ultras.2022.106823_b0055) 2021; 18
von Ramm (10.1016/j.ultras.2022.106823_b0060) 1991; 38
10.1016/j.ultras.2022.106823_b0205
Litjens (10.1016/j.ultras.2022.106823_b0190) 2017; 42
Jensen (10.1016/j.ultras.2022.106823_b0195) 1992; 39
Sarvazyan (10.1016/j.ultras.2022.106823_b0010) 1998; 24
Zhou (10.1016/j.ultras.2022.106823_b0175) 2021; 7
Brands (10.1016/j.ultras.2022.106823_b0020) 1998; 24
Synnevag (10.1016/j.ultras.2022.106823_b0120) 2007; 54
References_xml – volume: 7
  year: 2021
  ident: b0175
  article-title: Ultrasound deep beamforming using a multiconstrained hybrid generative adversarial network
  publication-title: Med. Image Anal.
– volume: 64
  start-page: 1674
  year: November 2017
  end-page: 1683
  ident: b0090
  article-title: Hadamard-encoded multipulses for contrast-enhanced ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 118
  year: 2022
  ident: b0095
  article-title: Acceleration of reconstruction for compressed sensing based synthetic transmit aperture imaging by using in-phase/quadrature data
  publication-title: Ultrasonics
– volume: 53
  start-page: 1684
  year: May 2005
  end-page: 1696
  ident: b0115
  article-title: Robust minimum variance beamforming
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 1637
  year: October 2017
  end-page: 1639
  ident: b0135
  article-title: High-quality plane wave compounding using convolutional neural networks
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 51
  start-page: 396
  year: April 2004
  end-page: 409
  ident: b0015
  article-title: Supersonic shear imaging: a new technique for soft tissue elasticity mapping
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 63
  start-page: 79
  year: 2015
  end-page: 84
  ident: b0065
  article-title: Real Time Fast Ultrasound Imaging Technology and Possible Applications
  publication-title: Physics Procedia
– volume: 39
  start-page: 262
  year: March 1992
  end-page: 267
  ident: b0195
  article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 42
  start-page: 60
  year: December 2017
  end-page: 88
  ident: b0190
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 471
  year: October 2009
  end-page: 477
  ident: b0035
  article-title: In-vivo examples of flow patterns with the fast vector velocity ultrasound method
  publication-title: Ultraschall Med.
– reference: H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. A. Jensen, and O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” 2016 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, September 2016.
– reference: K. He and J. Sun, “Convolutional neural networks at constrained time cost,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5353-5360, June 2015.
– volume: 24
  start-page: 1419
  year: December 1998
  end-page: 1435
  ident: b0010
  article-title: Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics
  publication-title: Ultrasound Med. Biol.
– volume: 56
  start-page: 489
  year: March 2009
  end-page: 506
  ident: b0075
  article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 58
  start-page: 134
  year: January 2011
  end-page: 147
  ident: b0030
  article-title: Ultrafast compound doppler imaging: providing full blood flow characterization
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 65
  start-page: 356
  year: March 2018
  end-page: 365
  ident: b0085
  article-title: Inverse problem of ultrasound beamforming with sparsity constraints and regularization
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 6
  start-page: 141
  year: April 2001
  end-page: 150
  ident: b0040
  article-title: Threshold of fragmentation for ultrasonic contrast agents
  publication-title: J. Biomed. Opt.
– volume: 112
  year: 2021
  ident: b0130
  article-title: Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution
  publication-title: Ultrasonics
– volume: 54
  start-page: 1606
  year: August 2007
  end-page: 1613
  ident: b0120
  article-title: Adaptive beamforming applied to medical ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– reference: N. Chennakeshava, B. Luijten, O. Drori, M. Mischi, Y. C. Eldar and R. J. G. van Sloun, “High resolution plane wave compounding through deep proximal learning,” 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, September 2020.
– volume: 24
  start-page: 1325
  year: December 1998
  end-page: 1335
  ident: b0020
  article-title: A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound
  publication-title: Ultrasound Med. Biol.
– volume: 60
  year: 2020
  ident: b0110
  article-title: A Study of Double-Stage DMAS and p-DMAS for Their Relation in Baseband Ultrasound Beamforming
  publication-title: Biomed. Signal Process. Control
– start-page: 1
  year: September 2020
  end-page: 4
  ident: b0210
  article-title: Ultrasound Beamforming using MobileNetV2
  publication-title: 2020 IEEE International Ultrasonics Symposium (IUS)
– volume: 66
  start-page: 898
  year: May 2019
  end-page: 910
  ident: b0160
  article-title: Beamforming and speckle reduction using neural networks
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 36
  start-page: 878
  year: April 2017
  end-page: 891
  ident: b0100
  article-title: A compressed sensing strategy for synthetic transmit aperture ultrasound imaging
  publication-title: IEEE Trans. Med. Imag.
– start-page: 1
  year: October 2018
  end-page: 4
  ident: b0140
  article-title: High-quality reconstruction of plane-wave imaging using generative adversarial network
  publication-title: 2018 IEEE International Ultrasonics Symposium (IUS)
– volume: 45
  start-page: 2805
  year: 2019
  end-page: 2818
  ident: b0125
  article-title: High Resolution Minimum Variance Beamformer With Low Complexity in Medical Ultrasound Imaging
  publication-title: Ultrasound Med. Biol.
– volume: 103
  year: 2020
  ident: b0170
  article-title: A unified deep network for beamforming and speckle reduction in plane wave imaging: A simulation study
  publication-title: Ultrasonics
– volume: 8
  start-page: 662
  year: July 2011
  end-page: 664
  ident: b0050
  article-title: Functional ultrasound imaging of the brain
  publication-title: Nat. Methods
– volume: 31
  start-page: 54
  year: July 2011
  end-page: 65
  ident: b0070
  article-title: Medical ultrasound imaging: To GPU or not to GPU?
  publication-title: Micro IEEE
– reference: .
– volume: 38
  start-page: 109
  year: March 1991
  end-page: 115
  ident: b0060
  article-title: High-speed ultrasound volumetric imaging system. II. Parallel processing and image display
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 67
  start-page: 2493
  year: December 2020
  end-page: 2509
  ident: b0155
  article-title: Deep learning to obtain simultaneous image and segmentation outputs from a single input of raw ultrasound channel data
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 137
  start-page: 2773
  year: May 2015
  end-page: 2784
  ident: b0080
  article-title: Time domain compressive beam forming of ultrasound signals
  publication-title: J. Acoust. Soc. Am.
– volume: 61
  start-page: 102
  year: January 2014
  end-page: 119
  ident: b0005
  article-title: Ultrafast imaging in biomedical ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 108
  start-page: 11
  year: January 2020
  end-page: 29
  ident: b0185
  article-title: Deep learning in ultrasound imaging
  publication-title: Proc. IEEE
– volume: 116
  year: 2020
  ident: b0105
  article-title: A dynamic generalized coherence factor for side lobe suppression in ultrasound imaging
  publication-title: Comput. Biol. Med.
– volume: 24
  start-page: 943
  year: April 2020
  end-page: 956
  ident: b0145
  article-title: Ultrafast plane wave imaging with line-scan-quality using an ultrasound-transfer generative adversarial network
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 59
  start-page: 2676
  year: December 2012
  end-page: 2683
  ident: b0045
  article-title: Ultrasound contrast plane wave imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 28
  start-page: 477
  year: April 2009
  end-page: 486
  ident: b0025
  article-title: Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo
  publication-title: IEEE Trans. Med. Imag.
– volume: 39
  start-page: 3967
  year: December 2020
  end-page: 3978
  ident: b0180
  article-title: Adaptive ultrasound beamforming using deep learning
  publication-title: IEEE Trans. Med. Imag.
– volume: 18
  year: 2021
  ident: b0055
  article-title: Functional ultrasound brain imaging: Bridging networks, neurons, and behavior
  publication-title: Current Opin. Biomed. Eng.
– volume: 70
  year: May 2021
  ident: b0165
  article-title: Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network
  publication-title: Med. Image Anal.
– start-page: 1
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0210
  article-title: Ultrasound Beamforming using MobileNetV2
– volume: 24
  start-page: 943
  issue: 4
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0145
  article-title: Ultrafast plane wave imaging with line-scan-quality using an ultrasound-transfer generative adversarial network
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2019.2950334
– volume: 108
  start-page: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0185
  article-title: Deep learning in ultrasound imaging
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2932116
– volume: 65
  start-page: 356
  issue: 3
  year: 2018
  ident: 10.1016/j.ultras.2022.106823_b0085
  article-title: Inverse problem of ultrasound beamforming with sparsity constraints and regularization
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2017.2757880
– volume: 58
  start-page: 134
  issue: 1
  year: 2011
  ident: 10.1016/j.ultras.2022.106823_b0030
  article-title: Ultrafast compound doppler imaging: providing full blood flow characterization
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.1780
– ident: 10.1016/j.ultras.2022.106823_b0150
  doi: 10.1109/IUS46767.2020.9251399
– volume: 30
  start-page: 471
  issue: 5
  year: 2009
  ident: 10.1016/j.ultras.2022.106823_b0035
  article-title: In-vivo examples of flow patterns with the fast vector velocity ultrasound method
  publication-title: Ultraschall Med.
  doi: 10.1055/s-0028-1109572
– volume: 116
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0105
  article-title: A dynamic generalized coherence factor for side lobe suppression in ultrasound imaging
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103522
– volume: 60
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0110
  article-title: A Study of Double-Stage DMAS and p-DMAS for Their Relation in Baseband Ultrasound Beamforming
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101964
– ident: 10.1016/j.ultras.2022.106823_b0200
  doi: 10.1109/ULTSYM.2016.7728908
– volume: 38
  start-page: 109
  issue: 2
  year: 1991
  ident: 10.1016/j.ultras.2022.106823_b0060
  article-title: High-speed ultrasound volumetric imaging system. II. Parallel processing and image display
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.68467
– volume: 66
  start-page: 898
  issue: 5
  year: 2019
  ident: 10.1016/j.ultras.2022.106823_b0160
  article-title: Beamforming and speckle reduction using neural networks
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2903795
– volume: 112
  year: 2021
  ident: 10.1016/j.ultras.2022.106823_b0130
  article-title: Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106345
– volume: 67
  start-page: 2493
  issue: 12
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0155
  article-title: Deep learning to obtain simultaneous image and segmentation outputs from a single input of raw ultrasound channel data
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2993779
– volume: 24
  start-page: 1325
  issue: 9
  year: 1998
  ident: 10.1016/j.ultras.2022.106823_b0020
  article-title: A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(98)00126-4
– volume: 70
  year: 2021
  ident: 10.1016/j.ultras.2022.106823_b0165
  article-title: Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102018
– volume: 63
  start-page: 79
  year: 2015
  ident: 10.1016/j.ultras.2022.106823_b0065
  article-title: Real Time Fast Ultrasound Imaging Technology and Possible Applications
  publication-title: Physics Procedia
  doi: 10.1016/j.phpro.2015.03.013
– volume: 64
  start-page: 1674
  issue: 11
  year: 2017
  ident: 10.1016/j.ultras.2022.106823_b0090
  article-title: Hadamard-encoded multipulses for contrast-enhanced ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2017.2747219
– volume: 6
  start-page: 141
  issue: 2
  year: 2001
  ident: 10.1016/j.ultras.2022.106823_b0040
  article-title: Threshold of fragmentation for ultrasonic contrast agents
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1352752
– volume: 54
  start-page: 1606
  issue: 8
  year: 2007
  ident: 10.1016/j.ultras.2022.106823_b0120
  article-title: Adaptive beamforming applied to medical ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2007.431
– volume: 103
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0170
  article-title: A unified deep network for beamforming and speckle reduction in plane wave imaging: A simulation study
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106069
– volume: 118
  year: 2022
  ident: 10.1016/j.ultras.2022.106823_b0095
  article-title: Acceleration of reconstruction for compressed sensing based synthetic transmit aperture imaging by using in-phase/quadrature data
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106576
– volume: 28
  start-page: 477
  issue: 4
  year: 2009
  ident: 10.1016/j.ultras.2022.106823_b0025
  article-title: Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2008.928179
– volume: 53
  start-page: 1684
  issue: 5
  year: 2005
  ident: 10.1016/j.ultras.2022.106823_b0115
  article-title: Robust minimum variance beamforming
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.845436
– volume: 7
  year: 2021
  ident: 10.1016/j.ultras.2022.106823_b0175
  article-title: Ultrasound deep beamforming using a multiconstrained hybrid generative adversarial network
  publication-title: Med. Image Anal.
– volume: 8
  start-page: 662
  issue: 8
  year: 2011
  ident: 10.1016/j.ultras.2022.106823_b0050
  article-title: Functional ultrasound imaging of the brain
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1641
– volume: 64
  start-page: 1637
  issue: 10
  year: 2017
  ident: 10.1016/j.ultras.2022.106823_b0135
  article-title: High-quality plane wave compounding using convolutional neural networks
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2017.2736890
– volume: 59
  start-page: 2676
  issue: 12
  year: 2012
  ident: 10.1016/j.ultras.2022.106823_b0045
  article-title: Ultrasound contrast plane wave imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2508
– volume: 45
  start-page: 2805
  issue: 10
  year: 2019
  ident: 10.1016/j.ultras.2022.106823_b0125
  article-title: High Resolution Minimum Variance Beamformer With Low Complexity in Medical Ultrasound Imaging
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2019.05.034
– volume: 39
  start-page: 262
  year: 1992
  ident: 10.1016/j.ultras.2022.106823_b0195
  article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.139123
– volume: 36
  start-page: 878
  issue: 4
  year: 2017
  ident: 10.1016/j.ultras.2022.106823_b0100
  article-title: A compressed sensing strategy for synthetic transmit aperture ultrasound imaging
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2644654
– ident: 10.1016/j.ultras.2022.106823_b0205
  doi: 10.1109/CVPR.2015.7299173
– start-page: 1
  year: 2018
  ident: 10.1016/j.ultras.2022.106823_b0140
  article-title: High-quality reconstruction of plane-wave imaging using generative adversarial network
– volume: 61
  start-page: 102
  issue: 1
  year: 2014
  ident: 10.1016/j.ultras.2022.106823_b0005
  article-title: Ultrafast imaging in biomedical ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.2882
– volume: 56
  start-page: 489
  issue: 3
  year: 2009
  ident: 10.1016/j.ultras.2022.106823_b0075
  article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1067
– volume: 24
  start-page: 1419
  issue: 9
  year: 1998
  ident: 10.1016/j.ultras.2022.106823_b0010
  article-title: Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(98)00110-0
– volume: 31
  start-page: 54
  issue: 5
  year: 2011
  ident: 10.1016/j.ultras.2022.106823_b0070
  article-title: Medical ultrasound imaging: To GPU or not to GPU?
  publication-title: Micro IEEE
  doi: 10.1109/MM.2011.65
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.ultras.2022.106823_b0190
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 18
  year: 2021
  ident: 10.1016/j.ultras.2022.106823_b0055
  article-title: Functional ultrasound brain imaging: Bridging networks, neurons, and behavior
  publication-title: Current Opin. Biomed. Eng.
– volume: 137
  start-page: 2773
  issue: 5
  year: 2015
  ident: 10.1016/j.ultras.2022.106823_b0080
  article-title: Time domain compressive beam forming of ultrasound signals
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4919302
– volume: 39
  start-page: 3967
  issue: 12
  year: 2020
  ident: 10.1016/j.ultras.2022.106823_b0180
  article-title: Adaptive ultrasound beamforming using deep learning
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2020.3008537
– volume: 51
  start-page: 396
  issue: 4
  year: 2004
  ident: 10.1016/j.ultras.2022.106823_b0015
  article-title: Supersonic shear imaging: a new technique for soft tissue elasticity mapping
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2004.1295425
SSID ssj0014813
Score 2.428602
Snippet •Provides a deep neural network guided by minimum variance method for ultrafast ultrasound adaptive beamforming.•Shows that the proposed method’s beneficial...
Ultrafast ultrasound imaging can achieve high frame rate by emitting planewave (PW). However, the image quality is drastically degraded in comparison with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106823
SubjectTerms Adaptive beamforming
Deep neural network
Low computation complexity
Minimum variance beamforming
Ultrafast ultrasound imaging
Title Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging
URI https://dx.doi.org/10.1016/j.ultras.2022.106823
https://www.proquest.com/docview/2703417779
Volume 126
WOSCitedRecordID wos000843964500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DiT2gGCA2IDJSDyAqlSNk9b2Y0GbAMEEYj8qXiIntlGnNq3aphr89dzZSVpaoQESL1Z0cew099X-fL47E_IC5jwRZUYEmD4qiK3NAhEDkcNCyyiNtDs_5eIDPz0Vg4H81Gj8qGJhliOe5-L6Wk7_q6pBBsrG0Nm_UHfdKAjgGpQOJagdyj9SfF-rqfMHSo0aIyVFYwBOVho3BjCVyLgYt5awRnbRAsAw-69Pgo8XaB8onOVAGzNtYaJLUF_u3cSdN2IxWsyUVfOFv5rjiUyt4didc7ROcs_93XzNkf6yNEtfmnxa1XYWWBR-hm9Ri2oL9tfh90mxYqqVEM0y39ZtFYxt-H1sB9H4QTkOgx7zjppt48dhweMAlmLil4Hax9ZvDfre_nDV9r-9jR2DsCd8IPNGOu0v2B32xpgzwskdsst4V4om2e2_Ox68r_egYhGW_gn-9arAS-cduN3X74jNxhTveMvZPXK3XHDQvgfKfdIw-T7ZW0tDuU9uOzfgbP6AzCrw0DXwUAceOslpCR5agYe-9NB5RR1wKAKHeuDQEjgUGqE1cOgKOLQEzkNyfnJ89uZtUJ7KEWRRJBeB4qHtZDAZaMm6umO0ELEBktNNUx6lHBizVr2u6rGOZbGwccdwabNQmkhbZUUnekSa-SQ3jwlVMotVaIXSLMP9daEim1ognYJZm2p5QKLqkyZZmbIeT04ZJZVv4lXi3ztBRSReEQckqJ-a-pQtN9TnlbaSknZ6OpkAwG548nml3ARGZdxqU7mZFFAJJtI45JzLw39u_Qm5s_oPPSXNxawwz8itbLkYzmdHZIcPxFGJ2Z-N1rel
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+beamforming+based+on+minimum+variance+%28ABF-MV%29+using+deep+neural+network+for+ultrafast+ultrasound+imaging&rft.jtitle=Ultrasonics&rft.au=Wang%2C+Wenping&rft.au=He%2C+Qiong&rft.au=Zhang%2C+Ziyou&rft.au=Feng%2C+Ziliang&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0041-624X&rft.eissn=1874-9968&rft.volume=126&rft_id=info:doi/10.1016%2Fj.ultras.2022.106823&rft.externalDocID=S0041624X22001299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon