Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm
This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO2 are optimized by changing the engine control parameters including spark angle, VVT-I (...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 262; s. 125262 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2023
|
| Predmet: | |
| ISSN: | 0360-5442 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO2 are optimized by changing the engine control parameters including spark angle, VVT-I (intake), VVT-E (exhaust) and exhaust gas recirculation (EGR). The engine GT-Power physical model is used to generate training data for the SVM, and verify the accuracy of the results of NSGA Ⅲ algorithm during the optimization process. The SVM with fast calculation speed is used in the calculation of NSGA Ⅲ fitness evaluation. In addition, enhancing training is utilized to improve the accuracy of the SVM model in this research. When the optimization method is applied to the Atkinson cycle gasoline engine, its high efficiency has been presented. In the three plans obtained by GT-Power physical model with all four parameters optimized, the maximum reduction rates of BSFC, NOx, CO2 and CO (g/kW·h) reached 7.07%, 35.90%, 6.62% and 5.50% respectively. The SVM model is compared with back-propagation algorithm, and the result proves that SVM is more suitable for such problems. Finally, based on the Pareto optimal solution obtained by the optimization method, it significantly promotes the solution of multi-objective optimization problems. Theoretically, the time cost of the optimization method in this paper can reach 1/23 of that for the optimization algorithm directly driving physical model.
•High-accuracy simulation-optimization platform for the engine is developed.•NSGA Ⅲ and SVM are coupled, clarified and applied for the optimization of full engine MAPs.•Maximum reduction rates of BSFC, NOx, and CO (g/kW·h) reach 7.07%, 35.90%, and 5.50%.•Time cost of the optimization method of SVM model is 1/23 of that for the physical model. |
|---|---|
| AbstractList | This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO₂ are optimized by changing the engine control parameters including spark angle, VVT-I (intake), VVT-E (exhaust) and exhaust gas recirculation (EGR). The engine GT-Power physical model is used to generate training data for the SVM, and verify the accuracy of the results of NSGA Ⅲ algorithm during the optimization process. The SVM with fast calculation speed is used in the calculation of NSGA Ⅲ fitness evaluation. In addition, enhancing training is utilized to improve the accuracy of the SVM model in this research. When the optimization method is applied to the Atkinson cycle gasoline engine, its high efficiency has been presented. In the three plans obtained by GT-Power physical model with all four parameters optimized, the maximum reduction rates of BSFC, NOx, CO₂ and CO (g/kW·h) reached 7.07%, 35.90%, 6.62% and 5.50% respectively. The SVM model is compared with back-propagation algorithm, and the result proves that SVM is more suitable for such problems. Finally, based on the Pareto optimal solution obtained by the optimization method, it significantly promotes the solution of multi-objective optimization problems. Theoretically, the time cost of the optimization method in this paper can reach 1/23 of that for the optimization algorithm directly driving physical model. This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO2 are optimized by changing the engine control parameters including spark angle, VVT-I (intake), VVT-E (exhaust) and exhaust gas recirculation (EGR). The engine GT-Power physical model is used to generate training data for the SVM, and verify the accuracy of the results of NSGA Ⅲ algorithm during the optimization process. The SVM with fast calculation speed is used in the calculation of NSGA Ⅲ fitness evaluation. In addition, enhancing training is utilized to improve the accuracy of the SVM model in this research. When the optimization method is applied to the Atkinson cycle gasoline engine, its high efficiency has been presented. In the three plans obtained by GT-Power physical model with all four parameters optimized, the maximum reduction rates of BSFC, NOx, CO2 and CO (g/kW·h) reached 7.07%, 35.90%, 6.62% and 5.50% respectively. The SVM model is compared with back-propagation algorithm, and the result proves that SVM is more suitable for such problems. Finally, based on the Pareto optimal solution obtained by the optimization method, it significantly promotes the solution of multi-objective optimization problems. Theoretically, the time cost of the optimization method in this paper can reach 1/23 of that for the optimization algorithm directly driving physical model. •High-accuracy simulation-optimization platform for the engine is developed.•NSGA Ⅲ and SVM are coupled, clarified and applied for the optimization of full engine MAPs.•Maximum reduction rates of BSFC, NOx, and CO (g/kW·h) reach 7.07%, 35.90%, and 5.50%.•Time cost of the optimization method of SVM model is 1/23 of that for the physical model. |
| ArticleNumber | 125262 |
| Author | Ouyang, Minggao Zhou, Shi Yang, Fuyuan Li, Yangyang Liu, Jingping Dang, Jian Tong, Ji |
| Author_xml | – sequence: 1 givenname: Yangyang surname: Li fullname: Li, Yangyang email: lyy025930@163.com organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China – sequence: 2 givenname: Shi surname: Zhou fullname: Zhou, Shi email: 769536391@qq.com organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China – sequence: 3 givenname: Jingping surname: Liu fullname: Liu, Jingping email: l19620426@163.com organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China – sequence: 4 givenname: Ji surname: Tong fullname: Tong, Ji organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China – sequence: 5 givenname: Jian surname: Dang fullname: Dang, Jian email: 3371486484@qq.com organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China – sequence: 6 givenname: Fuyuan surname: Yang fullname: Yang, Fuyuan organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Minggao surname: Ouyang fullname: Ouyang, Minggao organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China |
| BookMark | eNqFkL1uFDEQx10kEkngDShcptmLP_YzBdIpggQpQAHUltee3fPFay-296JLnzfgCXg0noRdlooCqtFI8_vPzO8cnTjvAKHXlGwooeXVfgMOQn_cMMLYhrKClewEnRFekqzIc_YCnce4J4QUddOcoe8fJptM5ts9qGQOgP2YzGCeZDLeYd_htAO8TQ_GxblXR2UB9zJ6axxgcP1Spmhcjz9-vt3in88_sPLTaEHjR5N2OE7j6EPChzneBzxItVsQ6TRupXrIxuBH2a_bpO19mKHhJTrtpI3w6k-9QF_fvf1yc5fdf7p9f7O9zxTnTcpkCTlpFKkUZblUdUXyRmtdkZpCS1vKua5Ak6YodZuzXFNZV1xB13W8UF1Z8At0uebOV3ybICYxmKjAWunAT1Gwita8Jpwvo_k6qoKPMUAnxmAGGY6CErGIF3uxiheLeLGKn7HrvzBl0u9vU5DG_g9-s8IwOzgYCCIqA06BNmHWKbQ3_w74BWmgqhw |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_130253 crossref_primary_10_1007_s00170_023_11371_8 crossref_primary_10_3390_en16145258 crossref_primary_10_1016_j_energy_2023_129005 crossref_primary_10_1016_j_energy_2023_127641 crossref_primary_10_1016_j_enconman_2025_120071 crossref_primary_10_1016_j_energy_2023_128793 crossref_primary_10_3390_buildings15030420 crossref_primary_10_1016_j_ijhydene_2024_07_084 crossref_primary_10_3389_fenvs_2023_1194918 crossref_primary_10_3390_pr13051492 crossref_primary_10_1016_j_energy_2025_138564 crossref_primary_10_3390_en18174576 crossref_primary_10_1016_j_energy_2023_130163 crossref_primary_10_1109_ACCESS_2024_3378527 crossref_primary_10_1016_j_energy_2024_132521 crossref_primary_10_1016_j_enconman_2025_119719 crossref_primary_10_1016_j_fuel_2023_129799 crossref_primary_10_1016_j_energy_2024_133932 crossref_primary_10_1016_j_fuel_2023_129970 crossref_primary_10_1108_ILT_12_2023_0417 crossref_primary_10_1016_j_energy_2024_130966 crossref_primary_10_3390_en18112701 crossref_primary_10_1016_j_energy_2023_126856 crossref_primary_10_1016_j_icheatmasstransfer_2025_109220 crossref_primary_10_3390_en16093632 crossref_primary_10_1016_j_energy_2023_127965 crossref_primary_10_3389_fenrg_2023_1201815 crossref_primary_10_1016_j_aei_2024_102486 crossref_primary_10_1016_j_eswa_2024_125082 crossref_primary_10_1016_j_fuel_2024_131556 crossref_primary_10_1016_j_icheatmasstransfer_2024_108575 crossref_primary_10_1016_j_rcim_2025_103007 crossref_primary_10_3390_jmse13010094 |
| Cites_doi | 10.1016/j.apenergy.2012.12.061 10.1016/j.apenergy.2016.11.072 10.1016/j.enconman.2021.114052 10.1016/j.fuel.2020.117824 10.1016/j.enconman.2008.08.034 10.1007/s11771-015-2972-1 10.1016/j.csite.2021.101100 10.1016/j.apenergy.2011.11.060 10.1016/j.enconman.2016.11.037 10.1016/j.applthermaleng.2018.03.080 10.1016/j.apenergy.2020.114519 10.1016/j.applthermaleng.2016.10.042 10.1016/j.fuel.2020.117472 10.1016/j.etran.2020.100050 10.1016/j.apenergy.2005.05.008 10.1016/j.enconman.2020.112742 10.1016/j.apenergy.2015.03.126 10.1016/j.fuel.2020.119324 10.1016/j.enconman.2020.113788 10.1016/j.etran.2022.100184 10.1016/j.ijhydene.2019.03.137 10.1016/j.matpr.2020.07.204 10.1016/j.fuel.2019.115803 10.1016/j.apenergy.2016.04.099 10.1016/j.fuel.2019.116736 10.1016/j.egypro.2015.12.141 10.1016/j.apenergy.2020.115081 10.1016/j.ijhydene.2019.10.250 10.1016/j.aej.2022.01.072 10.1016/j.enconman.2021.113871 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.125262 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_125262 S0360544222021478 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-a6e409c07c124ac87049ddd7081eb1b133d7ed0956db424d1a873cefff35cf653 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880372500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 11:56:47 EDT 2025 Tue Nov 18 22:25:26 EST 2025 Sat Nov 29 07:24:53 EST 2025 Fri Feb 23 02:37:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Atkinson cycle gasoline engine Digital twins Support vector machine algorithm Back-propagation algorithm NSGA Ⅲ algorithm Enhancing training |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-a6e409c07c124ac87049ddd7081eb1b133d7ed0956db424d1a873cefff35cf653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2718380335 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718380335 crossref_primary_10_1016_j_energy_2022_125262 crossref_citationtrail_10_1016_j_energy_2022_125262 elsevier_sciencedirect_doi_10_1016_j_energy_2022_125262 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tong, Li, Liu (bib36) 2021; 238 Ding (bib22) 2011; 40 Yuan, Liu, Fu, Liu, Wang, Xia (bib37) 2017; 132 Guan, Li, Liu, Duan, Shen, Jia, Ku (bib42) 2021; 236 Yang, Miganakallu, Miller, Vinhaes, Worm, Naber, Roth (bib17) 2020; 262 Kargul, Stuhldreher, Barba, Schenk, Bohac, McDonald, mobility (bib12) 2019; 1 Gao, Xu, Men (bib16) 2018; 52 Khurana, Saxena, Jain, Dixit (bib34) 2021; 38 Wang, Shi, Yu (bib45) 2013 Kamiuto (bib13) 2006; 83 Yu, Yu (bib20) 2009 Zareei (bib27) 2020; 45 Han (bib35) 2009 Liu, Zhang, Meng (bib33) 2022 Boretti, Scalzo (bib15) 2011 Zhao, Xu (bib23) 2013; 105 Benajes, Serrano, Molina, Novella (bib14) 2009; 50 Techonologies (bib39) 2016 Chen, Chen, Wang, Geng, Zeng (bib7) 2020; 210 Luk, Abdulrahem, Xia (bib1) 2020 Veza, Afzal, Mujtaba (bib30) 2022; 61 Jian, Yongqiang, Larsen (bib6) 2020 De Bellis, Gimelli, Muccillo (bib4) 2015; 81 Kakaee, Rahnama, Paykani (bib19) 2015; 22 Xie, Li, Zhao, Dong, Wang, Liu, Guan, Duan (bib40) 2020; 267 Zhao, Xu, Li, Wang, Liu (bib46) 2012; 92 Guan, He, Zhang, Ahmed, EL-Seesy, Wen, Zhang, Yang (bib32) 2021; 283 Takahashi, Nakata, Yoshihara, Ohta, Nishiura (bib11) 2015 Li, Wang, Wang, Liu, Xie, Li (bib38) 2019; 255 Li, Wang, Duan, Liu, Liu, Hu (bib2) 2021; 230 Gad, He, EL-Shafay, EL-Seesy (bib31) 2021; 26 Niu, Wang, Hu, Yang, Wang (bib29) 2018; 137 Li Y, Deng X, Minggao Ouyang et al. Energy management of a parallel hybrid electric vehicle based on Lyapunov algorithm. eTransport. .2022(13). Lather (bib8) 2019; 44 Bendu, Deepak, Murugan (bib28) 2017; 187 Aydın, Uslu, Çelik (bib26) 2020; 269 Lotfan, Ghiasi, Fallah, Sadeghi (bib24) 2016; 175 Qiao, Li, Wang, Wang, Liu (bib41) 2020; 275 Zhu, Zhang, Li, Wu, Han, Lv, Li, Xiao (bib18) 2015; 157 Niu, Yang, Wang, Wang (bib44) 2017; 111 Li, Wang, Zeng, Cristianini, Taylor (bib21) 2004 Chacko, Sachidanandam (bib10) 2020; 3 Wang, Li, Fu, Liu, Dong, Tong (bib5) 2020; 263 Li, Zhang, Ouyang (bib9) 2022; 22 Wang, Zhao, Liu (bib25) 2015; 33 Bi, Wang (bib43) 2019; 34 Chen (10.1016/j.energy.2022.125262_bib7) 2020; 210 Kamiuto (10.1016/j.energy.2022.125262_bib13) 2006; 83 Boretti (10.1016/j.energy.2022.125262_bib15) 2011 Chacko (10.1016/j.energy.2022.125262_bib10) 2020; 3 Gao (10.1016/j.energy.2022.125262_bib16) 2018; 52 Ding (10.1016/j.energy.2022.125262_bib22) 2011; 40 Benajes (10.1016/j.energy.2022.125262_bib14) 2009; 50 Wang (10.1016/j.energy.2022.125262_bib25) 2015; 33 Xie (10.1016/j.energy.2022.125262_bib40) 2020; 267 Niu (10.1016/j.energy.2022.125262_bib44) 2017; 111 Guan (10.1016/j.energy.2022.125262_bib32) 2021; 283 Li (10.1016/j.energy.2022.125262_bib2) 2021; 230 Yu (10.1016/j.energy.2022.125262_bib20) 2009 Qiao (10.1016/j.energy.2022.125262_bib41) 2020; 275 Tong (10.1016/j.energy.2022.125262_bib36) 2021; 238 Wang (10.1016/j.energy.2022.125262_bib5) 2020; 263 Zhao (10.1016/j.energy.2022.125262_bib23) 2013; 105 Veza (10.1016/j.energy.2022.125262_bib30) 2022; 61 Guan (10.1016/j.energy.2022.125262_bib42) 2021; 236 Lotfan (10.1016/j.energy.2022.125262_bib24) 2016; 175 Han (10.1016/j.energy.2022.125262_bib35) 2009 Niu (10.1016/j.energy.2022.125262_bib29) 2018; 137 Techonologies (10.1016/j.energy.2022.125262_bib39) 2016 Takahashi (10.1016/j.energy.2022.125262_bib11) 2015 Kakaee (10.1016/j.energy.2022.125262_bib19) 2015; 22 Bendu (10.1016/j.energy.2022.125262_bib28) 2017; 187 Li (10.1016/j.energy.2022.125262_bib9) 2022; 22 Aydın (10.1016/j.energy.2022.125262_bib26) 2020; 269 10.1016/j.energy.2022.125262_bib3 Luk (10.1016/j.energy.2022.125262_bib1) 2020 Gad (10.1016/j.energy.2022.125262_bib31) 2021; 26 Li (10.1016/j.energy.2022.125262_bib38) 2019; 255 Wang (10.1016/j.energy.2022.125262_bib45) 2013 Lather (10.1016/j.energy.2022.125262_bib8) 2019; 44 Kargul (10.1016/j.energy.2022.125262_bib12) 2019; 1 Yuan (10.1016/j.energy.2022.125262_bib37) 2017; 132 Zhao (10.1016/j.energy.2022.125262_bib46) 2012; 92 De Bellis (10.1016/j.energy.2022.125262_bib4) 2015; 81 Yang (10.1016/j.energy.2022.125262_bib17) 2020; 262 Liu (10.1016/j.energy.2022.125262_bib33) 2022 Jian (10.1016/j.energy.2022.125262_bib6) 2020 Li (10.1016/j.energy.2022.125262_bib21) 2004 Zhu (10.1016/j.energy.2022.125262_bib18) 2015; 157 Khurana (10.1016/j.energy.2022.125262_bib34) 2021; 38 Zareei (10.1016/j.energy.2022.125262_bib27) 2020; 45 Bi (10.1016/j.energy.2022.125262_bib43) 2019; 34 |
| References_xml | – year: 2015 ident: bib11 article-title: Combustion development to achieve engine thermal efficiency of 40% for hybrid vehicles – start-page: 307 year: 2022 ident: bib33 article-title: Real-time emergency load shedding for power system transient stability control: a risk-averse deep learning method publication-title: Appl Energy – volume: 187 start-page: 601 year: 2017 end-page: 611 ident: bib28 article-title: Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO publication-title: Appl Energy – volume: 81 start-page: 874 year: 2015 end-page: 882 ident: bib4 article-title: Effects of pre-lift intake valve strategies on the performance of a DISI VVA turbocharged engine at part and full load operation publication-title: Energy Proc – volume: 275 year: 2020 ident: bib41 article-title: Experimental investigation and numerical assessment the effects of EGR and hydrogen addition strategies on performance, energy and exergy characteristics of a heavy-duty lean-burn NGSI engine publication-title: Fuel – year: 2020 ident: bib6 article-title: Implications of road transport electrification: a long-term scenario-dependent analysis in China publication-title: eTransport. – year: 2020 ident: bib1 article-title: Low-cost high-performance ferrite permanent magnet machines in EV applications: a comprehensive review publication-title: eTransport. – volume: 1 start-page: 601 year: 2019 ident: bib12 article-title: Benchmarking a 2018 Toyota camry 2.5-liter atkinson cycle engine with cooled-EGR publication-title: SAE Int J of Adv – volume: 267 year: 2020 ident: bib40 article-title: Microsimulation of electric vehicle energy consumption and driving range publication-title: Appl Energy – volume: 38 start-page: 280 year: 2021 end-page: 284 ident: bib34 article-title: Predictive modeling of engine emissions using machine learning: a review publication-title: Mater Today Proc – year: 2009 ident: bib35 article-title: Research on automatic transmission method of construction vehicles based on support vector machine – volume: 175 start-page: 91 year: 2016 end-page: 99 ident: bib24 article-title: ANN-based modeling and reducing dual-fuel engine's challenging emissions by multi-objective evolutionary algorithm NSGA-II publication-title: Appl Energy – volume: 50 start-page: 174 year: 2009 end-page: 183 ident: bib14 article-title: Management, Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine publication-title: Energy Convers Manag – volume: 137 start-page: 218 year: 2018 end-page: 227 ident: bib29 article-title: Multi-objective online optimization of a marine diesel engine using NSGA-II coupled with enhancing trained support vector machine publication-title: Appl Therm Eng – volume: 44 start-page: 21181 year: 2019 end-page: 21192 ident: bib8 article-title: Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels publication-title: Int J Hydrogen Energy – volume: 22 start-page: 4235 year: 2015 end-page: 4245 ident: bib19 article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption publication-title: J Central South – volume: 92 start-page: 492 year: 2012 end-page: 502 ident: bib46 article-title: Design and optimization of an atkinson cycle engine with the artificial neural network method publication-title: Appl Energy – volume: 255 year: 2019 ident: bib38 article-title: Quantitative investigation of the effects of CR, EGR and spark timing strategies on performance, combustion and NOx emissions characteristics of a heavy-duty natural gas engine fueled with 99% methane content publication-title: Fuel – volume: 22 year: 2022 ident: bib9 article-title: Experimental the effect of lye flow rate, temperature, system pressure and differ-ent current density on energy consumption in Catalyst test and 500W commercial alkaline water electrolysis publication-title: Mater Today Phys – year: 2009 ident: bib20 article-title: Neural network control. Xi'an – year: 2004 ident: bib21 article-title: Introduction to support vector machines. Translation – volume: 52 start-page: 47 year: 2018 end-page: 54+62 ident: bib16 article-title: Optimization and pumping loss analysis on atkinson cycle engine considering valve timing and EGR publication-title: J.Xi’ an Jiaotong Univ – volume: 105 start-page: 335 year: 2013 end-page: 348 ident: bib23 article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm publication-title: Appl Energy – volume: 111 start-page: 1353 year: 2017 end-page: 1364 ident: bib44 article-title: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine publication-title: Appl Thermal Energy – volume: 33 start-page: 370 year: 2015 end-page: 377 ident: bib25 article-title: Optimization of geometrical compression ratio for an atkinson cycle engine based on artificial neural network and genetic algorithm publication-title: J Internal Combustion Eng – volume: 40 start-page: 2 year: 2011 end-page: 10 ident: bib22 article-title: An overview on theory and algorithm of support vector machines publication-title: J Univ Electron Sci Technol – volume: 238 start-page: 116212 year: 2021 ident: bib36 article-title: Experiment analysis and computational optimization of the Atkinson cycle gasoline engine through NSGA Ⅱ algorithm using machine learning publication-title: Energy Convers Manag – volume: 34 start-page: 369 year: 2019 end-page: 376 ident: bib43 article-title: An NSGA-Ⅲ algorithm based on reference point constraint domination publication-title: Control Decis – year: 2016 ident: bib39 – volume: 236 year: 2021 ident: bib42 article-title: Management, Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins publication-title: Energy Convers Manag – volume: 263 year: 2020 ident: bib5 article-title: Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content publication-title: Fuel – volume: 269 year: 2020 ident: bib26 article-title: Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: a combined application of ANN and RSM based optimization publication-title: Fuel – year: 2013 ident: bib45 article-title: Analysis of 43 cases of MATLAB neural network – volume: 83 start-page: 583 year: 2006 end-page: 593 ident: bib13 article-title: Comparison of basic gas cycles under the restriction of constant heat addition publication-title: Appl Energy – volume: 132 start-page: 388 year: 2017 end-page: 399 ident: bib37 article-title: Management, Quantitative analysis on the thermodynamics processes of gasoline engine and correction of the control equations for heat-work conversion efficiency publication-title: Energy Convers Manag – volume: 283 year: 2021 ident: bib32 article-title: Effect of asymmetric structural characteristics of multi-hole marine diesel injectors on internal cavitation patterns and flow characteristics: a numerical study publication-title: Fuel – volume: 157 start-page: 789 year: 2015 end-page: 797 ident: bib18 article-title: Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau publication-title: Appl Energy – volume: 61 start-page: 8363 year: 2022 end-page: 8391 ident: bib30 article-title: Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine publication-title: Alex Eng J – volume: 230 year: 2021 ident: bib2 article-title: Management, Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins publication-title: Energy Convers Manag – volume: 45 start-page: 322 year: 2020 end-page: 336 ident: bib27 article-title: Optimization and study of performance parameters in an engine fueled with hydrogen publication-title: J Hydrogen Energy – volume: 262 year: 2020 ident: bib17 article-title: Investigation of high load operation of spark-ignited over-expanded Atkinson cycle engine publication-title: Appl Energy – volume: 3 year: 2020 ident: bib10 article-title: Optimization & validation of Intelligent Energy Management System for pseudo dynamic predictive regulation of plug-in hybrid electric vehicle as donor clients publication-title: eTransport. – reference: Li Y, Deng X, Minggao Ouyang et al. Energy management of a parallel hybrid electric vehicle based on Lyapunov algorithm. eTransport. .2022(13). – volume: 210 year: 2020 ident: bib7 article-title: Management, Parametric study on effects of excess air/fuel ratio, spark timing, and methanol injection timing on combustion characteristics and performance of natural gas/methanol dual-fuel engine at low loads publication-title: Energy Convers Manag – year: 2011 ident: bib15 article-title: Exploring the advantages of atkinson effects in variable compression ratio turbo GDI engines – volume: 26 year: 2021 ident: bib31 article-title: Combustion characteristics of a diesel engine running with Mandarin essential oil -diesel mixtures and propanol additive under different exhaust gas recirculation: experimental investigation and numerical simulation publication-title: Case Stud Therm Eng – volume: 105 start-page: 335 year: 2013 ident: 10.1016/j.energy.2022.125262_bib23 article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.061 – volume: 187 start-page: 601 year: 2017 ident: 10.1016/j.energy.2022.125262_bib28 article-title: Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.072 – volume: 236 year: 2021 ident: 10.1016/j.energy.2022.125262_bib42 article-title: Management, Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114052 – volume: 275 year: 2020 ident: 10.1016/j.energy.2022.125262_bib41 article-title: Experimental investigation and numerical assessment the effects of EGR and hydrogen addition strategies on performance, energy and exergy characteristics of a heavy-duty lean-burn NGSI engine publication-title: Fuel doi: 10.1016/j.fuel.2020.117824 – volume: 40 start-page: 2 issue: 1 year: 2011 ident: 10.1016/j.energy.2022.125262_bib22 article-title: An overview on theory and algorithm of support vector machines publication-title: J Univ Electron Sci Technol – volume: 50 start-page: 174 year: 2009 ident: 10.1016/j.energy.2022.125262_bib14 article-title: Management, Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2008.08.034 – year: 2016 ident: 10.1016/j.energy.2022.125262_bib39 – volume: 22 year: 2022 ident: 10.1016/j.energy.2022.125262_bib9 article-title: Experimental the effect of lye flow rate, temperature, system pressure and differ-ent current density on energy consumption in Catalyst test and 500W commercial alkaline water electrolysis publication-title: Mater Today Phys – volume: 22 start-page: 4235 year: 2015 ident: 10.1016/j.energy.2022.125262_bib19 article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption publication-title: J Central South doi: 10.1007/s11771-015-2972-1 – volume: 26 year: 2021 ident: 10.1016/j.energy.2022.125262_bib31 article-title: Combustion characteristics of a diesel engine running with Mandarin essential oil -diesel mixtures and propanol additive under different exhaust gas recirculation: experimental investigation and numerical simulation publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101100 – volume: 92 start-page: 492 year: 2012 ident: 10.1016/j.energy.2022.125262_bib46 article-title: Design and optimization of an atkinson cycle engine with the artificial neural network method publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.11.060 – volume: 132 start-page: 388 year: 2017 ident: 10.1016/j.energy.2022.125262_bib37 article-title: Management, Quantitative analysis on the thermodynamics processes of gasoline engine and correction of the control equations for heat-work conversion efficiency publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.11.037 – year: 2015 ident: 10.1016/j.energy.2022.125262_bib11 – volume: 137 start-page: 218 year: 2018 ident: 10.1016/j.energy.2022.125262_bib29 article-title: Multi-objective online optimization of a marine diesel engine using NSGA-II coupled with enhancing trained support vector machine publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.03.080 – volume: 262 year: 2020 ident: 10.1016/j.energy.2022.125262_bib17 article-title: Investigation of high load operation of spark-ignited over-expanded Atkinson cycle engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114519 – volume: 111 start-page: 1353 year: 2017 ident: 10.1016/j.energy.2022.125262_bib44 article-title: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine publication-title: Appl Thermal Energy doi: 10.1016/j.applthermaleng.2016.10.042 – volume: 269 year: 2020 ident: 10.1016/j.energy.2022.125262_bib26 article-title: Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: a combined application of ANN and RSM based optimization publication-title: Fuel doi: 10.1016/j.fuel.2020.117472 – issue: 6 year: 2020 ident: 10.1016/j.energy.2022.125262_bib1 article-title: Low-cost high-performance ferrite permanent magnet machines in EV applications: a comprehensive review publication-title: eTransport. – volume: 3 year: 2020 ident: 10.1016/j.energy.2022.125262_bib10 article-title: Optimization & validation of Intelligent Energy Management System for pseudo dynamic predictive regulation of plug-in hybrid electric vehicle as donor clients publication-title: eTransport. doi: 10.1016/j.etran.2020.100050 – volume: 83 start-page: 583 year: 2006 ident: 10.1016/j.energy.2022.125262_bib13 article-title: Comparison of basic gas cycles under the restriction of constant heat addition publication-title: Appl Energy doi: 10.1016/j.apenergy.2005.05.008 – volume: 52 start-page: 47 issue: 3 year: 2018 ident: 10.1016/j.energy.2022.125262_bib16 article-title: Optimization and pumping loss analysis on atkinson cycle engine considering valve timing and EGR publication-title: J.Xi’ an Jiaotong Univ – volume: 210 year: 2020 ident: 10.1016/j.energy.2022.125262_bib7 article-title: Management, Parametric study on effects of excess air/fuel ratio, spark timing, and methanol injection timing on combustion characteristics and performance of natural gas/methanol dual-fuel engine at low loads publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112742 – volume: 157 start-page: 789 year: 2015 ident: 10.1016/j.energy.2022.125262_bib18 article-title: Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.126 – volume: 283 year: 2021 ident: 10.1016/j.energy.2022.125262_bib32 article-title: Effect of asymmetric structural characteristics of multi-hole marine diesel injectors on internal cavitation patterns and flow characteristics: a numerical study publication-title: Fuel doi: 10.1016/j.fuel.2020.119324 – start-page: 307 year: 2022 ident: 10.1016/j.energy.2022.125262_bib33 article-title: Real-time emergency load shedding for power system transient stability control: a risk-averse deep learning method publication-title: Appl Energy – year: 2009 ident: 10.1016/j.energy.2022.125262_bib35 – volume: 34 start-page: 369 issue: 2 year: 2019 ident: 10.1016/j.energy.2022.125262_bib43 article-title: An NSGA-Ⅲ algorithm based on reference point constraint domination publication-title: Control Decis – year: 2009 ident: 10.1016/j.energy.2022.125262_bib20 – issue: 6 year: 2020 ident: 10.1016/j.energy.2022.125262_bib6 article-title: Implications of road transport electrification: a long-term scenario-dependent analysis in China publication-title: eTransport. – volume: 33 start-page: 370 issue: 4 year: 2015 ident: 10.1016/j.energy.2022.125262_bib25 article-title: Optimization of geometrical compression ratio for an atkinson cycle engine based on artificial neural network and genetic algorithm publication-title: J Internal Combustion Eng – volume: 230 year: 2021 ident: 10.1016/j.energy.2022.125262_bib2 article-title: Management, Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113788 – ident: 10.1016/j.energy.2022.125262_bib3 doi: 10.1016/j.etran.2022.100184 – volume: 44 start-page: 21181 year: 2019 ident: 10.1016/j.energy.2022.125262_bib8 article-title: Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.03.137 – volume: 38 start-page: 280 issue: 1 year: 2021 ident: 10.1016/j.energy.2022.125262_bib34 article-title: Predictive modeling of engine emissions using machine learning: a review publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.07.204 – volume: 255 year: 2019 ident: 10.1016/j.energy.2022.125262_bib38 article-title: Quantitative investigation of the effects of CR, EGR and spark timing strategies on performance, combustion and NOx emissions characteristics of a heavy-duty natural gas engine fueled with 99% methane content publication-title: Fuel doi: 10.1016/j.fuel.2019.115803 – volume: 175 start-page: 91 year: 2016 ident: 10.1016/j.energy.2022.125262_bib24 article-title: ANN-based modeling and reducing dual-fuel engine's challenging emissions by multi-objective evolutionary algorithm NSGA-II publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.099 – volume: 263 year: 2020 ident: 10.1016/j.energy.2022.125262_bib5 article-title: Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content publication-title: Fuel doi: 10.1016/j.fuel.2019.116736 – volume: 81 start-page: 874 year: 2015 ident: 10.1016/j.energy.2022.125262_bib4 article-title: Effects of pre-lift intake valve strategies on the performance of a DISI VVA turbocharged engine at part and full load operation publication-title: Energy Proc doi: 10.1016/j.egypro.2015.12.141 – year: 2004 ident: 10.1016/j.energy.2022.125262_bib21 – year: 2013 ident: 10.1016/j.energy.2022.125262_bib45 – volume: 1 start-page: 601 year: 2019 ident: 10.1016/j.energy.2022.125262_bib12 article-title: Benchmarking a 2018 Toyota camry 2.5-liter atkinson cycle engine with cooled-EGR publication-title: SAE Int J of Adv – volume: 267 year: 2020 ident: 10.1016/j.energy.2022.125262_bib40 article-title: Microsimulation of electric vehicle energy consumption and driving range publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115081 – year: 2011 ident: 10.1016/j.energy.2022.125262_bib15 – volume: 45 start-page: 322 year: 2020 ident: 10.1016/j.energy.2022.125262_bib27 article-title: Optimization and study of performance parameters in an engine fueled with hydrogen publication-title: J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.250 – volume: 61 start-page: 8363 issue: Issue 11 year: 2022 ident: 10.1016/j.energy.2022.125262_bib30 article-title: Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine publication-title: Alex Eng J doi: 10.1016/j.aej.2022.01.072 – volume: 238 start-page: 116212 year: 2021 ident: 10.1016/j.energy.2022.125262_bib36 article-title: Experiment analysis and computational optimization of the Atkinson cycle gasoline engine through NSGA Ⅱ algorithm using machine learning publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113871 |
| SSID | ssj0005899 |
| Score | 2.5537932 |
| Snippet | This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125262 |
| SubjectTerms | Atkinson cycle gasoline engine Back-propagation algorithm carbon dioxide Digital twins energy energy use and consumption Enhancing training gasoline engines NSGA Ⅲ algorithm Support vector machine algorithm support vector machines system optimization |
| Title | Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2022.125262 https://www.proquest.com/docview/2718380335 |
| Volume | 262 |
| WOSCitedRecordID | wos000880372500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLhJcVrCwYvmTkeAUpWripEmOFSo_K1QhUaRyihzb6bbbJlXTVN0H2DfgCbjyVjwJE_8kbVew7IFLVFljx9V8nfk6nhkj9BpIABeBoLbfTbjtJRGxo8BxbYc7Ik18yh2eyssmgsEgHI2iz63WT1MLs54FWRZuNtHiv6oaxkDZVensLdRdLwoD8BmUDk9QOzz_SfGypNbOk6kyZVYORmGuqy1NRkBvdSGrvix2CbOtMS1ySTeF7E5olTKAMPjyvmfJZAj_Tc-1WF4uZiZZvSgXFXG31jLob81lSqY6iUgou7DBLoOlUu-ks3G-hEnznVMAVXNYNTvdqPz6OiLxSSYYfKPZ-JJqvyoj23kpQ7Xnk0ZQjpzBZheTRnJosown2yENl2yFNEwpV8f2PW_HTLvaaitDC7xMD1zzASocMW0L-UXa8AK33Yjvttzec4V1gqLJfZvGapW4WiVWq9xBh27gR-AFDnsf-6OzJqMolNeV1rs3lZoynfD6bv7EhPY4gSQ6wwfoSP9DwT2FrIeoJbJjdM8UsBfH6KTfFEeCoPYOxSP0fQ96eBt6OE8xQA8b6GEJPWyghxX0sIQerqCHf139wBp0uAId1qDDCnRYgw4D6PA-6HANusfo67v-8O0HW9_6YTNCopVNu8LrRKwTMKCelIE_8SLOeQDcFXhF4hDCA8Gr_pk88VyPOzQMCBNpmhKfpV2fnKCDLM_EE4QJF6JiyISS0Ot4LEndNKSCO8RLKU-TU0SMBmKmW-JXN7PM4r_p_xTZ9ayFaglzg3xglBtrWqvoagyIvWHmK4OFGKx-dZRHM5GXRewCpSRhhxD_6S138wzdb35yz9HBalmKF-guW68mxfKlhvRvy8TYWA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+the+Atkinson+cycle+gasoline+engine+using+NSGA+%E2%85%A2+coupled+with+support+vector+machine+and+back-propagation+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Yangyang&rft.au=Zhou%2C+Shi&rft.au=Liu%2C+Jingping&rft.au=Tong%2C+Ji&rft.date=2023-01-01&rft.issn=0360-5442&rft.volume=262&rft.spage=125262&rft_id=info:doi/10.1016%2Fj.energy.2022.125262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125262 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |