Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm

This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO2 are optimized by changing the engine control parameters including spark angle, VVT-I (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 262; s. 125262
Hlavní autori: Li, Yangyang, Zhou, Shi, Liu, Jingping, Tong, Ji, Dang, Jian, Yang, Fuyuan, Ouyang, Minggao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2023
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO2 are optimized by changing the engine control parameters including spark angle, VVT-I (intake), VVT-E (exhaust) and exhaust gas recirculation (EGR). The engine GT-Power physical model is used to generate training data for the SVM, and verify the accuracy of the results of NSGA Ⅲ algorithm during the optimization process. The SVM with fast calculation speed is used in the calculation of NSGA Ⅲ fitness evaluation. In addition, enhancing training is utilized to improve the accuracy of the SVM model in this research. When the optimization method is applied to the Atkinson cycle gasoline engine, its high efficiency has been presented. In the three plans obtained by GT-Power physical model with all four parameters optimized, the maximum reduction rates of BSFC, NOx, CO2 and CO (g/kW·h) reached 7.07%, 35.90%, 6.62% and 5.50% respectively. The SVM model is compared with back-propagation algorithm, and the result proves that SVM is more suitable for such problems. Finally, based on the Pareto optimal solution obtained by the optimization method, it significantly promotes the solution of multi-objective optimization problems. Theoretically, the time cost of the optimization method in this paper can reach 1/23 of that for the optimization algorithm directly driving physical model. •High-accuracy simulation-optimization platform for the engine is developed.•NSGA Ⅲ and SVM are coupled, clarified and applied for the optimization of full engine MAPs.•Maximum reduction rates of BSFC, NOx, and CO (g/kW·h) reach 7.07%, 35.90%, and 5.50%.•Time cost of the optimization method of SVM model is 1/23 of that for the physical model.
AbstractList This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO₂ are optimized by changing the engine control parameters including spark angle, VVT-I (intake), VVT-E (exhaust) and exhaust gas recirculation (EGR). The engine GT-Power physical model is used to generate training data for the SVM, and verify the accuracy of the results of NSGA Ⅲ algorithm during the optimization process. The SVM with fast calculation speed is used in the calculation of NSGA Ⅲ fitness evaluation. In addition, enhancing training is utilized to improve the accuracy of the SVM model in this research. When the optimization method is applied to the Atkinson cycle gasoline engine, its high efficiency has been presented. In the three plans obtained by GT-Power physical model with all four parameters optimized, the maximum reduction rates of BSFC, NOx, CO₂ and CO (g/kW·h) reached 7.07%, 35.90%, 6.62% and 5.50% respectively. The SVM model is compared with back-propagation algorithm, and the result proves that SVM is more suitable for such problems. Finally, based on the Pareto optimal solution obtained by the optimization method, it significantly promotes the solution of multi-objective optimization problems. Theoretically, the time cost of the optimization method in this paper can reach 1/23 of that for the optimization algorithm directly driving physical model.
This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ algorithm, brake specific fuel consumption (BSFC), NOx and CO2 are optimized by changing the engine control parameters including spark angle, VVT-I (intake), VVT-E (exhaust) and exhaust gas recirculation (EGR). The engine GT-Power physical model is used to generate training data for the SVM, and verify the accuracy of the results of NSGA Ⅲ algorithm during the optimization process. The SVM with fast calculation speed is used in the calculation of NSGA Ⅲ fitness evaluation. In addition, enhancing training is utilized to improve the accuracy of the SVM model in this research. When the optimization method is applied to the Atkinson cycle gasoline engine, its high efficiency has been presented. In the three plans obtained by GT-Power physical model with all four parameters optimized, the maximum reduction rates of BSFC, NOx, CO2 and CO (g/kW·h) reached 7.07%, 35.90%, 6.62% and 5.50% respectively. The SVM model is compared with back-propagation algorithm, and the result proves that SVM is more suitable for such problems. Finally, based on the Pareto optimal solution obtained by the optimization method, it significantly promotes the solution of multi-objective optimization problems. Theoretically, the time cost of the optimization method in this paper can reach 1/23 of that for the optimization algorithm directly driving physical model. •High-accuracy simulation-optimization platform for the engine is developed.•NSGA Ⅲ and SVM are coupled, clarified and applied for the optimization of full engine MAPs.•Maximum reduction rates of BSFC, NOx, and CO (g/kW·h) reach 7.07%, 35.90%, and 5.50%.•Time cost of the optimization method of SVM model is 1/23 of that for the physical model.
ArticleNumber 125262
Author Ouyang, Minggao
Zhou, Shi
Yang, Fuyuan
Li, Yangyang
Liu, Jingping
Dang, Jian
Tong, Ji
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Li
  fullname: Li, Yangyang
  email: lyy025930@163.com
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
– sequence: 2
  givenname: Shi
  surname: Zhou
  fullname: Zhou, Shi
  email: 769536391@qq.com
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
– sequence: 3
  givenname: Jingping
  surname: Liu
  fullname: Liu, Jingping
  email: l19620426@163.com
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
– sequence: 4
  givenname: Ji
  surname: Tong
  fullname: Tong, Ji
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Jian
  surname: Dang
  fullname: Dang, Jian
  email: 3371486484@qq.com
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
– sequence: 6
  givenname: Fuyuan
  surname: Yang
  fullname: Yang, Fuyuan
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Minggao
  surname: Ouyang
  fullname: Ouyang, Minggao
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
BookMark eNqFkL1uFDEQx10kEkngDShcptmLP_YzBdIpggQpQAHUltee3fPFay-296JLnzfgCXg0noRdlooCqtFI8_vPzO8cnTjvAKHXlGwooeXVfgMOQn_cMMLYhrKClewEnRFekqzIc_YCnce4J4QUddOcoe8fJptM5ts9qGQOgP2YzGCeZDLeYd_htAO8TQ_GxblXR2UB9zJ6axxgcP1Spmhcjz9-vt3in88_sPLTaEHjR5N2OE7j6EPChzneBzxItVsQ6TRupXrIxuBH2a_bpO19mKHhJTrtpI3w6k-9QF_fvf1yc5fdf7p9f7O9zxTnTcpkCTlpFKkUZblUdUXyRmtdkZpCS1vKua5Ak6YodZuzXFNZV1xB13W8UF1Z8At0uebOV3ybICYxmKjAWunAT1Gwita8Jpwvo_k6qoKPMUAnxmAGGY6CErGIF3uxiheLeLGKn7HrvzBl0u9vU5DG_g9-s8IwOzgYCCIqA06BNmHWKbQ3_w74BWmgqhw
CitedBy_id crossref_primary_10_1016_j_energy_2024_130253
crossref_primary_10_1007_s00170_023_11371_8
crossref_primary_10_3390_en16145258
crossref_primary_10_1016_j_energy_2023_129005
crossref_primary_10_1016_j_energy_2023_127641
crossref_primary_10_1016_j_enconman_2025_120071
crossref_primary_10_1016_j_energy_2023_128793
crossref_primary_10_3390_buildings15030420
crossref_primary_10_1016_j_ijhydene_2024_07_084
crossref_primary_10_3389_fenvs_2023_1194918
crossref_primary_10_3390_pr13051492
crossref_primary_10_1016_j_energy_2025_138564
crossref_primary_10_3390_en18174576
crossref_primary_10_1016_j_energy_2023_130163
crossref_primary_10_1109_ACCESS_2024_3378527
crossref_primary_10_1016_j_energy_2024_132521
crossref_primary_10_1016_j_enconman_2025_119719
crossref_primary_10_1016_j_fuel_2023_129799
crossref_primary_10_1016_j_energy_2024_133932
crossref_primary_10_1016_j_fuel_2023_129970
crossref_primary_10_1108_ILT_12_2023_0417
crossref_primary_10_1016_j_energy_2024_130966
crossref_primary_10_3390_en18112701
crossref_primary_10_1016_j_energy_2023_126856
crossref_primary_10_1016_j_icheatmasstransfer_2025_109220
crossref_primary_10_3390_en16093632
crossref_primary_10_1016_j_energy_2023_127965
crossref_primary_10_3389_fenrg_2023_1201815
crossref_primary_10_1016_j_aei_2024_102486
crossref_primary_10_1016_j_eswa_2024_125082
crossref_primary_10_1016_j_fuel_2024_131556
crossref_primary_10_1016_j_icheatmasstransfer_2024_108575
crossref_primary_10_1016_j_rcim_2025_103007
crossref_primary_10_3390_jmse13010094
Cites_doi 10.1016/j.apenergy.2012.12.061
10.1016/j.apenergy.2016.11.072
10.1016/j.enconman.2021.114052
10.1016/j.fuel.2020.117824
10.1016/j.enconman.2008.08.034
10.1007/s11771-015-2972-1
10.1016/j.csite.2021.101100
10.1016/j.apenergy.2011.11.060
10.1016/j.enconman.2016.11.037
10.1016/j.applthermaleng.2018.03.080
10.1016/j.apenergy.2020.114519
10.1016/j.applthermaleng.2016.10.042
10.1016/j.fuel.2020.117472
10.1016/j.etran.2020.100050
10.1016/j.apenergy.2005.05.008
10.1016/j.enconman.2020.112742
10.1016/j.apenergy.2015.03.126
10.1016/j.fuel.2020.119324
10.1016/j.enconman.2020.113788
10.1016/j.etran.2022.100184
10.1016/j.ijhydene.2019.03.137
10.1016/j.matpr.2020.07.204
10.1016/j.fuel.2019.115803
10.1016/j.apenergy.2016.04.099
10.1016/j.fuel.2019.116736
10.1016/j.egypro.2015.12.141
10.1016/j.apenergy.2020.115081
10.1016/j.ijhydene.2019.10.250
10.1016/j.aej.2022.01.072
10.1016/j.enconman.2021.113871
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125262
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125262
S0360544222021478
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-a6e409c07c124ac87049ddd7081eb1b133d7ed0956db424d1a873cefff35cf653
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880372500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 11:56:47 EDT 2025
Tue Nov 18 22:25:26 EST 2025
Sat Nov 29 07:24:53 EST 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Atkinson cycle gasoline engine
Digital twins
Support vector machine algorithm
Back-propagation algorithm
NSGA Ⅲ algorithm
Enhancing training
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-a6e409c07c124ac87049ddd7081eb1b133d7ed0956db424d1a873cefff35cf653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718380335
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718380335
crossref_primary_10_1016_j_energy_2022_125262
crossref_citationtrail_10_1016_j_energy_2022_125262
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125262
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tong, Li, Liu (bib36) 2021; 238
Ding (bib22) 2011; 40
Yuan, Liu, Fu, Liu, Wang, Xia (bib37) 2017; 132
Guan, Li, Liu, Duan, Shen, Jia, Ku (bib42) 2021; 236
Yang, Miganakallu, Miller, Vinhaes, Worm, Naber, Roth (bib17) 2020; 262
Kargul, Stuhldreher, Barba, Schenk, Bohac, McDonald, mobility (bib12) 2019; 1
Gao, Xu, Men (bib16) 2018; 52
Khurana, Saxena, Jain, Dixit (bib34) 2021; 38
Wang, Shi, Yu (bib45) 2013
Kamiuto (bib13) 2006; 83
Yu, Yu (bib20) 2009
Zareei (bib27) 2020; 45
Han (bib35) 2009
Liu, Zhang, Meng (bib33) 2022
Boretti, Scalzo (bib15) 2011
Zhao, Xu (bib23) 2013; 105
Benajes, Serrano, Molina, Novella (bib14) 2009; 50
Techonologies (bib39) 2016
Chen, Chen, Wang, Geng, Zeng (bib7) 2020; 210
Luk, Abdulrahem, Xia (bib1) 2020
Veza, Afzal, Mujtaba (bib30) 2022; 61
Jian, Yongqiang, Larsen (bib6) 2020
De Bellis, Gimelli, Muccillo (bib4) 2015; 81
Kakaee, Rahnama, Paykani (bib19) 2015; 22
Xie, Li, Zhao, Dong, Wang, Liu, Guan, Duan (bib40) 2020; 267
Zhao, Xu, Li, Wang, Liu (bib46) 2012; 92
Guan, He, Zhang, Ahmed, EL-Seesy, Wen, Zhang, Yang (bib32) 2021; 283
Takahashi, Nakata, Yoshihara, Ohta, Nishiura (bib11) 2015
Li, Wang, Wang, Liu, Xie, Li (bib38) 2019; 255
Li, Wang, Duan, Liu, Liu, Hu (bib2) 2021; 230
Gad, He, EL-Shafay, EL-Seesy (bib31) 2021; 26
Niu, Wang, Hu, Yang, Wang (bib29) 2018; 137
Li Y, Deng X, Minggao Ouyang et al. Energy management of a parallel hybrid electric vehicle based on Lyapunov algorithm. eTransport. .2022(13).
Lather (bib8) 2019; 44
Bendu, Deepak, Murugan (bib28) 2017; 187
Aydın, Uslu, Çelik (bib26) 2020; 269
Lotfan, Ghiasi, Fallah, Sadeghi (bib24) 2016; 175
Qiao, Li, Wang, Wang, Liu (bib41) 2020; 275
Zhu, Zhang, Li, Wu, Han, Lv, Li, Xiao (bib18) 2015; 157
Niu, Yang, Wang, Wang (bib44) 2017; 111
Li, Wang, Zeng, Cristianini, Taylor (bib21) 2004
Chacko, Sachidanandam (bib10) 2020; 3
Wang, Li, Fu, Liu, Dong, Tong (bib5) 2020; 263
Li, Zhang, Ouyang (bib9) 2022; 22
Wang, Zhao, Liu (bib25) 2015; 33
Bi, Wang (bib43) 2019; 34
Chen (10.1016/j.energy.2022.125262_bib7) 2020; 210
Kamiuto (10.1016/j.energy.2022.125262_bib13) 2006; 83
Boretti (10.1016/j.energy.2022.125262_bib15) 2011
Chacko (10.1016/j.energy.2022.125262_bib10) 2020; 3
Gao (10.1016/j.energy.2022.125262_bib16) 2018; 52
Ding (10.1016/j.energy.2022.125262_bib22) 2011; 40
Benajes (10.1016/j.energy.2022.125262_bib14) 2009; 50
Wang (10.1016/j.energy.2022.125262_bib25) 2015; 33
Xie (10.1016/j.energy.2022.125262_bib40) 2020; 267
Niu (10.1016/j.energy.2022.125262_bib44) 2017; 111
Guan (10.1016/j.energy.2022.125262_bib32) 2021; 283
Li (10.1016/j.energy.2022.125262_bib2) 2021; 230
Yu (10.1016/j.energy.2022.125262_bib20) 2009
Qiao (10.1016/j.energy.2022.125262_bib41) 2020; 275
Tong (10.1016/j.energy.2022.125262_bib36) 2021; 238
Wang (10.1016/j.energy.2022.125262_bib5) 2020; 263
Zhao (10.1016/j.energy.2022.125262_bib23) 2013; 105
Veza (10.1016/j.energy.2022.125262_bib30) 2022; 61
Guan (10.1016/j.energy.2022.125262_bib42) 2021; 236
Lotfan (10.1016/j.energy.2022.125262_bib24) 2016; 175
Han (10.1016/j.energy.2022.125262_bib35) 2009
Niu (10.1016/j.energy.2022.125262_bib29) 2018; 137
Techonologies (10.1016/j.energy.2022.125262_bib39) 2016
Takahashi (10.1016/j.energy.2022.125262_bib11) 2015
Kakaee (10.1016/j.energy.2022.125262_bib19) 2015; 22
Bendu (10.1016/j.energy.2022.125262_bib28) 2017; 187
Li (10.1016/j.energy.2022.125262_bib9) 2022; 22
Aydın (10.1016/j.energy.2022.125262_bib26) 2020; 269
10.1016/j.energy.2022.125262_bib3
Luk (10.1016/j.energy.2022.125262_bib1) 2020
Gad (10.1016/j.energy.2022.125262_bib31) 2021; 26
Li (10.1016/j.energy.2022.125262_bib38) 2019; 255
Wang (10.1016/j.energy.2022.125262_bib45) 2013
Lather (10.1016/j.energy.2022.125262_bib8) 2019; 44
Kargul (10.1016/j.energy.2022.125262_bib12) 2019; 1
Yuan (10.1016/j.energy.2022.125262_bib37) 2017; 132
Zhao (10.1016/j.energy.2022.125262_bib46) 2012; 92
De Bellis (10.1016/j.energy.2022.125262_bib4) 2015; 81
Yang (10.1016/j.energy.2022.125262_bib17) 2020; 262
Liu (10.1016/j.energy.2022.125262_bib33) 2022
Jian (10.1016/j.energy.2022.125262_bib6) 2020
Li (10.1016/j.energy.2022.125262_bib21) 2004
Zhu (10.1016/j.energy.2022.125262_bib18) 2015; 157
Khurana (10.1016/j.energy.2022.125262_bib34) 2021; 38
Zareei (10.1016/j.energy.2022.125262_bib27) 2020; 45
Bi (10.1016/j.energy.2022.125262_bib43) 2019; 34
References_xml – year: 2015
  ident: bib11
  article-title: Combustion development to achieve engine thermal efficiency of 40% for hybrid vehicles
– start-page: 307
  year: 2022
  ident: bib33
  article-title: Real-time emergency load shedding for power system transient stability control: a risk-averse deep learning method
  publication-title: Appl Energy
– volume: 187
  start-page: 601
  year: 2017
  end-page: 611
  ident: bib28
  article-title: Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO
  publication-title: Appl Energy
– volume: 81
  start-page: 874
  year: 2015
  end-page: 882
  ident: bib4
  article-title: Effects of pre-lift intake valve strategies on the performance of a DISI VVA turbocharged engine at part and full load operation
  publication-title: Energy Proc
– volume: 275
  year: 2020
  ident: bib41
  article-title: Experimental investigation and numerical assessment the effects of EGR and hydrogen addition strategies on performance, energy and exergy characteristics of a heavy-duty lean-burn NGSI engine
  publication-title: Fuel
– year: 2020
  ident: bib6
  article-title: Implications of road transport electrification: a long-term scenario-dependent analysis in China
  publication-title: eTransport.
– year: 2020
  ident: bib1
  article-title: Low-cost high-performance ferrite permanent magnet machines in EV applications: a comprehensive review
  publication-title: eTransport.
– volume: 1
  start-page: 601
  year: 2019
  ident: bib12
  article-title: Benchmarking a 2018 Toyota camry 2.5-liter atkinson cycle engine with cooled-EGR
  publication-title: SAE Int J of Adv
– volume: 267
  year: 2020
  ident: bib40
  article-title: Microsimulation of electric vehicle energy consumption and driving range
  publication-title: Appl Energy
– volume: 38
  start-page: 280
  year: 2021
  end-page: 284
  ident: bib34
  article-title: Predictive modeling of engine emissions using machine learning: a review
  publication-title: Mater Today Proc
– year: 2009
  ident: bib35
  article-title: Research on automatic transmission method of construction vehicles based on support vector machine
– volume: 175
  start-page: 91
  year: 2016
  end-page: 99
  ident: bib24
  article-title: ANN-based modeling and reducing dual-fuel engine's challenging emissions by multi-objective evolutionary algorithm NSGA-II
  publication-title: Appl Energy
– volume: 50
  start-page: 174
  year: 2009
  end-page: 183
  ident: bib14
  article-title: Management, Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine
  publication-title: Energy Convers Manag
– volume: 137
  start-page: 218
  year: 2018
  end-page: 227
  ident: bib29
  article-title: Multi-objective online optimization of a marine diesel engine using NSGA-II coupled with enhancing trained support vector machine
  publication-title: Appl Therm Eng
– volume: 44
  start-page: 21181
  year: 2019
  end-page: 21192
  ident: bib8
  article-title: Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels
  publication-title: Int J Hydrogen Energy
– volume: 22
  start-page: 4235
  year: 2015
  end-page: 4245
  ident: bib19
  article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption
  publication-title: J Central South
– volume: 92
  start-page: 492
  year: 2012
  end-page: 502
  ident: bib46
  article-title: Design and optimization of an atkinson cycle engine with the artificial neural network method
  publication-title: Appl Energy
– volume: 255
  year: 2019
  ident: bib38
  article-title: Quantitative investigation of the effects of CR, EGR and spark timing strategies on performance, combustion and NOx emissions characteristics of a heavy-duty natural gas engine fueled with 99% methane content
  publication-title: Fuel
– volume: 22
  year: 2022
  ident: bib9
  article-title: Experimental the effect of lye flow rate, temperature, system pressure and differ-ent current density on energy consumption in Catalyst test and 500W commercial alkaline water electrolysis
  publication-title: Mater Today Phys
– year: 2009
  ident: bib20
  article-title: Neural network control. Xi'an
– year: 2004
  ident: bib21
  article-title: Introduction to support vector machines. Translation
– volume: 52
  start-page: 47
  year: 2018
  end-page: 54+62
  ident: bib16
  article-title: Optimization and pumping loss analysis on atkinson cycle engine considering valve timing and EGR
  publication-title: J.Xi’ an Jiaotong Univ
– volume: 105
  start-page: 335
  year: 2013
  end-page: 348
  ident: bib23
  article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm
  publication-title: Appl Energy
– volume: 111
  start-page: 1353
  year: 2017
  end-page: 1364
  ident: bib44
  article-title: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine
  publication-title: Appl Thermal Energy
– volume: 33
  start-page: 370
  year: 2015
  end-page: 377
  ident: bib25
  article-title: Optimization of geometrical compression ratio for an atkinson cycle engine based on artificial neural network and genetic algorithm
  publication-title: J Internal Combustion Eng
– volume: 40
  start-page: 2
  year: 2011
  end-page: 10
  ident: bib22
  article-title: An overview on theory and algorithm of support vector machines
  publication-title: J Univ Electron Sci Technol
– volume: 238
  start-page: 116212
  year: 2021
  ident: bib36
  article-title: Experiment analysis and computational optimization of the Atkinson cycle gasoline engine through NSGA Ⅱ algorithm using machine learning
  publication-title: Energy Convers Manag
– volume: 34
  start-page: 369
  year: 2019
  end-page: 376
  ident: bib43
  article-title: An NSGA-Ⅲ algorithm based on reference point constraint domination
  publication-title: Control Decis
– year: 2016
  ident: bib39
– volume: 236
  year: 2021
  ident: bib42
  article-title: Management, Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins
  publication-title: Energy Convers Manag
– volume: 263
  year: 2020
  ident: bib5
  article-title: Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content
  publication-title: Fuel
– volume: 269
  year: 2020
  ident: bib26
  article-title: Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: a combined application of ANN and RSM based optimization
  publication-title: Fuel
– year: 2013
  ident: bib45
  article-title: Analysis of 43 cases of MATLAB neural network
– volume: 83
  start-page: 583
  year: 2006
  end-page: 593
  ident: bib13
  article-title: Comparison of basic gas cycles under the restriction of constant heat addition
  publication-title: Appl Energy
– volume: 132
  start-page: 388
  year: 2017
  end-page: 399
  ident: bib37
  article-title: Management, Quantitative analysis on the thermodynamics processes of gasoline engine and correction of the control equations for heat-work conversion efficiency
  publication-title: Energy Convers Manag
– volume: 283
  year: 2021
  ident: bib32
  article-title: Effect of asymmetric structural characteristics of multi-hole marine diesel injectors on internal cavitation patterns and flow characteristics: a numerical study
  publication-title: Fuel
– volume: 157
  start-page: 789
  year: 2015
  end-page: 797
  ident: bib18
  article-title: Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau
  publication-title: Appl Energy
– volume: 61
  start-page: 8363
  year: 2022
  end-page: 8391
  ident: bib30
  article-title: Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine
  publication-title: Alex Eng J
– volume: 230
  year: 2021
  ident: bib2
  article-title: Management, Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins
  publication-title: Energy Convers Manag
– volume: 45
  start-page: 322
  year: 2020
  end-page: 336
  ident: bib27
  article-title: Optimization and study of performance parameters in an engine fueled with hydrogen
  publication-title: J Hydrogen Energy
– volume: 262
  year: 2020
  ident: bib17
  article-title: Investigation of high load operation of spark-ignited over-expanded Atkinson cycle engine
  publication-title: Appl Energy
– volume: 3
  year: 2020
  ident: bib10
  article-title: Optimization & validation of Intelligent Energy Management System for pseudo dynamic predictive regulation of plug-in hybrid electric vehicle as donor clients
  publication-title: eTransport.
– reference: Li Y, Deng X, Minggao Ouyang et al. Energy management of a parallel hybrid electric vehicle based on Lyapunov algorithm. eTransport. .2022(13).
– volume: 210
  year: 2020
  ident: bib7
  article-title: Management, Parametric study on effects of excess air/fuel ratio, spark timing, and methanol injection timing on combustion characteristics and performance of natural gas/methanol dual-fuel engine at low loads
  publication-title: Energy Convers Manag
– year: 2011
  ident: bib15
  article-title: Exploring the advantages of atkinson effects in variable compression ratio turbo GDI engines
– volume: 26
  year: 2021
  ident: bib31
  article-title: Combustion characteristics of a diesel engine running with Mandarin essential oil -diesel mixtures and propanol additive under different exhaust gas recirculation: experimental investigation and numerical simulation
  publication-title: Case Stud Therm Eng
– volume: 105
  start-page: 335
  year: 2013
  ident: 10.1016/j.energy.2022.125262_bib23
  article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.061
– volume: 187
  start-page: 601
  year: 2017
  ident: 10.1016/j.energy.2022.125262_bib28
  article-title: Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.072
– volume: 236
  year: 2021
  ident: 10.1016/j.energy.2022.125262_bib42
  article-title: Management, Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114052
– volume: 275
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib41
  article-title: Experimental investigation and numerical assessment the effects of EGR and hydrogen addition strategies on performance, energy and exergy characteristics of a heavy-duty lean-burn NGSI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117824
– volume: 40
  start-page: 2
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2022.125262_bib22
  article-title: An overview on theory and algorithm of support vector machines
  publication-title: J Univ Electron Sci Technol
– volume: 50
  start-page: 174
  year: 2009
  ident: 10.1016/j.energy.2022.125262_bib14
  article-title: Management, Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2008.08.034
– year: 2016
  ident: 10.1016/j.energy.2022.125262_bib39
– volume: 22
  year: 2022
  ident: 10.1016/j.energy.2022.125262_bib9
  article-title: Experimental the effect of lye flow rate, temperature, system pressure and differ-ent current density on energy consumption in Catalyst test and 500W commercial alkaline water electrolysis
  publication-title: Mater Today Phys
– volume: 22
  start-page: 4235
  year: 2015
  ident: 10.1016/j.energy.2022.125262_bib19
  article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption
  publication-title: J Central South
  doi: 10.1007/s11771-015-2972-1
– volume: 26
  year: 2021
  ident: 10.1016/j.energy.2022.125262_bib31
  article-title: Combustion characteristics of a diesel engine running with Mandarin essential oil -diesel mixtures and propanol additive under different exhaust gas recirculation: experimental investigation and numerical simulation
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101100
– volume: 92
  start-page: 492
  year: 2012
  ident: 10.1016/j.energy.2022.125262_bib46
  article-title: Design and optimization of an atkinson cycle engine with the artificial neural network method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.11.060
– volume: 132
  start-page: 388
  year: 2017
  ident: 10.1016/j.energy.2022.125262_bib37
  article-title: Management, Quantitative analysis on the thermodynamics processes of gasoline engine and correction of the control equations for heat-work conversion efficiency
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.11.037
– year: 2015
  ident: 10.1016/j.energy.2022.125262_bib11
– volume: 137
  start-page: 218
  year: 2018
  ident: 10.1016/j.energy.2022.125262_bib29
  article-title: Multi-objective online optimization of a marine diesel engine using NSGA-II coupled with enhancing trained support vector machine
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.03.080
– volume: 262
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib17
  article-title: Investigation of high load operation of spark-ignited over-expanded Atkinson cycle engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114519
– volume: 111
  start-page: 1353
  year: 2017
  ident: 10.1016/j.energy.2022.125262_bib44
  article-title: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine
  publication-title: Appl Thermal Energy
  doi: 10.1016/j.applthermaleng.2016.10.042
– volume: 269
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib26
  article-title: Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: a combined application of ANN and RSM based optimization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117472
– issue: 6
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib1
  article-title: Low-cost high-performance ferrite permanent magnet machines in EV applications: a comprehensive review
  publication-title: eTransport.
– volume: 3
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib10
  article-title: Optimization & validation of Intelligent Energy Management System for pseudo dynamic predictive regulation of plug-in hybrid electric vehicle as donor clients
  publication-title: eTransport.
  doi: 10.1016/j.etran.2020.100050
– volume: 83
  start-page: 583
  year: 2006
  ident: 10.1016/j.energy.2022.125262_bib13
  article-title: Comparison of basic gas cycles under the restriction of constant heat addition
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2005.05.008
– volume: 52
  start-page: 47
  issue: 3
  year: 2018
  ident: 10.1016/j.energy.2022.125262_bib16
  article-title: Optimization and pumping loss analysis on atkinson cycle engine considering valve timing and EGR
  publication-title: J.Xi’ an Jiaotong Univ
– volume: 210
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib7
  article-title: Management, Parametric study on effects of excess air/fuel ratio, spark timing, and methanol injection timing on combustion characteristics and performance of natural gas/methanol dual-fuel engine at low loads
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112742
– volume: 157
  start-page: 789
  year: 2015
  ident: 10.1016/j.energy.2022.125262_bib18
  article-title: Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.126
– volume: 283
  year: 2021
  ident: 10.1016/j.energy.2022.125262_bib32
  article-title: Effect of asymmetric structural characteristics of multi-hole marine diesel injectors on internal cavitation patterns and flow characteristics: a numerical study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119324
– start-page: 307
  year: 2022
  ident: 10.1016/j.energy.2022.125262_bib33
  article-title: Real-time emergency load shedding for power system transient stability control: a risk-averse deep learning method
  publication-title: Appl Energy
– year: 2009
  ident: 10.1016/j.energy.2022.125262_bib35
– volume: 34
  start-page: 369
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2022.125262_bib43
  article-title: An NSGA-Ⅲ algorithm based on reference point constraint domination
  publication-title: Control Decis
– year: 2009
  ident: 10.1016/j.energy.2022.125262_bib20
– issue: 6
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib6
  article-title: Implications of road transport electrification: a long-term scenario-dependent analysis in China
  publication-title: eTransport.
– volume: 33
  start-page: 370
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2022.125262_bib25
  article-title: Optimization of geometrical compression ratio for an atkinson cycle engine based on artificial neural network and genetic algorithm
  publication-title: J Internal Combustion Eng
– volume: 230
  year: 2021
  ident: 10.1016/j.energy.2022.125262_bib2
  article-title: Management, Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113788
– ident: 10.1016/j.energy.2022.125262_bib3
  doi: 10.1016/j.etran.2022.100184
– volume: 44
  start-page: 21181
  year: 2019
  ident: 10.1016/j.energy.2022.125262_bib8
  article-title: Performance and emission assessment of a multi-cylinder SI engine using CNG & HCNG as fuels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.137
– volume: 38
  start-page: 280
  issue: 1
  year: 2021
  ident: 10.1016/j.energy.2022.125262_bib34
  article-title: Predictive modeling of engine emissions using machine learning: a review
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.07.204
– volume: 255
  year: 2019
  ident: 10.1016/j.energy.2022.125262_bib38
  article-title: Quantitative investigation of the effects of CR, EGR and spark timing strategies on performance, combustion and NOx emissions characteristics of a heavy-duty natural gas engine fueled with 99% methane content
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115803
– volume: 175
  start-page: 91
  year: 2016
  ident: 10.1016/j.energy.2022.125262_bib24
  article-title: ANN-based modeling and reducing dual-fuel engine's challenging emissions by multi-objective evolutionary algorithm NSGA-II
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.099
– volume: 263
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib5
  article-title: Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116736
– volume: 81
  start-page: 874
  year: 2015
  ident: 10.1016/j.energy.2022.125262_bib4
  article-title: Effects of pre-lift intake valve strategies on the performance of a DISI VVA turbocharged engine at part and full load operation
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2015.12.141
– year: 2004
  ident: 10.1016/j.energy.2022.125262_bib21
– year: 2013
  ident: 10.1016/j.energy.2022.125262_bib45
– volume: 1
  start-page: 601
  year: 2019
  ident: 10.1016/j.energy.2022.125262_bib12
  article-title: Benchmarking a 2018 Toyota camry 2.5-liter atkinson cycle engine with cooled-EGR
  publication-title: SAE Int J of Adv
– volume: 267
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib40
  article-title: Microsimulation of electric vehicle energy consumption and driving range
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115081
– year: 2011
  ident: 10.1016/j.energy.2022.125262_bib15
– volume: 45
  start-page: 322
  year: 2020
  ident: 10.1016/j.energy.2022.125262_bib27
  article-title: Optimization and study of performance parameters in an engine fueled with hydrogen
  publication-title: J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.250
– volume: 61
  start-page: 8363
  issue: Issue 11
  year: 2022
  ident: 10.1016/j.energy.2022.125262_bib30
  article-title: Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.01.072
– volume: 238
  start-page: 116212
  year: 2021
  ident: 10.1016/j.energy.2022.125262_bib36
  article-title: Experiment analysis and computational optimization of the Atkinson cycle gasoline engine through NSGA Ⅱ algorithm using machine learning
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113871
SSID ssj0005899
Score 2.5537932
Snippet This paper presents an optimization method using Non-dominated Sorting Genetic Algorithm (NSGA) Ⅲ to drive support vector machine (SVM). In the NSGA Ⅲ...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125262
SubjectTerms Atkinson cycle gasoline engine
Back-propagation algorithm
carbon dioxide
Digital twins
energy
energy use and consumption
Enhancing training
gasoline engines
NSGA Ⅲ algorithm
Support vector machine algorithm
support vector machines
system optimization
Title Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm
URI https://dx.doi.org/10.1016/j.energy.2022.125262
https://www.proquest.com/docview/2718380335
Volume 262
WOSCitedRecordID wos000880372500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLhJcVrCwYvmTkeAUpWripEmOFSo_K1QhUaRyihzb6bbbJlXTVN0H2DfgCbjyVjwJE_8kbVew7IFLVFljx9V8nfk6nhkj9BpIABeBoLbfTbjtJRGxo8BxbYc7Ik18yh2eyssmgsEgHI2iz63WT1MLs54FWRZuNtHiv6oaxkDZVensLdRdLwoD8BmUDk9QOzz_SfGypNbOk6kyZVYORmGuqy1NRkBvdSGrvix2CbOtMS1ySTeF7E5olTKAMPjyvmfJZAj_Tc-1WF4uZiZZvSgXFXG31jLob81lSqY6iUgou7DBLoOlUu-ks3G-hEnznVMAVXNYNTvdqPz6OiLxSSYYfKPZ-JJqvyoj23kpQ7Xnk0ZQjpzBZheTRnJosown2yENl2yFNEwpV8f2PW_HTLvaaitDC7xMD1zzASocMW0L-UXa8AK33Yjvttzec4V1gqLJfZvGapW4WiVWq9xBh27gR-AFDnsf-6OzJqMolNeV1rs3lZoynfD6bv7EhPY4gSQ6wwfoSP9DwT2FrIeoJbJjdM8UsBfH6KTfFEeCoPYOxSP0fQ96eBt6OE8xQA8b6GEJPWyghxX0sIQerqCHf139wBp0uAId1qDDCnRYgw4D6PA-6HANusfo67v-8O0HW9_6YTNCopVNu8LrRKwTMKCelIE_8SLOeQDcFXhF4hDCA8Gr_pk88VyPOzQMCBNpmhKfpV2fnKCDLM_EE4QJF6JiyISS0Ot4LEndNKSCO8RLKU-TU0SMBmKmW-JXN7PM4r_p_xTZ9ayFaglzg3xglBtrWqvoagyIvWHmK4OFGKx-dZRHM5GXRewCpSRhhxD_6S138wzdb35yz9HBalmKF-guW68mxfKlhvRvy8TYWA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+the+Atkinson+cycle+gasoline+engine+using+NSGA+%E2%85%A2+coupled+with+support+vector+machine+and+back-propagation+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Yangyang&rft.au=Zhou%2C+Shi&rft.au=Liu%2C+Jingping&rft.au=Tong%2C+Ji&rft.date=2023-01-01&rft.issn=0360-5442&rft.volume=262&rft.spage=125262&rft_id=info:doi/10.1016%2Fj.energy.2022.125262&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon