An in-place min–max priority search tree
One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e., it can be stored in an array such that each entry stores only one point of the point set and no entry is stored i...
Saved in:
| Published in: | Computational geometry : theory and applications Vol. 46; no. 3; pp. 310 - 327 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2013
|
| Subjects: | |
| ISSN: | 0925-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e., it can be stored in an array such that each entry stores only one point of the point set and no entry is stored in more than one location of that array. It combines a binary search tree with a heap. We show that all the standard query operations can be performed within the same time bounds as for the original priority search tree, while using only O(1) extra space.
We introduce the min–max priority search tree which is a combination of a binary search tree and a min–max heap. We show that all the standard queries which can be done in two separate versions of a priority search tree can be done with a single min–max priority search tree.
As an application, we present an in-place algorithm to enumerate all maximal empty axis-parallel rectangles amongst points in a rectangular region R in R2 in O(mlogn) time with O(1) extra space, where m is the total number of maximal empty rectangles. |
|---|---|
| AbstractList | One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e., it can be stored in an array such that each entry stores only one point of the point set and no entry is stored in more than one location of that array. It combines a binary search tree with a heap. We show that all the standard query operations can be performed within the same time bounds as for the original priority search tree, while using only O(1) extra space.
We introduce the min–max priority search tree which is a combination of a binary search tree and a min–max heap. We show that all the standard queries which can be done in two separate versions of a priority search tree can be done with a single min–max priority search tree.
As an application, we present an in-place algorithm to enumerate all maximal empty axis-parallel rectangles amongst points in a rectangular region R in R2 in O(mlogn) time with O(1) extra space, where m is the total number of maximal empty rectangles. |
| Author | Maheshwari, Anil Smid, Michiel De, Minati Nandy, Subhas C. |
| Author_xml | – sequence: 1 givenname: Minati surname: De fullname: De, Minati email: minati_r@isical.ac.in organization: Indian Statistical Institute, Kolkata, India – sequence: 2 givenname: Anil surname: Maheshwari fullname: Maheshwari, Anil email: anil@scs.carleton.ca organization: School of Computer Science, Carleton University, Ottawa, Canada – sequence: 3 givenname: Subhas C. surname: Nandy fullname: Nandy, Subhas C. email: nandysc@isical.ac.in organization: Indian Statistical Institute, Kolkata, India – sequence: 4 givenname: Michiel surname: Smid fullname: Smid, Michiel email: michiel@scs.carleton.ca organization: School of Computer Science, Carleton University, Ottawa, Canada |
| BookMark | eNqFzzFLAzEYxvEMFWyr38DhZuHON0nvcnEQStEqFFx0Dmnujab0kpIEsZvfwW_oJ_FKnRx0eqb_A78JGfngkZALChUF2lxtKhP6FwwVA8oqkBWAGJExSFaXQjB6SiYpbQCAsVqOyeXcF86Xu602WPTOf3189vq92EUXosv7IqGO5rXIEfGMnFi9TXj-s1PyfHf7tLgvV4_Lh8V8VRrOZS51w1q7NlbThrbI1x3wNRMcQdQWeQvQ1bUQHTCQjbaWcy1aI-vZbKipNZRPyfXx18SQUkSrjMs6u-Bz1G6rKKiDVG3UUaoOUgVSDdIhnv2KB0qv4_6_7OaY4QB7cxhVMg69wc5FNFl1wf198A2h43OC |
| CitedBy_id | crossref_primary_10_1080_0951192X_2021_2022761 |
| Cites_doi | 10.1145/6617.6621 10.1145/997817.997854 10.1016/0166-218X(86)90071-5 10.1137/0214021 10.1016/0166-218X(84)90124-0 10.1016/j.ipl.2006.12.004 10.1007/BF01994842 10.1007/BF01840377 10.1016/j.comgeo.2006.09.001 10.1145/41958.41988 10.1016/j.tcs.2003.05.004 10.1016/j.comgeo.2006.03.006 10.1007/3-540-58715-2_122 10.1016/j.comgeo.2010.04.005 10.1137/0215022 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.comgeo.2012.09.007 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 327 |
| ExternalDocumentID | 10_1016_j_comgeo_2012_09_007 S0925772112001174 |
| GrantInformation_xml | – fundername: NSERC – fundername: DFAIT |
| GroupedDBID | --K --M -DZ .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c339t-a628fbcfa1618e3bd03b273e075fe3800d5577d02096aff33a78c95443391fc13 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312467300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-7721 |
| IngestDate | Tue Nov 18 22:23:50 EST 2025 Sat Nov 29 03:12:51 EST 2025 Fri Feb 23 02:17:40 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | In-place algorithm Min–max priority search tree Maximum empty rectangle Three-sided orthogonal range query |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-a628fbcfa1618e3bd03b273e075fe3800d5577d02096aff33a78c95443391fc13 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.comgeo.2012.09.007 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_comgeo_2012_09_007 crossref_primary_10_1016_j_comgeo_2012_09_007 elsevier_sciencedirect_doi_10_1016_j_comgeo_2012_09_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computational geometry : theory and applications |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | McCreight (br0140) 1985; 14 Orlowski (br0170) 1990; 5 R.P. Boland, J. Urrutia, Finding the largest axis aligned rectangle in a polygon in Atkinson, Sack, Santoro, Strothotte (br0050) 1986; 29 Atallah, Frederickson (br0040) 1986; 13 E.Y. Chen, T.M. Chan, A space-efficient algorithm for segment intersection, in: CCCG, 2003, pp. 68–71. Vahrenhold (br0200) 2007; 38 H. Brönnimann, T.M. Chan, E.Y. Chen, Towards in-place geometric algorithms and data structures, in: Symp. on Comput. Geom., 2004, pp. 239–246. Brönnimann, Iacono, Katajainen, Morin, Morrison, Toussaint (br0090) 2004; 321 Chan, Chen (br0100) 2010; 43 Chazelle, Drysdale, Lee (br0110) 1986; 15 Naamad, Lee, Hsu (br0150) 1984; 8 S.C. Nandy, A. Sinha, B.B. Bhattacharya, Location of the largest empty rectangle among arbitrary obstacles, in: FSTTCS, 1994, pp. 159–170. Asano, Mulzer, Rote, Wang (br0030) 2011; 2 Bose, Maheshwari, Morin, Morrison, Smid, Vahrenhold (br0070) 2007; 37 time, in: CCCG, 2001, pp. 41–44. Asano, Buchin, Buchin, Korman, Mulzer, Rote, Schulz (br0020) 2011 Pratt (br0180) A. Aggarwal, S. Suri, Fast algorithms for computing the largest empty rectangle, in: Symposium on Computational Geometry, 1987, pp. 278–290. Katajainen, Pasanen (br0130) 1992; 32 Vahrenhold (br0190) 2007; 102 Chan (10.1016/j.comgeo.2012.09.007_br0100) 2010; 43 Katajainen (10.1016/j.comgeo.2012.09.007_br0130) 1992; 32 McCreight (10.1016/j.comgeo.2012.09.007_br0140) 1985; 14 Asano (10.1016/j.comgeo.2012.09.007_br0020) 2011 Asano (10.1016/j.comgeo.2012.09.007_br0030) 2011; 2 Pratt (10.1016/j.comgeo.2012.09.007_br0180) Vahrenhold (10.1016/j.comgeo.2012.09.007_br0200) 2007; 38 Vahrenhold (10.1016/j.comgeo.2012.09.007_br0190) 2007; 102 Atallah (10.1016/j.comgeo.2012.09.007_br0040) 1986; 13 10.1016/j.comgeo.2012.09.007_br0160 10.1016/j.comgeo.2012.09.007_br0060 Brönnimann (10.1016/j.comgeo.2012.09.007_br0090) 2004; 321 Orlowski (10.1016/j.comgeo.2012.09.007_br0170) 1990; 5 10.1016/j.comgeo.2012.09.007_br0080 Bose (10.1016/j.comgeo.2012.09.007_br0070) 2007; 37 Chazelle (10.1016/j.comgeo.2012.09.007_br0110) 1986; 15 Atkinson (10.1016/j.comgeo.2012.09.007_br0050) 1986; 29 Naamad (10.1016/j.comgeo.2012.09.007_br0150) 1984; 8 10.1016/j.comgeo.2012.09.007_br0010 10.1016/j.comgeo.2012.09.007_br0120 |
| References_xml | – reference: S.C. Nandy, A. Sinha, B.B. Bhattacharya, Location of the largest empty rectangle among arbitrary obstacles, in: FSTTCS, 1994, pp. 159–170. – reference: R.P. Boland, J. Urrutia, Finding the largest axis aligned rectangle in a polygon in – volume: 8 start-page: 267 year: 1984 end-page: 277 ident: br0150 article-title: On the maximum empty rectangle problem publication-title: Discrete Appl. Math. – volume: 37 start-page: 209 year: 2007 end-page: 227 ident: br0070 article-title: Space-efficient geometric divide-and-conquer algorithms publication-title: Comput. Geom. – volume: 14 start-page: 257 year: 1985 end-page: 276 ident: br0140 article-title: Priority search trees publication-title: SIAM J. Comput. – volume: 38 start-page: 213 year: 2007 end-page: 230 ident: br0200 article-title: Line-segment intersection made in-place publication-title: Comput. Geom. – reference: E.Y. Chen, T.M. Chan, A space-efficient algorithm for segment intersection, in: CCCG, 2003, pp. 68–71. – reference: A. Aggarwal, S. Suri, Fast algorithms for computing the largest empty rectangle, in: Symposium on Computational Geometry, 1987, pp. 278–290. – volume: 43 start-page: 636 year: 2010 end-page: 646 ident: br0100 article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection publication-title: Comput. Geom. – volume: 5 start-page: 65 year: 1990 end-page: 73 ident: br0170 article-title: A new algorithm for the largest empty rectangle problem publication-title: Algorithmica – reference: H. Brönnimann, T.M. Chan, E.Y. Chen, Towards in-place geometric algorithms and data structures, in: Symp. on Comput. Geom., 2004, pp. 239–246. – reference: time, in: CCCG, 2001, pp. 41–44. – ident: br0180 article-title: Implementation of a heap-based priority search tree – volume: 102 start-page: 169 year: 2007 end-page: 174 ident: br0190 article-title: An in-place algorithm for Kleeʼs measure problem in two dimensions publication-title: Inf. Process. Lett. – volume: 321 start-page: 25 year: 2004 end-page: 40 ident: br0090 article-title: Space-efficient planar convex hull algorithms publication-title: Theor. Comput. Sci. – volume: 29 start-page: 996 year: 1986 end-page: 1000 ident: br0050 article-title: Min–max heaps and generalized priority queues publication-title: Commun. ACM – volume: 15 start-page: 300 year: 1986 end-page: 315 ident: br0110 article-title: Computing the largest empty rectangle publication-title: SIAM J. Comput. – volume: 32 start-page: 580 year: 1992 end-page: 585 ident: br0130 article-title: Stable minimum space partitioning in linear time publication-title: BIT – volume: 2 start-page: 46 year: 2011 end-page: 68 ident: br0030 article-title: Constant-work-space algorithms for geometric problems publication-title: JoCG – volume: 13 start-page: 87 year: 1986 end-page: 91 ident: br0040 article-title: A note on finding a maximum empty rectangle publication-title: Discrete Appl. Math. – year: 2011 ident: br0020 article-title: Memory-constrained algorithms for simple polygons publication-title: CoRR – volume: 29 start-page: 996 issue: 10 year: 1986 ident: 10.1016/j.comgeo.2012.09.007_br0050 article-title: Min–max heaps and generalized priority queues publication-title: Commun. ACM doi: 10.1145/6617.6621 – ident: 10.1016/j.comgeo.2012.09.007_br0060 – ident: 10.1016/j.comgeo.2012.09.007_br0080 doi: 10.1145/997817.997854 – volume: 13 start-page: 87 issue: 1 year: 1986 ident: 10.1016/j.comgeo.2012.09.007_br0040 article-title: A note on finding a maximum empty rectangle publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(86)90071-5 – ident: 10.1016/j.comgeo.2012.09.007_br0120 – volume: 14 start-page: 257 issue: 2 year: 1985 ident: 10.1016/j.comgeo.2012.09.007_br0140 article-title: Priority search trees publication-title: SIAM J. Comput. doi: 10.1137/0214021 – volume: 8 start-page: 267 issue: 3 year: 1984 ident: 10.1016/j.comgeo.2012.09.007_br0150 article-title: On the maximum empty rectangle problem publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90124-0 – volume: 102 start-page: 169 issue: 4 year: 2007 ident: 10.1016/j.comgeo.2012.09.007_br0190 article-title: An in-place algorithm for Kleeʼs measure problem in two dimensions publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2006.12.004 – volume: 32 start-page: 580 issue: 4 year: 1992 ident: 10.1016/j.comgeo.2012.09.007_br0130 article-title: Stable minimum space partitioning in linear time publication-title: BIT doi: 10.1007/BF01994842 – volume: 5 start-page: 65 issue: 1 year: 1990 ident: 10.1016/j.comgeo.2012.09.007_br0170 article-title: A new algorithm for the largest empty rectangle problem publication-title: Algorithmica doi: 10.1007/BF01840377 – volume: 38 start-page: 213 issue: 3 year: 2007 ident: 10.1016/j.comgeo.2012.09.007_br0200 article-title: Line-segment intersection made in-place publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2006.09.001 – ident: 10.1016/j.comgeo.2012.09.007_br0010 doi: 10.1145/41958.41988 – volume: 2 start-page: 46 issue: 1 year: 2011 ident: 10.1016/j.comgeo.2012.09.007_br0030 article-title: Constant-work-space algorithms for geometric problems publication-title: JoCG – year: 2011 ident: 10.1016/j.comgeo.2012.09.007_br0020 article-title: Memory-constrained algorithms for simple polygons publication-title: CoRR – ident: 10.1016/j.comgeo.2012.09.007_br0180 – volume: 321 start-page: 25 issue: 1 year: 2004 ident: 10.1016/j.comgeo.2012.09.007_br0090 article-title: Space-efficient planar convex hull algorithms publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2003.05.004 – volume: 37 start-page: 209 issue: 3 year: 2007 ident: 10.1016/j.comgeo.2012.09.007_br0070 article-title: Space-efficient geometric divide-and-conquer algorithms publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2006.03.006 – ident: 10.1016/j.comgeo.2012.09.007_br0160 doi: 10.1007/3-540-58715-2_122 – volume: 43 start-page: 636 issue: 8 year: 2010 ident: 10.1016/j.comgeo.2012.09.007_br0100 article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2010.04.005 – volume: 15 start-page: 300 issue: 1 year: 1986 ident: 10.1016/j.comgeo.2012.09.007_br0110 article-title: Computing the largest empty rectangle publication-title: SIAM J. Comput. doi: 10.1137/0215022 |
| SSID | ssj0002259 |
| Score | 1.9915019 |
| Snippet | One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 310 |
| SubjectTerms | In-place algorithm Maximum empty rectangle Min–max priority search tree Three-sided orthogonal range query |
| Title | An in-place min–max priority search tree |
| URI | https://dx.doi.org/10.1016/j.comgeo.2012.09.007 |
| Volume | 46 |
| WOSCitedRecordID | wos000312467300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-7721 databaseCode: AIEXJ dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002259 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9swEBdZu4ftYewv67oWP-xpxqOO7Mh6NKWjK6wM1kHejCRLjUvjhCRNs7d-h37DfpLdWZJjyNjawV5MMJEt647T3U-_uyPkQ8aYAbmyyEgR4zGjimQ_01GpJEuVjDMtbLMJdnqaDYf8W6-39Lkwy0tW19lqxaf_VdRwD4SNqbMPEHf7ULgBv0HocAWxw_Vegs-Ruxg1XKtwDGG_YzPQsViF01k1wW51oQM78Ei6657aHg8eHzzXk7FezH6GjvyBx_FNbdfOoXfrCFuEu0JwcY1yj_R8dC1sMnter9kcYNOtcQe7NRLz8PBTB-kpPZ2_cnR-B0pgg4ikC0psZstYyBFb5zKbEe2trwMgq25w3phS6uiudlemtoLAhsG32MMFyuu8SeZEbBdLkLL1BtfSDr_jDHACcb-phZc8Itt9lnIw6Nv5l6PhSbuHg5WzVRrdjH3SZcMM3HzX752ajqNy9pw8cxFGkFvNeEF6un5Jnn5ty_POX5GPeR14HQlAR-5ubkE7Aq8dgdWOALXjNfnx-ejs8DhyTTMiRSlfRGLQz4xURmAnBE1leUAluKgaXEOjKYQHZQpLUEKUwAfCGEoFyxTHKoiUx0bF9A3Zqie1fkuCWA9owqXkKhUJE5SXkpWGSvDwyzSRyQ6h_qsL5SrKY2OTy8JTBy8Ku1YFrlVxwAtYqx0StaOmtqLKX_7P_IIWziu03l4BOvDHke_-eeQuebLW6vdkazG70nvksVouqvls3ynLL6Z8hwk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in-place+min%E2%80%93max+priority+search+tree&rft.jtitle=Computational+geometry+%3A+theory+and+applications&rft.au=De%2C+Minati&rft.au=Maheshwari%2C+Anil&rft.au=Nandy%2C+Subhas+C.&rft.au=Smid%2C+Michiel&rft.date=2013-04-01&rft.pub=Elsevier+B.V&rft.issn=0925-7721&rft.volume=46&rft.issue=3&rft.spage=310&rft.epage=327&rft_id=info:doi/10.1016%2Fj.comgeo.2012.09.007&rft.externalDocID=S0925772112001174 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7721&client=summon |