An in-place min–max priority search tree

One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e., it can be stored in an array such that each entry stores only one point of the point set and no entry is stored i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational geometry : theory and applications Ročník 46; číslo 3; s. 310 - 327
Hlavní autori: De, Minati, Maheshwari, Anil, Nandy, Subhas C., Smid, Michiel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2013
Predmet:
ISSN:0925-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e., it can be stored in an array such that each entry stores only one point of the point set and no entry is stored in more than one location of that array. It combines a binary search tree with a heap. We show that all the standard query operations can be performed within the same time bounds as for the original priority search tree, while using only O(1) extra space. We introduce the min–max priority search tree which is a combination of a binary search tree and a min–max heap. We show that all the standard queries which can be done in two separate versions of a priority search tree can be done with a single min–max priority search tree. As an application, we present an in-place algorithm to enumerate all maximal empty axis-parallel rectangles amongst points in a rectangular region R in R2 in O(mlogn) time with O(1) extra space, where m is the total number of maximal empty rectangles.
AbstractList One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure can be made in-place, i.e., it can be stored in an array such that each entry stores only one point of the point set and no entry is stored in more than one location of that array. It combines a binary search tree with a heap. We show that all the standard query operations can be performed within the same time bounds as for the original priority search tree, while using only O(1) extra space. We introduce the min–max priority search tree which is a combination of a binary search tree and a min–max heap. We show that all the standard queries which can be done in two separate versions of a priority search tree can be done with a single min–max priority search tree. As an application, we present an in-place algorithm to enumerate all maximal empty axis-parallel rectangles amongst points in a rectangular region R in R2 in O(mlogn) time with O(1) extra space, where m is the total number of maximal empty rectangles.
Author Maheshwari, Anil
Smid, Michiel
De, Minati
Nandy, Subhas C.
Author_xml – sequence: 1
  givenname: Minati
  surname: De
  fullname: De, Minati
  email: minati_r@isical.ac.in
  organization: Indian Statistical Institute, Kolkata, India
– sequence: 2
  givenname: Anil
  surname: Maheshwari
  fullname: Maheshwari, Anil
  email: anil@scs.carleton.ca
  organization: School of Computer Science, Carleton University, Ottawa, Canada
– sequence: 3
  givenname: Subhas C.
  surname: Nandy
  fullname: Nandy, Subhas C.
  email: nandysc@isical.ac.in
  organization: Indian Statistical Institute, Kolkata, India
– sequence: 4
  givenname: Michiel
  surname: Smid
  fullname: Smid, Michiel
  email: michiel@scs.carleton.ca
  organization: School of Computer Science, Carleton University, Ottawa, Canada
BookMark eNqFzzFLAzEYxvEMFWyr38DhZuHON0nvcnEQStEqFFx0Dmnujab0kpIEsZvfwW_oJ_FKnRx0eqb_A78JGfngkZALChUF2lxtKhP6FwwVA8oqkBWAGJExSFaXQjB6SiYpbQCAsVqOyeXcF86Xu602WPTOf3189vq92EUXosv7IqGO5rXIEfGMnFi9TXj-s1PyfHf7tLgvV4_Lh8V8VRrOZS51w1q7NlbThrbI1x3wNRMcQdQWeQvQ1bUQHTCQjbaWcy1aI-vZbKipNZRPyfXx18SQUkSrjMs6u-Bz1G6rKKiDVG3UUaoOUgVSDdIhnv2KB0qv4_6_7OaY4QB7cxhVMg69wc5FNFl1wf198A2h43OC
CitedBy_id crossref_primary_10_1080_0951192X_2021_2022761
Cites_doi 10.1145/6617.6621
10.1145/997817.997854
10.1016/0166-218X(86)90071-5
10.1137/0214021
10.1016/0166-218X(84)90124-0
10.1016/j.ipl.2006.12.004
10.1007/BF01994842
10.1007/BF01840377
10.1016/j.comgeo.2006.09.001
10.1145/41958.41988
10.1016/j.tcs.2003.05.004
10.1016/j.comgeo.2006.03.006
10.1007/3-540-58715-2_122
10.1016/j.comgeo.2010.04.005
10.1137/0215022
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.comgeo.2012.09.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 327
ExternalDocumentID 10_1016_j_comgeo_2012_09_007
S0925772112001174
GrantInformation_xml – fundername: NSERC
– fundername: DFAIT
GroupedDBID --K
--M
-DZ
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c339t-a628fbcfa1618e3bd03b273e075fe3800d5577d02096aff33a78c95443391fc13
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312467300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-7721
IngestDate Tue Nov 18 22:23:50 EST 2025
Sat Nov 29 03:12:51 EST 2025
Fri Feb 23 02:17:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords In-place algorithm
Min–max priority search tree
Maximum empty rectangle
Three-sided orthogonal range query
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-a628fbcfa1618e3bd03b273e075fe3800d5577d02096aff33a78c95443391fc13
OpenAccessLink https://dx.doi.org/10.1016/j.comgeo.2012.09.007
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_comgeo_2012_09_007
crossref_primary_10_1016_j_comgeo_2012_09_007
elsevier_sciencedirect_doi_10_1016_j_comgeo_2012_09_007
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational geometry : theory and applications
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McCreight (br0140) 1985; 14
Orlowski (br0170) 1990; 5
R.P. Boland, J. Urrutia, Finding the largest axis aligned rectangle in a polygon in
Atkinson, Sack, Santoro, Strothotte (br0050) 1986; 29
Atallah, Frederickson (br0040) 1986; 13
E.Y. Chen, T.M. Chan, A space-efficient algorithm for segment intersection, in: CCCG, 2003, pp. 68–71.
Vahrenhold (br0200) 2007; 38
H. Brönnimann, T.M. Chan, E.Y. Chen, Towards in-place geometric algorithms and data structures, in: Symp. on Comput. Geom., 2004, pp. 239–246.
Brönnimann, Iacono, Katajainen, Morin, Morrison, Toussaint (br0090) 2004; 321
Chan, Chen (br0100) 2010; 43
Chazelle, Drysdale, Lee (br0110) 1986; 15
Naamad, Lee, Hsu (br0150) 1984; 8
S.C. Nandy, A. Sinha, B.B. Bhattacharya, Location of the largest empty rectangle among arbitrary obstacles, in: FSTTCS, 1994, pp. 159–170.
Asano, Mulzer, Rote, Wang (br0030) 2011; 2
Bose, Maheshwari, Morin, Morrison, Smid, Vahrenhold (br0070) 2007; 37
time, in: CCCG, 2001, pp. 41–44.
Asano, Buchin, Buchin, Korman, Mulzer, Rote, Schulz (br0020) 2011
Pratt (br0180)
A. Aggarwal, S. Suri, Fast algorithms for computing the largest empty rectangle, in: Symposium on Computational Geometry, 1987, pp. 278–290.
Katajainen, Pasanen (br0130) 1992; 32
Vahrenhold (br0190) 2007; 102
Chan (10.1016/j.comgeo.2012.09.007_br0100) 2010; 43
Katajainen (10.1016/j.comgeo.2012.09.007_br0130) 1992; 32
McCreight (10.1016/j.comgeo.2012.09.007_br0140) 1985; 14
Asano (10.1016/j.comgeo.2012.09.007_br0020) 2011
Asano (10.1016/j.comgeo.2012.09.007_br0030) 2011; 2
Pratt (10.1016/j.comgeo.2012.09.007_br0180)
Vahrenhold (10.1016/j.comgeo.2012.09.007_br0200) 2007; 38
Vahrenhold (10.1016/j.comgeo.2012.09.007_br0190) 2007; 102
Atallah (10.1016/j.comgeo.2012.09.007_br0040) 1986; 13
10.1016/j.comgeo.2012.09.007_br0160
10.1016/j.comgeo.2012.09.007_br0060
Brönnimann (10.1016/j.comgeo.2012.09.007_br0090) 2004; 321
Orlowski (10.1016/j.comgeo.2012.09.007_br0170) 1990; 5
10.1016/j.comgeo.2012.09.007_br0080
Bose (10.1016/j.comgeo.2012.09.007_br0070) 2007; 37
Chazelle (10.1016/j.comgeo.2012.09.007_br0110) 1986; 15
Atkinson (10.1016/j.comgeo.2012.09.007_br0050) 1986; 29
Naamad (10.1016/j.comgeo.2012.09.007_br0150) 1984; 8
10.1016/j.comgeo.2012.09.007_br0010
10.1016/j.comgeo.2012.09.007_br0120
References_xml – reference: S.C. Nandy, A. Sinha, B.B. Bhattacharya, Location of the largest empty rectangle among arbitrary obstacles, in: FSTTCS, 1994, pp. 159–170.
– reference: R.P. Boland, J. Urrutia, Finding the largest axis aligned rectangle in a polygon in
– volume: 8
  start-page: 267
  year: 1984
  end-page: 277
  ident: br0150
  article-title: On the maximum empty rectangle problem
  publication-title: Discrete Appl. Math.
– volume: 37
  start-page: 209
  year: 2007
  end-page: 227
  ident: br0070
  article-title: Space-efficient geometric divide-and-conquer algorithms
  publication-title: Comput. Geom.
– volume: 14
  start-page: 257
  year: 1985
  end-page: 276
  ident: br0140
  article-title: Priority search trees
  publication-title: SIAM J. Comput.
– volume: 38
  start-page: 213
  year: 2007
  end-page: 230
  ident: br0200
  article-title: Line-segment intersection made in-place
  publication-title: Comput. Geom.
– reference: E.Y. Chen, T.M. Chan, A space-efficient algorithm for segment intersection, in: CCCG, 2003, pp. 68–71.
– reference: A. Aggarwal, S. Suri, Fast algorithms for computing the largest empty rectangle, in: Symposium on Computational Geometry, 1987, pp. 278–290.
– volume: 43
  start-page: 636
  year: 2010
  end-page: 646
  ident: br0100
  article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection
  publication-title: Comput. Geom.
– volume: 5
  start-page: 65
  year: 1990
  end-page: 73
  ident: br0170
  article-title: A new algorithm for the largest empty rectangle problem
  publication-title: Algorithmica
– reference: H. Brönnimann, T.M. Chan, E.Y. Chen, Towards in-place geometric algorithms and data structures, in: Symp. on Comput. Geom., 2004, pp. 239–246.
– reference: time, in: CCCG, 2001, pp. 41–44.
– ident: br0180
  article-title: Implementation of a heap-based priority search tree
– volume: 102
  start-page: 169
  year: 2007
  end-page: 174
  ident: br0190
  article-title: An in-place algorithm for Kleeʼs measure problem in two dimensions
  publication-title: Inf. Process. Lett.
– volume: 321
  start-page: 25
  year: 2004
  end-page: 40
  ident: br0090
  article-title: Space-efficient planar convex hull algorithms
  publication-title: Theor. Comput. Sci.
– volume: 29
  start-page: 996
  year: 1986
  end-page: 1000
  ident: br0050
  article-title: Min–max heaps and generalized priority queues
  publication-title: Commun. ACM
– volume: 15
  start-page: 300
  year: 1986
  end-page: 315
  ident: br0110
  article-title: Computing the largest empty rectangle
  publication-title: SIAM J. Comput.
– volume: 32
  start-page: 580
  year: 1992
  end-page: 585
  ident: br0130
  article-title: Stable minimum space partitioning in linear time
  publication-title: BIT
– volume: 2
  start-page: 46
  year: 2011
  end-page: 68
  ident: br0030
  article-title: Constant-work-space algorithms for geometric problems
  publication-title: JoCG
– volume: 13
  start-page: 87
  year: 1986
  end-page: 91
  ident: br0040
  article-title: A note on finding a maximum empty rectangle
  publication-title: Discrete Appl. Math.
– year: 2011
  ident: br0020
  article-title: Memory-constrained algorithms for simple polygons
  publication-title: CoRR
– volume: 29
  start-page: 996
  issue: 10
  year: 1986
  ident: 10.1016/j.comgeo.2012.09.007_br0050
  article-title: Min–max heaps and generalized priority queues
  publication-title: Commun. ACM
  doi: 10.1145/6617.6621
– ident: 10.1016/j.comgeo.2012.09.007_br0060
– ident: 10.1016/j.comgeo.2012.09.007_br0080
  doi: 10.1145/997817.997854
– volume: 13
  start-page: 87
  issue: 1
  year: 1986
  ident: 10.1016/j.comgeo.2012.09.007_br0040
  article-title: A note on finding a maximum empty rectangle
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(86)90071-5
– ident: 10.1016/j.comgeo.2012.09.007_br0120
– volume: 14
  start-page: 257
  issue: 2
  year: 1985
  ident: 10.1016/j.comgeo.2012.09.007_br0140
  article-title: Priority search trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0214021
– volume: 8
  start-page: 267
  issue: 3
  year: 1984
  ident: 10.1016/j.comgeo.2012.09.007_br0150
  article-title: On the maximum empty rectangle problem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90124-0
– volume: 102
  start-page: 169
  issue: 4
  year: 2007
  ident: 10.1016/j.comgeo.2012.09.007_br0190
  article-title: An in-place algorithm for Kleeʼs measure problem in two dimensions
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2006.12.004
– volume: 32
  start-page: 580
  issue: 4
  year: 1992
  ident: 10.1016/j.comgeo.2012.09.007_br0130
  article-title: Stable minimum space partitioning in linear time
  publication-title: BIT
  doi: 10.1007/BF01994842
– volume: 5
  start-page: 65
  issue: 1
  year: 1990
  ident: 10.1016/j.comgeo.2012.09.007_br0170
  article-title: A new algorithm for the largest empty rectangle problem
  publication-title: Algorithmica
  doi: 10.1007/BF01840377
– volume: 38
  start-page: 213
  issue: 3
  year: 2007
  ident: 10.1016/j.comgeo.2012.09.007_br0200
  article-title: Line-segment intersection made in-place
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2006.09.001
– ident: 10.1016/j.comgeo.2012.09.007_br0010
  doi: 10.1145/41958.41988
– volume: 2
  start-page: 46
  issue: 1
  year: 2011
  ident: 10.1016/j.comgeo.2012.09.007_br0030
  article-title: Constant-work-space algorithms for geometric problems
  publication-title: JoCG
– year: 2011
  ident: 10.1016/j.comgeo.2012.09.007_br0020
  article-title: Memory-constrained algorithms for simple polygons
  publication-title: CoRR
– ident: 10.1016/j.comgeo.2012.09.007_br0180
– volume: 321
  start-page: 25
  issue: 1
  year: 2004
  ident: 10.1016/j.comgeo.2012.09.007_br0090
  article-title: Space-efficient planar convex hull algorithms
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2003.05.004
– volume: 37
  start-page: 209
  issue: 3
  year: 2007
  ident: 10.1016/j.comgeo.2012.09.007_br0070
  article-title: Space-efficient geometric divide-and-conquer algorithms
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2006.03.006
– ident: 10.1016/j.comgeo.2012.09.007_br0160
  doi: 10.1007/3-540-58715-2_122
– volume: 43
  start-page: 636
  issue: 8
  year: 2010
  ident: 10.1016/j.comgeo.2012.09.007_br0100
  article-title: Optimal in-place and cache-oblivious algorithms for 3-d convex hulls and 2-d segment intersection
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2010.04.005
– volume: 15
  start-page: 300
  issue: 1
  year: 1986
  ident: 10.1016/j.comgeo.2012.09.007_br0110
  article-title: Computing the largest empty rectangle
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215022
SSID ssj0002259
Score 1.9915019
Snippet One of the classic data structures for storing point sets in R2 is the priority search tree, introduced by McCreight in 1985. We show that this data structure...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 310
SubjectTerms In-place algorithm
Maximum empty rectangle
Min–max priority search tree
Three-sided orthogonal range query
Title An in-place min–max priority search tree
URI https://dx.doi.org/10.1016/j.comgeo.2012.09.007
Volume 46
WOSCitedRecordID wos000312467300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-7721
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002259
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYq4MAeEK_VsgsoB04bBaWY1PExQiBAgDiwUm-R49g0iKZV24XuDYmfsP9wfwkzsZ1GgHgc9hJFUeM0mdE8Pn8zQ8iOEuBWwXVhbqKD_SjmQaxYHmihozgPQyFV1TL_jF1cxN0uv2y1Hl0tzN0tK8t4OuXD_ypquAbCxtLZT4i7XhQuwDkIHY4gdjh-SPAJcheDimvl9yHtt2wG2hdTfzgqBjitzrdgB25JN8NTM-PB4YPXatBXk9Ef35I_cDu-6u3a2PSuA2GDcBcILs5Q7p4a9-6FKWZPyhmbA2y6Me5gt3pi7B_sNpCe3NH5C0vnt6AEDoiouSwWXcQpucwUPztDa7HGopmHV1aTWmarccDUNAt4YdsNzHCDormu6jYRxsVuo2zmy9z-_TMXVxMPHaftJjWrpLhKGvK06kgwv8ciDtZ9Pjk57J7WDh1MnmnZaN_JVWBWNMGX_-b1CKcRtVwtkyWbbniJUZMV0lLlKvlyXvfqHa-Rn0npOYXxQGH-PfwFVfGcqnhGVTxUlXXy6-jw6uA4sBM0AkkpnwSisxfrTGqBYxEUzfKQZhCvKogTtaKQK-RRxFgOKQPvCK0pFSyWHFsiUt7Wsk2_krlyUKpvxIMwFGLBdiZjIfZFh2W4Ic4h25ERDXVONwh1b51K214ep5zcpm998w0S1HcNTXuVd37P3AdNbYhoQr8UtOTNO79_8kk_yOJMsTfJ3GT0W22RBXk3KcajbasiT87ahxA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in-place+min%E2%80%93max+priority+search+tree&rft.jtitle=Computational+geometry+%3A+theory+and+applications&rft.au=De%2C+Minati&rft.au=Maheshwari%2C+Anil&rft.au=Nandy%2C+Subhas+C.&rft.au=Smid%2C+Michiel&rft.date=2013-04-01&rft.issn=0925-7721&rft.volume=46&rft.issue=3&rft.spage=310&rft.epage=327&rft_id=info:doi/10.1016%2Fj.comgeo.2012.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comgeo_2012_09_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7721&client=summon