Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings

The effective prediction of building energy consumption can be used to optimize building operating modes and reduce the overall energy consumption and carbon emission of the building. To predict the energy consumption of the same type of building in the same area, it is often necessary to train sepa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 299; s. 131467
Hlavní autori: Jiang, Ben, Li, Yu, Rezgui, Yacine, Zhang, Chengyu, Wang, Peng, Zhao, Tianyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.07.2024
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The effective prediction of building energy consumption can be used to optimize building operating modes and reduce the overall energy consumption and carbon emission of the building. To predict the energy consumption of the same type of building in the same area, it is often necessary to train separate prediction models for different buildings, which is usually costly computationally in order to get better prediction results. Therefore, this study will combine deep neural networks and multi-source domain generalization in an encoder-decoder architecture to train a model that can be directly applied to predict the energy consumption of multiple buildings in same type. In order to validate the predictive effectiveness of the model, it will be tested on real office building energy consumption dataset and different comparative experiments will be designed on the source and target domains. The results show that the constructed multi-source domain generalization model is able to accurately predict the energy consumption trend of different buildings 1 h in advance. It also has some energy consumption prediction ability for the unknow training set of buildings. •Combining encoder and decoder architectures to build deep neural networks•Combining TDC and deep neural networks to train generalization model•Model training and testing using real office building energy consumption datasets•Setting up different comparison experiments on the source and target domains
AbstractList The effective prediction of building energy consumption can be used to optimize building operating modes and reduce the overall energy consumption and carbon emission of the building. To predict the energy consumption of the same type of building in the same area, it is often necessary to train separate prediction models for different buildings, which is usually costly computationally in order to get better prediction results. Therefore, this study will combine deep neural networks and multi-source domain generalization in an encoder-decoder architecture to train a model that can be directly applied to predict the energy consumption of multiple buildings in same type. In order to validate the predictive effectiveness of the model, it will be tested on real office building energy consumption dataset and different comparative experiments will be designed on the source and target domains. The results show that the constructed multi-source domain generalization model is able to accurately predict the energy consumption trend of different buildings 1 h in advance. It also has some energy consumption prediction ability for the unknow training set of buildings.
The effective prediction of building energy consumption can be used to optimize building operating modes and reduce the overall energy consumption and carbon emission of the building. To predict the energy consumption of the same type of building in the same area, it is often necessary to train separate prediction models for different buildings, which is usually costly computationally in order to get better prediction results. Therefore, this study will combine deep neural networks and multi-source domain generalization in an encoder-decoder architecture to train a model that can be directly applied to predict the energy consumption of multiple buildings in same type. In order to validate the predictive effectiveness of the model, it will be tested on real office building energy consumption dataset and different comparative experiments will be designed on the source and target domains. The results show that the constructed multi-source domain generalization model is able to accurately predict the energy consumption trend of different buildings 1 h in advance. It also has some energy consumption prediction ability for the unknow training set of buildings. •Combining encoder and decoder architectures to build deep neural networks•Combining TDC and deep neural networks to train generalization model•Model training and testing using real office building energy consumption datasets•Setting up different comparison experiments on the source and target domains
ArticleNumber 131467
Author Li, Yu
Wang, Peng
Zhang, Chengyu
Jiang, Ben
Rezgui, Yacine
Zhao, Tianyi
Author_xml – sequence: 1
  givenname: Ben
  surname: Jiang
  fullname: Jiang, Ben
  organization: Institute of Building Energy, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: College of Environment Science and Engineering, Donghua University, Shanghai, China
– sequence: 3
  givenname: Yacine
  surname: Rezgui
  fullname: Rezgui, Yacine
  organization: School of Engineering, Cardiff University, Cardiff, UK
– sequence: 4
  givenname: Chengyu
  surname: Zhang
  fullname: Zhang, Chengyu
  organization: Institute of Building Energy, Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Institute of Building Energy, Dalian University of Technology, Dalian, China
– sequence: 6
  givenname: Tianyi
  surname: Zhao
  fullname: Zhao, Tianyi
  email: zhaotianyi@dlut.edu.cn
  organization: Institute of Building Energy, Dalian University of Technology, Dalian, China
BookMark eNqFkDtPHDEQx11cpMCFb5DCJc1e_NgnBVKEIIkEShNqy2ePTz689sb2gi758vHdpqKAaqSZ_0PzO0crHzwg9JmSDSW0_bLfgIe4O2wYYfWGclq33QqdEd6Sqqlr9hGdp7QnhDT9MJyhvw-zy7ZKYY4KsA6jtB7vjhHS2T8y2-CxBpiwh7msysgvIT7hMWhw2ISIpwjaqmz9Di_NWAWf5nE6eUvaeGyYHOBgjC0l29k6XeTpE_pgpEtw8X-u0ePd7a-b79X9z28_br7eV4rzIVeyGTrDmG4GRuumhxZqRTXVRktmOl5vScf1MLBeEU4ZbbflRA0FpTXv2JbzNbpccqcYfs-QshhtUuCc9BDmJDhteE9p03dFWi9SFUNKEYyYoh1lPAhKxJGv2IvlS3HkKxa-xXb1yqZsPsHLUVr3nvl6MUNh8GwhiqQseFWwRlBZ6GDfDvgH1jegjQ
CitedBy_id crossref_primary_10_1109_JSEN_2024_3516093
crossref_primary_10_3390_en18123031
crossref_primary_10_3390_su162411112
crossref_primary_10_1016_j_jobe_2024_110612
Cites_doi 10.1016/j.energy.2023.128274
10.1016/j.knosys.2019.104971
10.1145/3552434
10.1016/j.patcog.2023.110029
10.1016/j.jclepro.2019.119866
10.1016/j.rser.2014.01.069
10.1016/j.buildenv.2022.109060
10.1016/j.energy.2023.126747
10.1016/j.apenergy.2019.114131
10.1016/j.rser.2012.02.049
10.1016/j.energy.2019.116187
10.1016/j.knosys.2023.110885
10.1016/j.apenergy.2022.118726
10.1016/j.rser.2017.09.108
10.1016/j.egyr.2023.08.005
10.1016/j.apenergy.2018.12.004
10.1016/j.egyr.2022.09.126
10.1016/j.catena.2019.104249
10.1007/s11053-018-9416-1
10.1016/j.atmosenv.2019.116885
10.1016/j.rser.2017.04.095
10.1016/j.scs.2022.104059
10.1016/j.neucom.2020.04.060
10.1016/j.apenergy.2021.116660
10.1016/j.energy.2019.05.230
10.1016/j.enbuild.2018.01.034
10.1016/j.epsr.2022.107908
10.1016/j.apenergy.2023.121765
10.1016/j.apenergy.2017.12.051
10.1016/j.ijepes.2023.109024
10.1016/j.enbuild.2018.05.017
10.1109/ACCESS.2019.2893806
10.1016/j.egyr.2022.08.180
10.1016/j.patcog.2020.107617
10.1016/j.rser.2013.03.004
10.1016/j.enbuild.2017.04.038
10.1016/j.energy.2019.116324
10.1016/j.cose.2023.103430
10.1016/j.apenergy.2023.121803
10.1016/j.enbuild.2021.111379
10.1016/S0306-2619(01)00049-6
10.1016/j.scitotenv.2019.135771
10.1016/j.scs.2021.103481
10.1016/j.ymssp.2022.108990
10.1016/j.apenergy.2021.117486
10.1016/j.energy.2023.126878
10.1016/j.apenergy.2008.11.035
10.1587/transinf.2016EDL8231
10.1016/j.enbuild.2021.111435
10.1109/TKDE.2009.191
10.1016/j.apenergy.2022.118801
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.131467
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_131467
S0360544224012404
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-a597f22d5921458e6e4c1d1dfda2f734b073d9928c031216b1df1f1ecdd372b33
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001237153700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Nov 09 13:01:49 EST 2025
Tue Nov 18 22:15:50 EST 2025
Sat Nov 29 06:35:56 EST 2025
Sat Feb 01 16:07:39 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Multi-source domain generalization
Encoder and decoder architecture
Energy consumption prediction
Office buildings
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-a597f22d5921458e6e4c1d1dfda2f734b073d9928c031216b1df1f1ecdd372b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153811587
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153811587
crossref_primary_10_1016_j_energy_2024_131467
crossref_citationtrail_10_1016_j_energy_2024_131467
elsevier_sciencedirect_doi_10_1016_j_energy_2024_131467
PublicationCentury 2000
PublicationDate 2024-07-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Park, Park, Noh (bib33) 2022; 218
Aydinalp, Ismet Ugursal, Fung (bib11) 2002; 71
Ma, Li, Cheng (bib23) 2020; 705
W, L, L (bib38) 2023; 35
Gao, Ruan (bib20) 2021; 252
Z, M, Z (bib48) 2019; 7
Kim, Cho (bib15) 2019; 182
Sameen, Pradhan, Lee (bib57) 2019; 28
Sankarananth, Karthiga, S (bib61) 2023; 10
Amasyali, El-Gohary (bib5) 2018; 81
J P (bib8) 2010; 22
Fang, Gong, Li (bib36) 2021; 252
Zhang, Teoh, Zhang (bib4) 2023; 269
Hoxha, Codur, Mustafaraj (bib59) 2023; 350
Li, Tong, Tong (bib18) 2022; 76
He, Zhang, Hao (bib47) 2017; 100
Ribeiro, Grolinger, Elyamany (bib35) 2018; 165
Qin, Wang, Chen (bib39) 2022; 14
Wan, Chang, Al-Bukhaiti (bib44) 2023; 282
Ahmad, Hassan, Abdullah (bib9) 2014; 33
Somu, M, Ramamritham (bib13) 2020; 261
Yan, Yao, Jia (bib55) 2022; 8
Zhou, Ziwei, Yu (bib30) 2023; 45
Yan, Wu, Yan (bib49) 2018
Yang, Hong, Li (bib16) 2019; 189
Fan, Wang, Gang (bib14) 2019; 236
Rahman, Srikumar, Smith (bib12) 2018; 212
Ahmad, Mourshed, Rezgui (bib10) 2017; 147
Bergstra, Bardenet, Bengio (bib58) 2011
Chen, Tong, Zheng (bib21) 2020; 254
Niu, Yu, Sun (bib45) 2022; 313
Jason, Jeff, Yoshua (bib24) 2017
Bayer, Frey, Reuter (bib25) 2023; 134
Long, Zhu, Wang (bib26) 2017
Iwana, Frinken, Uchida (bib53) 2020; 188
Ye, Dai (bib54) 2021; 109
Hu, Qi, Zhang (bib40) 2024; 146
Wei, Zhang, Shi (bib6) 2018; 82
Zhao, Shen (bib41) 2022; 173
Zhang, Bai, Mills (bib7) 2018; 172
Oyewole, Chehade, Kim (bib27) 2022; 312
Guo, Lin, Zhang (bib51) 2023; 350
Li, Zhang, Ma (bib52) 2022; 8
Ouyang, Yang, Zhang (bib29) 2023; 278
Zhao, Magoules (bib2) 2012; 16
Ding, Chen, Hu (bib19) 2021; 288
Vaswani, Shazeer, Parmar (bib17) 2017
Yuan, Chen, Wang (bib32) 2023; 270
Li, Meng, Cai (bib1) 2009; 86
Ganin, Ustinova, Ajakan (bib28) 2016; 17
Houlsby, Giurgiu, Jastrzebski (bib31) 2019
Lu, Wu, Ruan (bib37) 2023; 149
Du, Wang, Feng (bib43) 2021
Foucquier, Robert, Suard (bib3) 2013; 23
Laubscher (bib50) 2019; 189
Gao, Liu, Cao (bib60) 2021; 301
Agga, Abbou, Labbadi (bib46) 2022; 208
Sameen, Pradhan, Lee (bib56) 2020; 186
Ma, Cheng, Lin (bib22) 2019; 214
Gui, Zhu, Qin (bib42) 2020; 403
Himeur, Elnour, Fadli (bib34) 2022; 85
Kim (10.1016/j.energy.2024.131467_bib15) 2019; 182
Li (10.1016/j.energy.2024.131467_bib18) 2022; 76
Aydinalp (10.1016/j.energy.2024.131467_bib11) 2002; 71
Park (10.1016/j.energy.2024.131467_bib33) 2022; 218
Agga (10.1016/j.energy.2024.131467_bib46) 2022; 208
Ding (10.1016/j.energy.2024.131467_bib19) 2021; 288
Li (10.1016/j.energy.2024.131467_bib1) 2009; 86
Sameen (10.1016/j.energy.2024.131467_bib57) 2019; 28
Amasyali (10.1016/j.energy.2024.131467_bib5) 2018; 81
Sameen (10.1016/j.energy.2024.131467_bib56) 2020; 186
J P (10.1016/j.energy.2024.131467_bib8) 2010; 22
Laubscher (10.1016/j.energy.2024.131467_bib50) 2019; 189
Hoxha (10.1016/j.energy.2024.131467_bib59) 2023; 350
Qin (10.1016/j.energy.2024.131467_bib39) 2022; 14
Ma (10.1016/j.energy.2024.131467_bib22) 2019; 214
He (10.1016/j.energy.2024.131467_bib47) 2017; 100
Ye (10.1016/j.energy.2024.131467_bib54) 2021; 109
Foucquier (10.1016/j.energy.2024.131467_bib3) 2013; 23
Sankarananth (10.1016/j.energy.2024.131467_bib61) 2023; 10
Oyewole (10.1016/j.energy.2024.131467_bib27) 2022; 312
Ahmad (10.1016/j.energy.2024.131467_bib9) 2014; 33
Ma (10.1016/j.energy.2024.131467_bib23) 2020; 705
Zhou (10.1016/j.energy.2024.131467_bib30) 2023; 45
Himeur (10.1016/j.energy.2024.131467_bib34) 2022; 85
Vaswani (10.1016/j.energy.2024.131467_bib17) 2017
Lu (10.1016/j.energy.2024.131467_bib37) 2023; 149
Niu (10.1016/j.energy.2024.131467_bib45) 2022; 313
Ribeiro (10.1016/j.energy.2024.131467_bib35) 2018; 165
Wei (10.1016/j.energy.2024.131467_bib6) 2018; 82
Somu (10.1016/j.energy.2024.131467_bib13) 2020; 261
Fang (10.1016/j.energy.2024.131467_bib36) 2021; 252
Gao (10.1016/j.energy.2024.131467_bib60) 2021; 301
Ganin (10.1016/j.energy.2024.131467_bib28) 2016; 17
Zhao (10.1016/j.energy.2024.131467_bib2) 2012; 16
Hu (10.1016/j.energy.2024.131467_bib40) 2024; 146
Zhao (10.1016/j.energy.2024.131467_bib41) 2022; 173
Wan (10.1016/j.energy.2024.131467_bib44) 2023; 282
Ouyang (10.1016/j.energy.2024.131467_bib29) 2023; 278
Gui (10.1016/j.energy.2024.131467_bib42) 2020; 403
Guo (10.1016/j.energy.2024.131467_bib51) 2023; 350
Yuan (10.1016/j.energy.2024.131467_bib32) 2023; 270
Gao (10.1016/j.energy.2024.131467_bib20) 2021; 252
Li (10.1016/j.energy.2024.131467_bib52) 2022; 8
Iwana (10.1016/j.energy.2024.131467_bib53) 2020; 188
Zhang (10.1016/j.energy.2024.131467_bib4) 2023; 269
Long (10.1016/j.energy.2024.131467_bib26) 2017
Yan (10.1016/j.energy.2024.131467_bib49) 2018
Yang (10.1016/j.energy.2024.131467_bib16) 2019; 189
Bergstra (10.1016/j.energy.2024.131467_bib58) 2011
W (10.1016/j.energy.2024.131467_bib38) 2023; 35
Z (10.1016/j.energy.2024.131467_bib48) 2019; 7
Bayer (10.1016/j.energy.2024.131467_bib25) 2023; 134
Zhang (10.1016/j.energy.2024.131467_bib7) 2018; 172
Fan (10.1016/j.energy.2024.131467_bib14) 2019; 236
Chen (10.1016/j.energy.2024.131467_bib21) 2020; 254
Du (10.1016/j.energy.2024.131467_bib43) 2021
Ahmad (10.1016/j.energy.2024.131467_bib10) 2017; 147
Yan (10.1016/j.energy.2024.131467_bib55) 2022; 8
Jason (10.1016/j.energy.2024.131467_bib24) 2017
Houlsby (10.1016/j.energy.2024.131467_bib31) 2019
Rahman (10.1016/j.energy.2024.131467_bib12) 2018; 212
References_xml – volume: 28
  start-page: 757
  year: 2019
  end-page: 775
  ident: bib57
  article-title: Self-learning random Forests model for mapping groundwater yield in data-scarce areas
  publication-title: Nat Resour Res
– volume: 81
  start-page: 1192
  year: 2018
  end-page: 1205
  ident: bib5
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
– volume: 312
  year: 2022
  ident: bib27
  article-title: A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation
  publication-title: Appl Energy
– volume: 8
  start-page: 121
  year: 2022
  end-page: 128
  ident: bib55
  article-title: Online battery health diagnosis for electric vehicles based on DTW-XGBoost
  publication-title: Energy Rep
– volume: 186
  year: 2020
  ident: bib56
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
– volume: 705
  year: 2020
  ident: bib23
  article-title: Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network
  publication-title: Sci Total Environ
– volume: 218
  year: 2022
  ident: bib33
  article-title: Stacking deep transfer learning for short-term cross building energy prediction with different seasonality and occupant schedule
  publication-title: Build Environ
– volume: 350
  year: 2023
  ident: bib59
  article-title: Prediction of transportation energy demand in Turkiye using stacking ensemble models: Methodology and comparative analysis
  publication-title: Appl Energy
– volume: 71
  start-page: 87
  year: 2002
  end-page: 110
  ident: bib11
  article-title: Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
  publication-title: Appl Energy
– start-page: 27
  year: 2017
  ident: bib24
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv Neural Inf Process Syst
– volume: 270
  year: 2023
  ident: bib32
  article-title: Attention mechanism-based transfer learning model for day-ahead energy demand forecasting of shopping mall buildings
  publication-title: Energy
– volume: 146
  year: 2024
  ident: bib40
  article-title: Domain generalization via inter-domain alignment and intra-domain expansion
  publication-title: Pattern Recogn
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib8
  publication-title: IEEE Trans Knowl Data Eng
– volume: 188
  year: 2020
  ident: bib53
  article-title: DTW-NN: a novel neural network for time series recognition using dynamic alignment between inputs and weights
  publication-title: Knowl Base Syst
– volume: 16
  start-page: 3586
  year: 2012
  end-page: 3592
  ident: bib2
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew Sustain Energy Rev
– volume: 208
  year: 2022
  ident: bib46
  article-title: CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production
  publication-title: Elec Power Syst Res
– volume: 8
  start-page: 10346
  year: 2022
  end-page: 10362
  ident: bib52
  article-title: A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network
  publication-title: Energy Rep
– volume: 86
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: bib1
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: bib6
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: bib15
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
– volume: 282
  year: 2023
  ident: bib44
  article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
  publication-title: Energy
– start-page: 24
  year: 2011
  ident: bib58
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv Neural Inf Process Syst
– volume: 254
  year: 2020
  ident: bib21
  article-title: Transfer learning with deep neural networks for model predictive control of HVAC and natural ventilation in smart buildings
  publication-title: J Clean Prod
– volume: 109
  year: 2021
  ident: bib54
  article-title: Implementing transfer learning across different datasets for time series forecasting
  publication-title: Pattern Recogn
– volume: 252
  year: 2021
  ident: bib36
  article-title: A general multi-source ensemble transfer learning framework integrate of LSTM-DANN and similarity metric for building energy prediction
  publication-title: Energy Build
– year: 2021
  ident: bib43
  article-title: Adarnn: adaptive learning and forecasting of time series
  publication-title: Proceedings of the 30th ACM international conference on information & knowledge management
– volume: 236
  start-page: 700
  year: 2019
  end-page: 710
  ident: bib14
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions
  publication-title: Appl Energy
– start-page: 30
  year: 2017
  ident: bib17
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  start-page: 1299
  year: 2023
  end-page: 1312
  ident: bib61
  article-title: AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids
  publication-title: Energy Rep
– volume: 350
  year: 2023
  ident: bib51
  article-title: Dynamic adaptive encoder-decoder deep learning networks for multivariate time series forecasting of building energy consumption
  publication-title: Appl Energy
– year: 2017
  ident: bib26
  article-title: Deep transfer learning with joint adaptation networks: international conference on machine learning
– year: 2019
  ident: bib31
  article-title: Parameter-efficient transfer learning for NLP: international conference on machine learning
– volume: 149
  year: 2023
  ident: bib37
  article-title: A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction
  publication-title: Int J Electr Power Energy Syst
– volume: 85
  year: 2022
  ident: bib34
  article-title: Next-generation energy systems for sustainable smart cities: roles of transfer learning
  publication-title: Sustain Cities Soc
– volume: 14
  start-page: 1
  year: 2022
  end-page: 21
  ident: bib39
  article-title: Domain generalization for activity recognition via adaptive feature fusion
  publication-title: Acm Transactions On Intelligent Systems and Technology
– volume: 165
  start-page: 352
  year: 2018
  end-page: 363
  ident: bib35
  article-title: Transfer learning with seasonal and trend adjustment for cross-building energy forecasting
  publication-title: Energy Build
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  ident: bib10
  article-title: Trees vs Neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build
– volume: 45
  start-page: 4396
  year: 2023
  end-page: 4415
  ident: bib30
  article-title: Domain generalization: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 269
  year: 2023
  ident: bib4
  article-title: Exploring driving force factors of building energy use and GHG emission using a spatio-temporal regression method
  publication-title: Energy
– year: 2018
  ident: bib49
  article-title: Encoder-decoder model for forecast of PM2.5 concentration per hour: 2018 1st international Cognitive cities conference (IC3)
– volume: 134
  year: 2023
  ident: bib25
  article-title: Multi-level fine-tuning, data augmentation, and few-shot learning for specialized cyber threat intelligence
  publication-title: Comput Secur
– volume: 7
  start-page: 20462
  year: 2019
  end-page: 20471
  ident: bib48
  article-title: Enhancing attention-based LSTM with position context for aspect-level sentiment classification
  publication-title: IEEE Access
– volume: 261
  year: 2020
  ident: bib13
  article-title: A hybrid model for building energy consumption forecasting using long short term memory networks
  publication-title: Appl Energy
– volume: 33
  start-page: 102
  year: 2014
  end-page: 109
  ident: bib9
  article-title: A review on applications of ANN and SVM for building electrical energy consumption forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 189
  year: 2019
  ident: bib16
  article-title: Deep ensemble learning based probabilistic load forecasting in smart grids
  publication-title: Energy
– volume: 288
  year: 2021
  ident: bib19
  article-title: Evolutionary double attention-based long short-term memory model for building energy prediction: case study of a green building
  publication-title: Appl Energy
– volume: 100
  start-page: 1372
  year: 2017
  end-page: 1375
  ident: bib47
  article-title: An attention-based hybrid neural network for document modeling
  publication-title: IEICE Trans Info Syst
– volume: 189
  year: 2019
  ident: bib50
  article-title: Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks
  publication-title: Energy
– volume: 23
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib3
  article-title: State of the art in building modelling and energy performances prediction: a review
  publication-title: Renew Sustain Energy Rev
– volume: 313
  year: 2022
  ident: bib45
  article-title: Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism
  publication-title: Appl Energy
– volume: 35
  start-page: 8052
  year: 2023
  end-page: 8072
  ident: bib38
  article-title: Generalizing to unseen domains: a survey on domain generalization
  publication-title: IEEE Trans Knowl Data Eng
– volume: 214
  year: 2019
  ident: bib22
  article-title: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques
  publication-title: Atmos Environ
– volume: 403
  start-page: 294
  year: 2020
  end-page: 303
  ident: bib42
  article-title: Learning multi-level domain invariant features for sketch re-identification
  publication-title: Neurocomputing
– volume: 252
  year: 2021
  ident: bib20
  article-title: Interpretable deep learning model for building energy consumption prediction based on attention mechanism
  publication-title: Energy Build
– volume: 17
  start-page: 2030
  year: 2016
  end-page: 2096
  ident: bib28
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 278
  year: 2023
  ident: bib29
  article-title: Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction
  publication-title: Knowl Base Syst
– volume: 212
  start-page: 372
  year: 2018
  end-page: 385
  ident: bib12
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl Energy
– volume: 172
  start-page: 279
  year: 2018
  end-page: 294
  ident: bib7
  article-title: Rethinking the role of occupant behavior in building energy performance: a review
  publication-title: Energy Build
– volume: 301
  year: 2021
  ident: bib60
  article-title: Comparing deep learning models for multi energy vectors prediction on multiple types of building
  publication-title: Appl Energy
– volume: 76
  year: 2022
  ident: bib18
  article-title: A data-driven interval forecasting model for building energy prediction using attention-based LSTM and fuzzy information granulation
  publication-title: Sustain Cities Soc
– volume: 173
  year: 2022
  ident: bib41
  article-title: A domain generalization network combing invariance and specificity towards real-time intelligent fault diagnosis
  publication-title: Mech Syst Signal Process
– start-page: 27
  year: 2017
  ident: 10.1016/j.energy.2024.131467_bib24
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv Neural Inf Process Syst
– volume: 282
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib44
  article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128274
– volume: 188
  year: 2020
  ident: 10.1016/j.energy.2024.131467_bib53
  article-title: DTW-NN: a novel neural network for time series recognition using dynamic alignment between inputs and weights
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2019.104971
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib39
  article-title: Domain generalization for activity recognition via adaptive feature fusion
  publication-title: Acm Transactions On Intelligent Systems and Technology
  doi: 10.1145/3552434
– volume: 146
  year: 2024
  ident: 10.1016/j.energy.2024.131467_bib40
  article-title: Domain generalization via inter-domain alignment and intra-domain expansion
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2023.110029
– volume: 254
  year: 2020
  ident: 10.1016/j.energy.2024.131467_bib21
  article-title: Transfer learning with deep neural networks for model predictive control of HVAC and natural ventilation in smart buildings
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119866
– volume: 33
  start-page: 102
  year: 2014
  ident: 10.1016/j.energy.2024.131467_bib9
  article-title: A review on applications of ANN and SVM for building electrical energy consumption forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.01.069
– volume: 218
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib33
  article-title: Stacking deep transfer learning for short-term cross building energy prediction with different seasonality and occupant schedule
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2022.109060
– volume: 269
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib4
  article-title: Exploring driving force factors of building energy use and GHG emission using a spatio-temporal regression method
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126747
– volume: 261
  year: 2020
  ident: 10.1016/j.energy.2024.131467_bib13
  article-title: A hybrid model for building energy consumption forecasting using long short term memory networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114131
– volume: 16
  start-page: 3586
  issue: 6
  year: 2012
  ident: 10.1016/j.energy.2024.131467_bib2
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.049
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib50
  article-title: Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116187
– volume: 278
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib29
  article-title: Domain adversarial graph neural network with cross-city graph structure learning for traffic prediction
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2023.110885
– volume: 312
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib27
  article-title: A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118726
– start-page: 24
  year: 2011
  ident: 10.1016/j.energy.2024.131467_bib58
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv Neural Inf Process Syst
– volume: 82
  start-page: 1027
  year: 2018
  ident: 10.1016/j.energy.2024.131467_bib6
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.09.108
– volume: 10
  start-page: 1299
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib61
  article-title: AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.08.005
– volume: 236
  start-page: 700
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib14
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.004
– volume: 8
  start-page: 121
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib55
  article-title: Online battery health diagnosis for electric vehicles based on DTW-XGBoost
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.09.126
– volume: 186
  year: 2020
  ident: 10.1016/j.energy.2024.131467_bib56
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104249
– volume: 28
  start-page: 757
  issue: 3
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib57
  article-title: Self-learning random Forests model for mapping groundwater yield in data-scarce areas
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-018-9416-1
– volume: 214
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib22
  article-title: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2019.116885
– volume: 81
  start-page: 1192
  year: 2018
  ident: 10.1016/j.energy.2024.131467_bib5
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.095
– volume: 85
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib34
  article-title: Next-generation energy systems for sustainable smart cities: roles of transfer learning
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104059
– volume: 403
  start-page: 294
  year: 2020
  ident: 10.1016/j.energy.2024.131467_bib42
  article-title: Learning multi-level domain invariant features for sketch re-identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.060
– volume: 288
  year: 2021
  ident: 10.1016/j.energy.2024.131467_bib19
  article-title: Evolutionary double attention-based long short-term memory model for building energy prediction: case study of a green building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116660
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib15
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– year: 2018
  ident: 10.1016/j.energy.2024.131467_bib49
– volume: 165
  start-page: 352
  year: 2018
  ident: 10.1016/j.energy.2024.131467_bib35
  article-title: Transfer learning with seasonal and trend adjustment for cross-building energy forecasting
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.01.034
– volume: 208
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib46
  article-title: CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2022.107908
– volume: 350
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib59
  article-title: Prediction of transportation energy demand in Turkiye using stacking ensemble models: Methodology and comparative analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121765
– volume: 212
  start-page: 372
  year: 2018
  ident: 10.1016/j.energy.2024.131467_bib12
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 149
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib37
  article-title: A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109024
– volume: 35
  start-page: 8052
  issue: 8
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib38
  article-title: Generalizing to unseen domains: a survey on domain generalization
  publication-title: IEEE Trans Knowl Data Eng
– volume: 172
  start-page: 279
  year: 2018
  ident: 10.1016/j.energy.2024.131467_bib7
  article-title: Rethinking the role of occupant behavior in building energy performance: a review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.05.017
– volume: 7
  start-page: 20462
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib48
  article-title: Enhancing attention-based LSTM with position context for aspect-level sentiment classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893806
– volume: 8
  start-page: 10346
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib52
  article-title: A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.08.180
– volume: 109
  year: 2021
  ident: 10.1016/j.energy.2024.131467_bib54
  article-title: Implementing transfer learning across different datasets for time series forecasting
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107617
– volume: 23
  start-page: 272
  year: 2013
  ident: 10.1016/j.energy.2024.131467_bib3
  article-title: State of the art in building modelling and energy performances prediction: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.03.004
– volume: 147
  start-page: 77
  year: 2017
  ident: 10.1016/j.energy.2024.131467_bib10
  article-title: Trees vs Neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.04.038
– year: 2021
  ident: 10.1016/j.energy.2024.131467_bib43
  article-title: Adarnn: adaptive learning and forecasting of time series
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2024.131467_bib16
  article-title: Deep ensemble learning based probabilistic load forecasting in smart grids
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116324
– volume: 134
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib25
  article-title: Multi-level fine-tuning, data augmentation, and few-shot learning for specialized cyber threat intelligence
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2023.103430
– volume: 350
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib51
  article-title: Dynamic adaptive encoder-decoder deep learning networks for multivariate time series forecasting of building energy consumption
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121803
– volume: 252
  year: 2021
  ident: 10.1016/j.energy.2024.131467_bib20
  article-title: Interpretable deep learning model for building energy consumption prediction based on attention mechanism
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111379
– volume: 71
  start-page: 87
  issue: 2
  year: 2002
  ident: 10.1016/j.energy.2024.131467_bib11
  article-title: Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(01)00049-6
– volume: 705
  year: 2020
  ident: 10.1016/j.energy.2024.131467_bib23
  article-title: Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135771
– year: 2017
  ident: 10.1016/j.energy.2024.131467_bib26
– volume: 76
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib18
  article-title: A data-driven interval forecasting model for building energy prediction using attention-based LSTM and fuzzy information granulation
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103481
– volume: 173
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib41
  article-title: A domain generalization network combing invariance and specificity towards real-time intelligent fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108990
– volume: 301
  year: 2021
  ident: 10.1016/j.energy.2024.131467_bib60
  article-title: Comparing deep learning models for multi energy vectors prediction on multiple types of building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117486
– volume: 17
  start-page: 2030
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2024.131467_bib28
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 45
  start-page: 4396
  issue: 4
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib30
  article-title: Domain generalization: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2019
  ident: 10.1016/j.energy.2024.131467_bib31
– start-page: 30
  year: 2017
  ident: 10.1016/j.energy.2024.131467_bib17
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 270
  year: 2023
  ident: 10.1016/j.energy.2024.131467_bib32
  article-title: Attention mechanism-based transfer learning model for day-ahead energy demand forecasting of shopping mall buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126878
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  ident: 10.1016/j.energy.2024.131467_bib1
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.035
– volume: 100
  start-page: 1372
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2024.131467_bib47
  article-title: An attention-based hybrid neural network for document modeling
  publication-title: IEICE Trans Info Syst
  doi: 10.1587/transinf.2016EDL8231
– volume: 252
  year: 2021
  ident: 10.1016/j.energy.2024.131467_bib36
  article-title: A general multi-source ensemble transfer learning framework integrate of LSTM-DANN and similarity metric for building energy prediction
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111435
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.energy.2024.131467_bib8
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 313
  year: 2022
  ident: 10.1016/j.energy.2024.131467_bib45
  article-title: Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118801
SSID ssj0005899
Score 2.4775376
Snippet The effective prediction of building energy consumption can be used to optimize building operating modes and reduce the overall energy consumption and carbon...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131467
SubjectTerms carbon
data collection
Deep neural network
domain
Encoder and decoder architecture
energy
Energy consumption prediction
Multi-source domain generalization
neural networks
Office buildings
prediction
Title Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings
URI https://dx.doi.org/10.1016/j.energy.2024.131467
https://www.proquest.com/docview/3153811587
Volume 299
WOSCitedRecordID wos001237153700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDgleEAwmxi8ZibcqFbGTOn4cUxFM04TEQOUpSmxnbBpp1LRTgX-es89OWiY0QKIPUZUmzo_vq30-33dHyMvMpMwUZRapUsIEBT5RFosqUorZhHGJ0E4e_elYnJxks5l8Pxg0QQtzdSnqOluvZfNfoYZ9ALaVzv4F3F2jsAO-A-iwBdhh-0fAO0lthE75kZ5_ham_rZNsfU9ecznSxjQjm8kS8KkxDhxL4rigw2ZhF29cOLRBZaByOs0mxEV2QYgu_4QZlb60drvl5sdTbTbTNQbQdy6Ho3PvpH7d69COXVTB51W3AGS-n61wX7G59t85uA-_mPrs22rTa8ES6w5F3Sa60oKcpo9dQgnXqyhNkq3umWEBpWtdPXodLsb4Jsb2IuOY246_H9q6gMMPtmnbMhgwYNHYBLI7TKQyG5Kdg3fT2VEfFpS5mqPdrQS5pYsJvH6t35kzvwzszlo5vUfu-mkGPUB63CcDU--S20GF3u6SvWmvcIQDfRffPiA_NvlDkT90mz_U8ocif6jnD3X8oYA07flD8UnoBn8otBb4Q5E_tOPPQ_LxzfT08G3kK3REinO5jAqYjlaM6VTahPeZmZhExTrWlS5YJXhSwgCipWSZgrGDxZMSfoqr2CituWAl53tkWM9r84hQwSZVlaSFSnWVyALMdpZWFU-FErJkvNwnPLzoXPn09baKymUe4hQvcnyo3MKTIzz7JOrOajB9yw3Hi4Bh7k1QNC1zoN0NZ74IkOfQQ9tlt6I281Wbc2tUwMQrE4__ufUn5E7_L3pKhsvFyjwjt9TV8rxdPPcc_gl1Lr8t
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-source+domain+generalization+deep+neural+network+model+for+predicting+energy+consumption+in+multiple+office+buildings&rft.jtitle=Energy+%28Oxford%29&rft.au=Jiang%2C+Ben&rft.au=Li%2C+Yu&rft.au=Rezgui%2C+Yacine&rft.au=Zhang%2C+Chengyu&rft.date=2024-07-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=299&rft_id=info:doi/10.1016%2Fj.energy.2024.131467&rft.externalDocID=S0360544224012404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon