A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction
The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlatio...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 281; s. 128289 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.10.2023
|
| Predmet: | |
| ISSN: | 0360-5442 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlation characteristics of wind-farm clusters. The Bagging, long short-term memory (LSTM), and random forest (RF) are superimposed based on the stacking integration algorithm. By analyzing the decomposed wind electron sequence characteristics, two Stacking models are used to predict the wind power of target wind-farms respectively and then a dual stacking model fusion strategy is formed. Finally, a multi-step prediction model with the spatio-temporal characteristics of D-stacking multi-integration fusion is designed for rolling multi-step prediction of wind-farm cluster power to obtain high-precision target wind-farm power. Through the actual wind power generation measured in northwest China to conduct case studies and comparative tests, it concludes that:(1) Spatio-temporal method in this paper can effectively extract the deep spatial features of wind farm clusters. (2) Dual fusion strategy improves Stacking effectively. (3) The proposed model can obtain accurate wind power prediction results, which is superior to 14 comparative algorithms proposed by other researchers.
•The spatio-temporal graph network is proposed to capture spatiotemporal features.•An integration algorithm for a multi-integration overlay framework is investigated.•The D-stacking spatio-temporal feature multi-step prediction model is proposed.•The dual Stacking model fusion strategy is proposed to improve the stacking algorithm.•The proposed method provides more accurate predictions than other methods. |
|---|---|
| AbstractList | The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlation characteristics of wind-farm clusters. The Bagging, long short-term memory (LSTM), and random forest (RF) are superimposed based on the stacking integration algorithm. By analyzing the decomposed wind electron sequence characteristics, two Stacking models are used to predict the wind power of target wind-farms respectively and then a dual stacking model fusion strategy is formed. Finally, a multi-step prediction model with the spatio-temporal characteristics of D-stacking multi-integration fusion is designed for rolling multi-step prediction of wind-farm cluster power to obtain high-precision target wind-farm power. Through the actual wind power generation measured in northwest China to conduct case studies and comparative tests, it concludes that:(1) Spatio-temporal method in this paper can effectively extract the deep spatial features of wind farm clusters. (2) Dual fusion strategy improves Stacking effectively. (3) The proposed model can obtain accurate wind power prediction results, which is superior to 14 comparative algorithms proposed by other researchers.
•The spatio-temporal graph network is proposed to capture spatiotemporal features.•An integration algorithm for a multi-integration overlay framework is investigated.•The D-stacking spatio-temporal feature multi-step prediction model is proposed.•The dual Stacking model fusion strategy is proposed to improve the stacking algorithm.•The proposed method provides more accurate predictions than other methods. The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlation characteristics of wind-farm clusters. The Bagging, long short-term memory (LSTM), and random forest (RF) are superimposed based on the stacking integration algorithm. By analyzing the decomposed wind electron sequence characteristics, two Stacking models are used to predict the wind power of target wind-farms respectively and then a dual stacking model fusion strategy is formed. Finally, a multi-step prediction model with the spatio-temporal characteristics of D-stacking multi-integration fusion is designed for rolling multi-step prediction of wind-farm cluster power to obtain high-precision target wind-farm power. Through the actual wind power generation measured in northwest China to conduct case studies and comparative tests, it concludes that:(1) Spatio-temporal method in this paper can effectively extract the deep spatial features of wind farm clusters. (2) Dual fusion strategy improves Stacking effectively. (3) The proposed model can obtain accurate wind power prediction results, which is superior to 14 comparative algorithms proposed by other researchers. |
| ArticleNumber | 128289 |
| Author | Hou, Xinxing Li, Jian Gui, Jianglin Qu, Zhijian |
| Author_xml | – sequence: 1 givenname: Zhijian surname: Qu fullname: Qu, Zhijian – sequence: 2 givenname: Jian surname: Li fullname: Li, Jian email: 2021028080800005@ecjtu.edu.cn – sequence: 3 givenname: Xinxing surname: Hou fullname: Hou, Xinxing – sequence: 4 givenname: Jianglin surname: Gui fullname: Gui, Jianglin |
| BookMark | eNqFkbtu3DAQRVU4gB_xH6RgmSLa8CHJYooAhvMEDKSxa2JEjtZcSyRDUl7s_-RDQ0GpUiQNh7i4ZzC497I6c95hVb1hdMco694fdugw7k87TrnYMd7zXp5VF1R0tG6bhp9XlykdKKVtL-VF9euWfKpTBv1s3Z6YBaZ6XJL17h1JAbL1dcY5-AgT2UcIT8QgBuJwWRWH-ejjMxkgoSHeESDzMmVbW5ex2POqvmCc4ERGH0l68jGXhXEmR-tMPUL56WlJRSLBH8u78UUIJEQ0VpcT3Ovq1QhTwus_86p6_PL54e5bff_j6_e72_taCyFzDUziDYfBGFaubPvBjIZjxxkf-oZC0wNvWypuBmaGphUDiBZa7GThpGw6Lq6qt9veEP3PBVNWs00apwkc-iUp3jeyl51golibzaqjTyniqEK0M8STYlStRaiD2opQaxFqK6JgH_7CtM1rzC5HsNP_4I8bjCWDF4tRJW3R6RJTRJ2V8fbfC34DA_uvMg |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_130770 crossref_primary_10_1016_j_mtcomm_2024_110260 crossref_primary_10_1016_j_energy_2024_133645 crossref_primary_10_1016_j_energy_2025_136558 crossref_primary_10_1016_j_eswa_2024_124766 crossref_primary_10_1016_j_eswa_2025_129009 crossref_primary_10_1109_TSTE_2024_3397877 crossref_primary_10_3390_jmse12030502 crossref_primary_10_1016_j_energy_2023_130155 crossref_primary_10_1016_j_envres_2024_118176 crossref_primary_10_1016_j_energy_2024_132899 crossref_primary_10_1016_j_engappai_2025_112082 crossref_primary_10_1016_j_engappai_2024_109109 crossref_primary_10_3390_en17061270 crossref_primary_10_1016_j_engappai_2025_110075 crossref_primary_10_3390_app14020901 crossref_primary_10_1016_j_apenergy_2024_124911 |
| Cites_doi | 10.3390/en11112976 10.1016/j.ymssp.2018.05.019 10.1016/j.cviu.2019.102805 10.1109/TIA.2020.2993529 10.1016/j.asoc.2019.105550 10.1016/j.neunet.2017.02.013 10.1016/j.epsr.2020.107011 10.1109/TSTE.2018.2844102 10.1109/ACCESS.2022.3164717 10.3390/en15145126 10.1016/j.neucom.2021.07.084 10.1109/TPWRS.2009.2033277 10.3390/en13184964 10.1016/j.energy.2021.122020 10.1016/j.renene.2020.05.015 10.1016/j.enconman.2016.01.007 10.1016/j.energy.2022.126034 10.1016/j.eswa.2010.11.033 10.1016/j.jclepro.2019.118447 10.1016/j.energy.2017.07.112 10.1016/j.energy.2020.118980 10.1016/j.energy.2019.116316 10.1109/ACCESS.2020.3012306 10.3389/fenrg.2022.905155 10.1109/ACCESS.2021.3126747 10.1016/j.phycom.2020.101057 10.3390/s22197414 10.1016/j.apenergy.2020.115098 10.1016/j.energy.2020.117794 10.3390/math9111178 10.1063/5.0097757 10.1109/TSTE.2020.3042385 10.1016/j.solener.2004.09.013 10.1016/j.energy.2020.119692 10.1016/j.epsr.2022.107776 10.3390/en15124334 10.1016/j.renene.2019.12.047 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2023.128289 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2023_128289 S0360544223016833 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-a19e72abdd1dee58bdfd2e6212b840a48a255037b1db453ba35a5e69a19994623 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001046517000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 01:01:43 EDT 2025 Tue Nov 18 21:01:37 EST 2025 Sat Nov 29 07:20:29 EST 2025 Fri Feb 23 02:34:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Improved stacking Spatio-temporal graph deep neural network Multi-integration fusion Multi-step rolling forecast Wind power forecasting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-a19e72abdd1dee58bdfd2e6212b840a48a255037b1db453ba35a5e69a19994623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2849896313 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2849896313 crossref_primary_10_1016_j_energy_2023_128289 crossref_citationtrail_10_1016_j_energy_2023_128289 elsevier_sciencedirect_doi_10_1016_j_energy_2023_128289 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-15 |
| PublicationDateYYYYMMDD | 2023-10-15 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sun, Wang, Yang (bib12) 2022; 15 Lydia (bib9) 2016; 112 Wang (bib25) 2017; 138 Abbasipour, Igder, Liang (bib19) 2021; 9 Lee, Ko (bib11) 2011; 38 Yin (bib33) 2020; 160 Wang, Li (bib35) 2022; 14 Han (bib31) 2018; 11 Shahid (bib4) 2020; 269 Sun (bib7) 2020; 8 Liao (bib2) 2021; 9 Wang (bib23) 2020; 56 Tang, Chien (bib24) 2022; 22 Peng (bib6) 2021; 220 Duan (bib34) 2021; 214 Xiong (bib32) 2022; 10 Xiong (bib5) 2022; 206 Pan (bib22) 2019; 114 Liu (bib37) 2020; 202 Yin (bib15) 2019; 189 Liu (bib17) 2022; 10 Liu (bib27) 2020; 13 Chen (bib8) 2010; 25 Khodayar, Wang (bib26) 2019; 10 Chengqing (bib1) 2023; 263 Zhang (bib29) 2022; 10 Li (bib18) 2020; 242 Dong (bib30) 2021; 462 Liu, Zhou, Qian (bib16) 2021; 192 Torres (bib10) 2005; 79 Fayek, Lech, Cavedon (bib13) 2017; 92 Yuan (bib36) 2019; 82 Zhang (bib28) 2020; 156 Guo, Zhang (bib14) 2019; 189 Du, Yu (bib20) 2022; 15 Amirabadi, Kahaei, Nezamalhosseini (bib38) 2020; 41 Li, Li, Choi (bib21) 2021; 12 Khazaei (bib3) 2022; 238 Lee (10.1016/j.energy.2023.128289_bib11) 2011; 38 Sun (10.1016/j.energy.2023.128289_bib12) 2022; 15 Liu (10.1016/j.energy.2023.128289_bib17) 2022; 10 Li (10.1016/j.energy.2023.128289_bib21) 2021; 12 Pan (10.1016/j.energy.2023.128289_bib22) 2019; 114 Guo (10.1016/j.energy.2023.128289_bib14) 2019; 189 Yin (10.1016/j.energy.2023.128289_bib15) 2019; 189 Han (10.1016/j.energy.2023.128289_bib31) 2018; 11 Chengqing (10.1016/j.energy.2023.128289_bib1) 2023; 263 Peng (10.1016/j.energy.2023.128289_bib6) 2021; 220 Sun (10.1016/j.energy.2023.128289_bib7) 2020; 8 Abbasipour (10.1016/j.energy.2023.128289_bib19) 2021; 9 Khodayar (10.1016/j.energy.2023.128289_bib26) 2019; 10 Xiong (10.1016/j.energy.2023.128289_bib5) 2022; 206 Xiong (10.1016/j.energy.2023.128289_bib32) 2022; 10 Liu (10.1016/j.energy.2023.128289_bib37) 2020; 202 Liao (10.1016/j.energy.2023.128289_bib2) 2021; 9 Chen (10.1016/j.energy.2023.128289_bib8) 2010; 25 Li (10.1016/j.energy.2023.128289_bib18) 2020; 242 Fayek (10.1016/j.energy.2023.128289_bib13) 2017; 92 Du (10.1016/j.energy.2023.128289_bib20) 2022; 15 Khazaei (10.1016/j.energy.2023.128289_bib3) 2022; 238 Yin (10.1016/j.energy.2023.128289_bib33) 2020; 160 Zhang (10.1016/j.energy.2023.128289_bib28) 2020; 156 Shahid (10.1016/j.energy.2023.128289_bib4) 2020; 269 Amirabadi (10.1016/j.energy.2023.128289_bib38) 2020; 41 Liu (10.1016/j.energy.2023.128289_bib16) 2021; 192 Zhang (10.1016/j.energy.2023.128289_bib29) 2022; 10 Torres (10.1016/j.energy.2023.128289_bib10) 2005; 79 Wang (10.1016/j.energy.2023.128289_bib25) 2017; 138 Dong (10.1016/j.energy.2023.128289_bib30) 2021; 462 Tang (10.1016/j.energy.2023.128289_bib24) 2022; 22 Liu (10.1016/j.energy.2023.128289_bib27) 2020; 13 Yuan (10.1016/j.energy.2023.128289_bib36) 2019; 82 Duan (10.1016/j.energy.2023.128289_bib34) 2021; 214 Wang (10.1016/j.energy.2023.128289_bib35) 2022; 14 Lydia (10.1016/j.energy.2023.128289_bib9) 2016; 112 Wang (10.1016/j.energy.2023.128289_bib23) 2020; 56 |
| References_xml | – volume: 9 start-page: 1178 year: 2021 ident: bib2 article-title: A fuzzy seasonal long short-term memory network for wind power forecasting publication-title: Mathematics – volume: 242 year: 2020 ident: bib18 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J Clean Prod – volume: 156 start-page: 1373 year: 2020 end-page: 1388 ident: bib28 article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD publication-title: Renew Energy – volume: 112 start-page: 115 year: 2016 end-page: 124 ident: bib9 article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting publication-title: Energy Convers Manag – volume: 56 start-page: 5924 year: 2020 end-page: 5931 ident: bib23 article-title: Electric vehicle fleet integration in a virtual power plant with large-scale wind power publication-title: IEEE Trans Ind Appl – volume: 10 start-page: 93412 year: 2022 end-page: 93420 ident: bib29 article-title: Wind turbine condition monitoring based on bagging ensemble strategy and KNN algorithm publication-title: IEEE Access – volume: 10 year: 2022 ident: bib32 article-title: A short-term wind power forecast method via XGBoost hyper-parameters optimization publication-title: Front Energy Res – volume: 9 start-page: 151142 year: 2021 end-page: 151154 ident: bib19 article-title: A novel hybrid neural network-based day-ahead wind speed forecasting technique publication-title: IEEE Access – volume: 38 start-page: 5902 year: 2011 end-page: 5911 ident: bib11 article-title: Short-term load forecasting using lifting scheme and ARIMA models publication-title: Expert Syst Appl – volume: 12 start-page: 1275 year: 2021 end-page: 1288 ident: bib21 article-title: Dispatch planning of a wide-area wind power-energy storage scheme based on ensemble empirical mode decomposition technique publication-title: IEEE Trans Sustain Energy – volume: 206 year: 2022 ident: bib5 article-title: Short-term wind power forecasting based on attention mechanism and deep learning publication-title: Elec Power Syst Res – volume: 138 start-page: 977 year: 2017 end-page: 990 ident: bib25 article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction publication-title: Energy – volume: 160 start-page: 974 year: 2020 end-page: 986 ident: bib33 article-title: Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization publication-title: Renew Energy – volume: 41 year: 2020 ident: bib38 article-title: Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication] publication-title: Physical Communication – volume: 15 start-page: 4334 year: 2022 ident: bib12 article-title: Modified particle swarm optimization with attention-based LSTM for wind power prediction publication-title: Energies – volume: 13 start-page: 4964 year: 2020 ident: bib27 article-title: A novel deep learning approach for wind power forecasting based on WD-LSTM model publication-title: Energies – volume: 10 start-page: 670 year: 2019 end-page: 681 ident: bib26 article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting publication-title: IEEE Trans Sustain Energy – volume: 238 year: 2022 ident: bib3 article-title: A high-accuracy hybrid method for short-term wind power forecasting publication-title: Energy – volume: 114 start-page: 189 year: 2019 end-page: 211 ident: bib22 article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis publication-title: Mech Syst Signal Process – volume: 220 year: 2021 ident: bib6 article-title: EALSTM-QR: interval wind-power prediction model based on numerical weather prediction and deep learning publication-title: Energy – volume: 214 year: 2021 ident: bib34 article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network publication-title: Energy – volume: 14 year: 2022 ident: bib35 article-title: A stacking-based short-term wind power forecasting method by CBLSTM and ensemble learning publication-title: J Renew Sustain Energy – volume: 269 year: 2020 ident: bib4 article-title: A novel wavenets long short term memory paradigm for wind power prediction publication-title: Appl Energy – volume: 22 start-page: 7414 year: 2022 ident: bib24 article-title: Research on wind power short-term forecasting method based on temporal convolutional neural network and variational modal decomposition publication-title: Sensors – volume: 25 start-page: 667 year: 2010 end-page: 676 ident: bib8 article-title: ARIMA-based time series model of stochastic wind power generation publication-title: IEEE Trans Power Syst – volume: 189 year: 2019 ident: bib15 article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition publication-title: Energy – volume: 92 start-page: 60 year: 2017 end-page: 68 ident: bib13 article-title: Evaluating deep learning architectures for speech emotion recognition publication-title: Neural Network – volume: 11 start-page: 2976 year: 2018 ident: bib31 article-title: Short-term wind speed forecasting based on signal decomposing algorithm and hybrid linear/nonlinear models publication-title: Energies – volume: 202 year: 2020 ident: bib37 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy – volume: 79 start-page: 65 year: 2005 end-page: 77 ident: bib10 article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain) publication-title: Sol Energy – volume: 192 year: 2021 ident: bib16 article-title: Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function publication-title: Elec Power Syst Res – volume: 8 start-page: 147703 year: 2020 end-page: 147710 ident: bib7 article-title: Research on ultra-short-term wind power prediction considering source relevance publication-title: IEEE Access – volume: 462 start-page: 169 year: 2021 end-page: 184 ident: bib30 article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm publication-title: Neurocomputing – volume: 15 start-page: 5126 year: 2022 ident: bib20 article-title: A singular spectrum analysis and Gaussian process regression-based prediction method for wind power frequency regulation potential publication-title: Energies – volume: 263 year: 2023 ident: bib1 article-title: A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks publication-title: Energy – volume: 10 year: 2022 ident: bib17 article-title: Wind farm energy storage system based on cat swarm optimization-backpropagation neural network wind power prediction publication-title: Front Energy Res – volume: 189 year: 2019 ident: bib14 article-title: A survey on deep learning based face recognition publication-title: Comput Vis Image Understand – volume: 82 year: 2019 ident: bib36 article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model publication-title: Appl Soft Comput – volume: 11 start-page: 2976 issue: 11 year: 2018 ident: 10.1016/j.energy.2023.128289_bib31 article-title: Short-term wind speed forecasting based on signal decomposing algorithm and hybrid linear/nonlinear models publication-title: Energies doi: 10.3390/en11112976 – volume: 114 start-page: 189 year: 2019 ident: 10.1016/j.energy.2023.128289_bib22 article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.019 – volume: 189 year: 2019 ident: 10.1016/j.energy.2023.128289_bib14 article-title: A survey on deep learning based face recognition publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2019.102805 – volume: 56 start-page: 5924 issue: 5 year: 2020 ident: 10.1016/j.energy.2023.128289_bib23 article-title: Electric vehicle fleet integration in a virtual power plant with large-scale wind power publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.2993529 – volume: 82 year: 2019 ident: 10.1016/j.energy.2023.128289_bib36 article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105550 – volume: 92 start-page: 60 year: 2017 ident: 10.1016/j.energy.2023.128289_bib13 article-title: Evaluating deep learning architectures for speech emotion recognition publication-title: Neural Network doi: 10.1016/j.neunet.2017.02.013 – volume: 192 year: 2021 ident: 10.1016/j.energy.2023.128289_bib16 article-title: Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2020.107011 – volume: 10 start-page: 670 issue: 2 year: 2019 ident: 10.1016/j.energy.2023.128289_bib26 article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2844102 – volume: 10 start-page: 93412 year: 2022 ident: 10.1016/j.energy.2023.128289_bib29 article-title: Wind turbine condition monitoring based on bagging ensemble strategy and KNN algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3164717 – volume: 15 start-page: 5126 year: 2022 ident: 10.1016/j.energy.2023.128289_bib20 article-title: A singular spectrum analysis and Gaussian process regression-based prediction method for wind power frequency regulation potential publication-title: Energies doi: 10.3390/en15145126 – volume: 462 start-page: 169 year: 2021 ident: 10.1016/j.energy.2023.128289_bib30 article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.084 – volume: 25 start-page: 667 issue: 2 year: 2010 ident: 10.1016/j.energy.2023.128289_bib8 article-title: ARIMA-based time series model of stochastic wind power generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2033277 – volume: 13 start-page: 4964 issue: 18 year: 2020 ident: 10.1016/j.energy.2023.128289_bib27 article-title: A novel deep learning approach for wind power forecasting based on WD-LSTM model publication-title: Energies doi: 10.3390/en13184964 – volume: 238 year: 2022 ident: 10.1016/j.energy.2023.128289_bib3 article-title: A high-accuracy hybrid method for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2021.122020 – volume: 10 year: 2022 ident: 10.1016/j.energy.2023.128289_bib17 article-title: Wind farm energy storage system based on cat swarm optimization-backpropagation neural network wind power prediction publication-title: Front Energy Res – volume: 160 start-page: 974 year: 2020 ident: 10.1016/j.energy.2023.128289_bib33 article-title: Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.015 – volume: 112 start-page: 115 year: 2016 ident: 10.1016/j.energy.2023.128289_bib9 article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.01.007 – volume: 263 year: 2023 ident: 10.1016/j.energy.2023.128289_bib1 article-title: A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks publication-title: Energy doi: 10.1016/j.energy.2022.126034 – volume: 38 start-page: 5902 issue: 5 year: 2011 ident: 10.1016/j.energy.2023.128289_bib11 article-title: Short-term load forecasting using lifting scheme and ARIMA models publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.11.033 – volume: 242 year: 2020 ident: 10.1016/j.energy.2023.128289_bib18 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118447 – volume: 138 start-page: 977 year: 2017 ident: 10.1016/j.energy.2023.128289_bib25 article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction publication-title: Energy doi: 10.1016/j.energy.2017.07.112 – volume: 214 year: 2021 ident: 10.1016/j.energy.2023.128289_bib34 article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network publication-title: Energy doi: 10.1016/j.energy.2020.118980 – volume: 189 year: 2019 ident: 10.1016/j.energy.2023.128289_bib15 article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition publication-title: Energy doi: 10.1016/j.energy.2019.116316 – volume: 8 start-page: 147703 year: 2020 ident: 10.1016/j.energy.2023.128289_bib7 article-title: Research on ultra-short-term wind power prediction considering source relevance publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012306 – volume: 10 year: 2022 ident: 10.1016/j.energy.2023.128289_bib32 article-title: A short-term wind power forecast method via XGBoost hyper-parameters optimization publication-title: Front Energy Res doi: 10.3389/fenrg.2022.905155 – volume: 9 start-page: 151142 year: 2021 ident: 10.1016/j.energy.2023.128289_bib19 article-title: A novel hybrid neural network-based day-ahead wind speed forecasting technique publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3126747 – volume: 41 year: 2020 ident: 10.1016/j.energy.2023.128289_bib38 article-title: Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication] publication-title: Physical Communication doi: 10.1016/j.phycom.2020.101057 – volume: 22 start-page: 7414 issue: 19 year: 2022 ident: 10.1016/j.energy.2023.128289_bib24 article-title: Research on wind power short-term forecasting method based on temporal convolutional neural network and variational modal decomposition publication-title: Sensors doi: 10.3390/s22197414 – volume: 269 year: 2020 ident: 10.1016/j.energy.2023.128289_bib4 article-title: A novel wavenets long short term memory paradigm for wind power prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115098 – volume: 202 year: 2020 ident: 10.1016/j.energy.2023.128289_bib37 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy doi: 10.1016/j.energy.2020.117794 – volume: 9 start-page: 1178 issue: 11 year: 2021 ident: 10.1016/j.energy.2023.128289_bib2 article-title: A fuzzy seasonal long short-term memory network for wind power forecasting publication-title: Mathematics doi: 10.3390/math9111178 – volume: 14 issue: 4 year: 2022 ident: 10.1016/j.energy.2023.128289_bib35 article-title: A stacking-based short-term wind power forecasting method by CBLSTM and ensemble learning publication-title: J Renew Sustain Energy doi: 10.1063/5.0097757 – volume: 12 start-page: 1275 issue: 2 year: 2021 ident: 10.1016/j.energy.2023.128289_bib21 article-title: Dispatch planning of a wide-area wind power-energy storage scheme based on ensemble empirical mode decomposition technique publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2020.3042385 – volume: 79 start-page: 65 issue: 1 year: 2005 ident: 10.1016/j.energy.2023.128289_bib10 article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain) publication-title: Sol Energy doi: 10.1016/j.solener.2004.09.013 – volume: 220 year: 2021 ident: 10.1016/j.energy.2023.128289_bib6 article-title: EALSTM-QR: interval wind-power prediction model based on numerical weather prediction and deep learning publication-title: Energy doi: 10.1016/j.energy.2020.119692 – volume: 206 year: 2022 ident: 10.1016/j.energy.2023.128289_bib5 article-title: Short-term wind power forecasting based on attention mechanism and deep learning publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2022.107776 – volume: 15 start-page: 4334 issue: 12 year: 2022 ident: 10.1016/j.energy.2023.128289_bib12 article-title: Modified particle swarm optimization with attention-based LSTM for wind power prediction publication-title: Energies doi: 10.3390/en15124334 – volume: 156 start-page: 1373 year: 2020 ident: 10.1016/j.energy.2023.128289_bib28 article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD publication-title: Renew Energy doi: 10.1016/j.renene.2019.12.047 |
| SSID | ssj0005899 |
| Score | 2.5118597 |
| Snippet | The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 128289 |
| SubjectTerms | algorithms China energy Improved stacking Multi-integration fusion Multi-step rolling forecast neural networks power generation prediction Spatio-temporal graph deep neural network uncertainty wind wind farms wind power Wind power forecasting |
| Title | A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction |
| URI | https://dx.doi.org/10.1016/j.energy.2023.128289 https://www.proquest.com/docview/2849896313 |
| Volume | 281 |
| WOSCitedRecordID | wos001046517000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQvCAYT45eMxFvw1NROYj9WUDQmNIEYUt8iJ3FZqyqtlqb0f-GVP5Q720lKJzRA4iWKLNtJel_tu_N3d4S8iiVowYJrpmVcMKFEzDKehQyMIa5BwzcD6YpNJOfncjJRH3u9700szGaRlKXcbtXqv4oa2kDYGDr7F-JuJ4UGuAehwxXEDtc_EvwoeMtA5cvRBx5gpBWb1ugSwx-zsvxp5vNRLQKbrjoojFkFmNgSWkpHCw9wdyvwJEE7ziFr80pA6wadgI7pWV2C_s5wfQ--gXnPphru8kWN-ReCFZZg8-OhYYUZCYpZ3mKhORFw8YeY-HTruPatd-JTbU9PLmfzHRh_sAyEs52W06XtN5mV22YrRk5R3Xb8uvAZxr2DY2ipci7E03ndmsibjubkor0GLBLil5V86Kq_XNsVnINifmLs55zgQ05Ca2t2u2DLTfyMU-PMYJyFMUD2FjkYJpGSfXIwej-enHUMImnLk7av0kRmWvrg9Wf9TvPZ0wGsYnNxn9zzFgkdOSQ9ID1THpI7TcB6dUiOxl0wJHT0u0H1kPwY0Q5qdAdqr-ke0KgFGkWgUQc06oFGLdDosqSa7gONeqBRAAXtgEZboFEPNGqBRjug0Q5oj8iXd-OLN6fMV_1gOedqzXSoTDLUWVGE8FaRzIppMTQxqFiZFAMtpAYreMCTLCwyEfFM80hHJlYaE2oI0OaPSL9cluYxoSJK1LQQmYSFSGRaKpGDtZCD0R7mseLTY8IbiaS5T4mPlVkWacN9nKdOjinKMXVyPCasHbVyKWFu6J80wk69WuvU1RTwecPIlw02Ulj18ShPl2ZZVykolUrC3hnyJ_88-1Nyt_u7PSP99VVtnpPb-WY9q65eeLD_BD102-w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+D-stacking+dual-fusion%2C+spatio-temporal+graph+deep+neural+network+based+on+a+multi-integrated+overlay+for+short-term+wind-farm+cluster+power+multi-step+prediction&rft.jtitle=Energy+%28Oxford%29&rft.au=Qu%2C+Zhijian&rft.au=Li%2C+Jian&rft.au=Hou%2C+Xinxing&rft.au=Gui%2C+Jianglin&rft.date=2023-10-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=281&rft_id=info:doi/10.1016%2Fj.energy.2023.128289&rft.externalDocID=S0360544223016833 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |