A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction

The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 281; s. 128289
Hlavní autori: Qu, Zhijian, Li, Jian, Hou, Xinxing, Gui, Jianglin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.10.2023
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlation characteristics of wind-farm clusters. The Bagging, long short-term memory (LSTM), and random forest (RF) are superimposed based on the stacking integration algorithm. By analyzing the decomposed wind electron sequence characteristics, two Stacking models are used to predict the wind power of target wind-farms respectively and then a dual stacking model fusion strategy is formed. Finally, a multi-step prediction model with the spatio-temporal characteristics of D-stacking multi-integration fusion is designed for rolling multi-step prediction of wind-farm cluster power to obtain high-precision target wind-farm power. Through the actual wind power generation measured in northwest China to conduct case studies and comparative tests, it concludes that:(1) Spatio-temporal method in this paper can effectively extract the deep spatial features of wind farm clusters. (2) Dual fusion strategy improves Stacking effectively. (3) The proposed model can obtain accurate wind power prediction results, which is superior to 14 comparative algorithms proposed by other researchers. •The spatio-temporal graph network is proposed to capture spatiotemporal features.•An integration algorithm for a multi-integration overlay framework is investigated.•The D-stacking spatio-temporal feature multi-step prediction model is proposed.•The dual Stacking model fusion strategy is proposed to improve the stacking algorithm.•The proposed method provides more accurate predictions than other methods.
AbstractList The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlation characteristics of wind-farm clusters. The Bagging, long short-term memory (LSTM), and random forest (RF) are superimposed based on the stacking integration algorithm. By analyzing the decomposed wind electron sequence characteristics, two Stacking models are used to predict the wind power of target wind-farms respectively and then a dual stacking model fusion strategy is formed. Finally, a multi-step prediction model with the spatio-temporal characteristics of D-stacking multi-integration fusion is designed for rolling multi-step prediction of wind-farm cluster power to obtain high-precision target wind-farm power. Through the actual wind power generation measured in northwest China to conduct case studies and comparative tests, it concludes that:(1) Spatio-temporal method in this paper can effectively extract the deep spatial features of wind farm clusters. (2) Dual fusion strategy improves Stacking effectively. (3) The proposed model can obtain accurate wind power prediction results, which is superior to 14 comparative algorithms proposed by other researchers. •The spatio-temporal graph network is proposed to capture spatiotemporal features.•An integration algorithm for a multi-integration overlay framework is investigated.•The D-stacking spatio-temporal feature multi-step prediction model is proposed.•The dual Stacking model fusion strategy is proposed to improve the stacking algorithm.•The proposed method provides more accurate predictions than other methods.
The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the present research, a spatio-temporal graph deep neural network is used to learn the spatial characteristics and explore the strong correlation characteristics of wind-farm clusters. The Bagging, long short-term memory (LSTM), and random forest (RF) are superimposed based on the stacking integration algorithm. By analyzing the decomposed wind electron sequence characteristics, two Stacking models are used to predict the wind power of target wind-farms respectively and then a dual stacking model fusion strategy is formed. Finally, a multi-step prediction model with the spatio-temporal characteristics of D-stacking multi-integration fusion is designed for rolling multi-step prediction of wind-farm cluster power to obtain high-precision target wind-farm power. Through the actual wind power generation measured in northwest China to conduct case studies and comparative tests, it concludes that:(1) Spatio-temporal method in this paper can effectively extract the deep spatial features of wind farm clusters. (2) Dual fusion strategy improves Stacking effectively. (3) The proposed model can obtain accurate wind power prediction results, which is superior to 14 comparative algorithms proposed by other researchers.
ArticleNumber 128289
Author Hou, Xinxing
Li, Jian
Gui, Jianglin
Qu, Zhijian
Author_xml – sequence: 1
  givenname: Zhijian
  surname: Qu
  fullname: Qu, Zhijian
– sequence: 2
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  email: 2021028080800005@ecjtu.edu.cn
– sequence: 3
  givenname: Xinxing
  surname: Hou
  fullname: Hou, Xinxing
– sequence: 4
  givenname: Jianglin
  surname: Gui
  fullname: Gui, Jianglin
BookMark eNqFkbtu3DAQRVU4gB_xH6RgmSLa8CHJYooAhvMEDKSxa2JEjtZcSyRDUl7s_-RDQ0GpUiQNh7i4ZzC497I6c95hVb1hdMco694fdugw7k87TrnYMd7zXp5VF1R0tG6bhp9XlykdKKVtL-VF9euWfKpTBv1s3Z6YBaZ6XJL17h1JAbL1dcY5-AgT2UcIT8QgBuJwWRWH-ejjMxkgoSHeESDzMmVbW5ex2POqvmCc4ERGH0l68jGXhXEmR-tMPUL56WlJRSLBH8u78UUIJEQ0VpcT3Ovq1QhTwus_86p6_PL54e5bff_j6_e72_taCyFzDUziDYfBGFaubPvBjIZjxxkf-oZC0wNvWypuBmaGphUDiBZa7GThpGw6Lq6qt9veEP3PBVNWs00apwkc-iUp3jeyl51golibzaqjTyniqEK0M8STYlStRaiD2opQaxFqK6JgH_7CtM1rzC5HsNP_4I8bjCWDF4tRJW3R6RJTRJ2V8fbfC34DA_uvMg
CitedBy_id crossref_primary_10_1016_j_energy_2024_130770
crossref_primary_10_1016_j_mtcomm_2024_110260
crossref_primary_10_1016_j_energy_2024_133645
crossref_primary_10_1016_j_energy_2025_136558
crossref_primary_10_1016_j_eswa_2024_124766
crossref_primary_10_1016_j_eswa_2025_129009
crossref_primary_10_1109_TSTE_2024_3397877
crossref_primary_10_3390_jmse12030502
crossref_primary_10_1016_j_energy_2023_130155
crossref_primary_10_1016_j_envres_2024_118176
crossref_primary_10_1016_j_energy_2024_132899
crossref_primary_10_1016_j_engappai_2025_112082
crossref_primary_10_1016_j_engappai_2024_109109
crossref_primary_10_3390_en17061270
crossref_primary_10_1016_j_engappai_2025_110075
crossref_primary_10_3390_app14020901
crossref_primary_10_1016_j_apenergy_2024_124911
Cites_doi 10.3390/en11112976
10.1016/j.ymssp.2018.05.019
10.1016/j.cviu.2019.102805
10.1109/TIA.2020.2993529
10.1016/j.asoc.2019.105550
10.1016/j.neunet.2017.02.013
10.1016/j.epsr.2020.107011
10.1109/TSTE.2018.2844102
10.1109/ACCESS.2022.3164717
10.3390/en15145126
10.1016/j.neucom.2021.07.084
10.1109/TPWRS.2009.2033277
10.3390/en13184964
10.1016/j.energy.2021.122020
10.1016/j.renene.2020.05.015
10.1016/j.enconman.2016.01.007
10.1016/j.energy.2022.126034
10.1016/j.eswa.2010.11.033
10.1016/j.jclepro.2019.118447
10.1016/j.energy.2017.07.112
10.1016/j.energy.2020.118980
10.1016/j.energy.2019.116316
10.1109/ACCESS.2020.3012306
10.3389/fenrg.2022.905155
10.1109/ACCESS.2021.3126747
10.1016/j.phycom.2020.101057
10.3390/s22197414
10.1016/j.apenergy.2020.115098
10.1016/j.energy.2020.117794
10.3390/math9111178
10.1063/5.0097757
10.1109/TSTE.2020.3042385
10.1016/j.solener.2004.09.013
10.1016/j.energy.2020.119692
10.1016/j.epsr.2022.107776
10.3390/en15124334
10.1016/j.renene.2019.12.047
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2023.128289
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_128289
S0360544223016833
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-a19e72abdd1dee58bdfd2e6212b840a48a255037b1db453ba35a5e69a19994623
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001046517000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 01:01:43 EDT 2025
Tue Nov 18 21:01:37 EST 2025
Sat Nov 29 07:20:29 EST 2025
Fri Feb 23 02:34:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Improved stacking
Spatio-temporal graph deep neural network
Multi-integration fusion
Multi-step rolling forecast
Wind power forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-a19e72abdd1dee58bdfd2e6212b840a48a255037b1db453ba35a5e69a19994623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2849896313
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2849896313
crossref_primary_10_1016_j_energy_2023_128289
crossref_citationtrail_10_1016_j_energy_2023_128289
elsevier_sciencedirect_doi_10_1016_j_energy_2023_128289
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sun, Wang, Yang (bib12) 2022; 15
Lydia (bib9) 2016; 112
Wang (bib25) 2017; 138
Abbasipour, Igder, Liang (bib19) 2021; 9
Lee, Ko (bib11) 2011; 38
Yin (bib33) 2020; 160
Wang, Li (bib35) 2022; 14
Han (bib31) 2018; 11
Shahid (bib4) 2020; 269
Sun (bib7) 2020; 8
Liao (bib2) 2021; 9
Wang (bib23) 2020; 56
Tang, Chien (bib24) 2022; 22
Peng (bib6) 2021; 220
Duan (bib34) 2021; 214
Xiong (bib32) 2022; 10
Xiong (bib5) 2022; 206
Pan (bib22) 2019; 114
Liu (bib37) 2020; 202
Yin (bib15) 2019; 189
Liu (bib17) 2022; 10
Liu (bib27) 2020; 13
Chen (bib8) 2010; 25
Khodayar, Wang (bib26) 2019; 10
Chengqing (bib1) 2023; 263
Zhang (bib29) 2022; 10
Li (bib18) 2020; 242
Dong (bib30) 2021; 462
Liu, Zhou, Qian (bib16) 2021; 192
Torres (bib10) 2005; 79
Fayek, Lech, Cavedon (bib13) 2017; 92
Yuan (bib36) 2019; 82
Zhang (bib28) 2020; 156
Guo, Zhang (bib14) 2019; 189
Du, Yu (bib20) 2022; 15
Amirabadi, Kahaei, Nezamalhosseini (bib38) 2020; 41
Li, Li, Choi (bib21) 2021; 12
Khazaei (bib3) 2022; 238
Lee (10.1016/j.energy.2023.128289_bib11) 2011; 38
Sun (10.1016/j.energy.2023.128289_bib12) 2022; 15
Liu (10.1016/j.energy.2023.128289_bib17) 2022; 10
Li (10.1016/j.energy.2023.128289_bib21) 2021; 12
Pan (10.1016/j.energy.2023.128289_bib22) 2019; 114
Guo (10.1016/j.energy.2023.128289_bib14) 2019; 189
Yin (10.1016/j.energy.2023.128289_bib15) 2019; 189
Han (10.1016/j.energy.2023.128289_bib31) 2018; 11
Chengqing (10.1016/j.energy.2023.128289_bib1) 2023; 263
Peng (10.1016/j.energy.2023.128289_bib6) 2021; 220
Sun (10.1016/j.energy.2023.128289_bib7) 2020; 8
Abbasipour (10.1016/j.energy.2023.128289_bib19) 2021; 9
Khodayar (10.1016/j.energy.2023.128289_bib26) 2019; 10
Xiong (10.1016/j.energy.2023.128289_bib5) 2022; 206
Xiong (10.1016/j.energy.2023.128289_bib32) 2022; 10
Liu (10.1016/j.energy.2023.128289_bib37) 2020; 202
Liao (10.1016/j.energy.2023.128289_bib2) 2021; 9
Chen (10.1016/j.energy.2023.128289_bib8) 2010; 25
Li (10.1016/j.energy.2023.128289_bib18) 2020; 242
Fayek (10.1016/j.energy.2023.128289_bib13) 2017; 92
Du (10.1016/j.energy.2023.128289_bib20) 2022; 15
Khazaei (10.1016/j.energy.2023.128289_bib3) 2022; 238
Yin (10.1016/j.energy.2023.128289_bib33) 2020; 160
Zhang (10.1016/j.energy.2023.128289_bib28) 2020; 156
Shahid (10.1016/j.energy.2023.128289_bib4) 2020; 269
Amirabadi (10.1016/j.energy.2023.128289_bib38) 2020; 41
Liu (10.1016/j.energy.2023.128289_bib16) 2021; 192
Zhang (10.1016/j.energy.2023.128289_bib29) 2022; 10
Torres (10.1016/j.energy.2023.128289_bib10) 2005; 79
Wang (10.1016/j.energy.2023.128289_bib25) 2017; 138
Dong (10.1016/j.energy.2023.128289_bib30) 2021; 462
Tang (10.1016/j.energy.2023.128289_bib24) 2022; 22
Liu (10.1016/j.energy.2023.128289_bib27) 2020; 13
Yuan (10.1016/j.energy.2023.128289_bib36) 2019; 82
Duan (10.1016/j.energy.2023.128289_bib34) 2021; 214
Wang (10.1016/j.energy.2023.128289_bib35) 2022; 14
Lydia (10.1016/j.energy.2023.128289_bib9) 2016; 112
Wang (10.1016/j.energy.2023.128289_bib23) 2020; 56
References_xml – volume: 9
  start-page: 1178
  year: 2021
  ident: bib2
  article-title: A fuzzy seasonal long short-term memory network for wind power forecasting
  publication-title: Mathematics
– volume: 242
  year: 2020
  ident: bib18
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J Clean Prod
– volume: 156
  start-page: 1373
  year: 2020
  end-page: 1388
  ident: bib28
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew Energy
– volume: 112
  start-page: 115
  year: 2016
  end-page: 124
  ident: bib9
  article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting
  publication-title: Energy Convers Manag
– volume: 56
  start-page: 5924
  year: 2020
  end-page: 5931
  ident: bib23
  article-title: Electric vehicle fleet integration in a virtual power plant with large-scale wind power
  publication-title: IEEE Trans Ind Appl
– volume: 10
  start-page: 93412
  year: 2022
  end-page: 93420
  ident: bib29
  article-title: Wind turbine condition monitoring based on bagging ensemble strategy and KNN algorithm
  publication-title: IEEE Access
– volume: 10
  year: 2022
  ident: bib32
  article-title: A short-term wind power forecast method via XGBoost hyper-parameters optimization
  publication-title: Front Energy Res
– volume: 9
  start-page: 151142
  year: 2021
  end-page: 151154
  ident: bib19
  article-title: A novel hybrid neural network-based day-ahead wind speed forecasting technique
  publication-title: IEEE Access
– volume: 38
  start-page: 5902
  year: 2011
  end-page: 5911
  ident: bib11
  article-title: Short-term load forecasting using lifting scheme and ARIMA models
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 1275
  year: 2021
  end-page: 1288
  ident: bib21
  article-title: Dispatch planning of a wide-area wind power-energy storage scheme based on ensemble empirical mode decomposition technique
  publication-title: IEEE Trans Sustain Energy
– volume: 206
  year: 2022
  ident: bib5
  article-title: Short-term wind power forecasting based on attention mechanism and deep learning
  publication-title: Elec Power Syst Res
– volume: 138
  start-page: 977
  year: 2017
  end-page: 990
  ident: bib25
  article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
  publication-title: Energy
– volume: 160
  start-page: 974
  year: 2020
  end-page: 986
  ident: bib33
  article-title: Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization
  publication-title: Renew Energy
– volume: 41
  year: 2020
  ident: bib38
  article-title: Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication]
  publication-title: Physical Communication
– volume: 15
  start-page: 4334
  year: 2022
  ident: bib12
  article-title: Modified particle swarm optimization with attention-based LSTM for wind power prediction
  publication-title: Energies
– volume: 13
  start-page: 4964
  year: 2020
  ident: bib27
  article-title: A novel deep learning approach for wind power forecasting based on WD-LSTM model
  publication-title: Energies
– volume: 10
  start-page: 670
  year: 2019
  end-page: 681
  ident: bib26
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
– volume: 238
  year: 2022
  ident: bib3
  article-title: A high-accuracy hybrid method for short-term wind power forecasting
  publication-title: Energy
– volume: 114
  start-page: 189
  year: 2019
  end-page: 211
  ident: bib22
  article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 220
  year: 2021
  ident: bib6
  article-title: EALSTM-QR: interval wind-power prediction model based on numerical weather prediction and deep learning
  publication-title: Energy
– volume: 214
  year: 2021
  ident: bib34
  article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
  publication-title: Energy
– volume: 14
  year: 2022
  ident: bib35
  article-title: A stacking-based short-term wind power forecasting method by CBLSTM and ensemble learning
  publication-title: J Renew Sustain Energy
– volume: 269
  year: 2020
  ident: bib4
  article-title: A novel wavenets long short term memory paradigm for wind power prediction
  publication-title: Appl Energy
– volume: 22
  start-page: 7414
  year: 2022
  ident: bib24
  article-title: Research on wind power short-term forecasting method based on temporal convolutional neural network and variational modal decomposition
  publication-title: Sensors
– volume: 25
  start-page: 667
  year: 2010
  end-page: 676
  ident: bib8
  article-title: ARIMA-based time series model of stochastic wind power generation
  publication-title: IEEE Trans Power Syst
– volume: 189
  year: 2019
  ident: bib15
  article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
  publication-title: Energy
– volume: 92
  start-page: 60
  year: 2017
  end-page: 68
  ident: bib13
  article-title: Evaluating deep learning architectures for speech emotion recognition
  publication-title: Neural Network
– volume: 11
  start-page: 2976
  year: 2018
  ident: bib31
  article-title: Short-term wind speed forecasting based on signal decomposing algorithm and hybrid linear/nonlinear models
  publication-title: Energies
– volume: 202
  year: 2020
  ident: bib37
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
– volume: 79
  start-page: 65
  year: 2005
  end-page: 77
  ident: bib10
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Sol Energy
– volume: 192
  year: 2021
  ident: bib16
  article-title: Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function
  publication-title: Elec Power Syst Res
– volume: 8
  start-page: 147703
  year: 2020
  end-page: 147710
  ident: bib7
  article-title: Research on ultra-short-term wind power prediction considering source relevance
  publication-title: IEEE Access
– volume: 462
  start-page: 169
  year: 2021
  end-page: 184
  ident: bib30
  article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm
  publication-title: Neurocomputing
– volume: 15
  start-page: 5126
  year: 2022
  ident: bib20
  article-title: A singular spectrum analysis and Gaussian process regression-based prediction method for wind power frequency regulation potential
  publication-title: Energies
– volume: 263
  year: 2023
  ident: bib1
  article-title: A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks
  publication-title: Energy
– volume: 10
  year: 2022
  ident: bib17
  article-title: Wind farm energy storage system based on cat swarm optimization-backpropagation neural network wind power prediction
  publication-title: Front Energy Res
– volume: 189
  year: 2019
  ident: bib14
  article-title: A survey on deep learning based face recognition
  publication-title: Comput Vis Image Understand
– volume: 82
  year: 2019
  ident: bib36
  article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 2976
  issue: 11
  year: 2018
  ident: 10.1016/j.energy.2023.128289_bib31
  article-title: Short-term wind speed forecasting based on signal decomposing algorithm and hybrid linear/nonlinear models
  publication-title: Energies
  doi: 10.3390/en11112976
– volume: 114
  start-page: 189
  year: 2019
  ident: 10.1016/j.energy.2023.128289_bib22
  article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.019
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2023.128289_bib14
  article-title: A survey on deep learning based face recognition
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2019.102805
– volume: 56
  start-page: 5924
  issue: 5
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib23
  article-title: Electric vehicle fleet integration in a virtual power plant with large-scale wind power
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2020.2993529
– volume: 82
  year: 2019
  ident: 10.1016/j.energy.2023.128289_bib36
  article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105550
– volume: 92
  start-page: 60
  year: 2017
  ident: 10.1016/j.energy.2023.128289_bib13
  article-title: Evaluating deep learning architectures for speech emotion recognition
  publication-title: Neural Network
  doi: 10.1016/j.neunet.2017.02.013
– volume: 192
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib16
  article-title: Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2020.107011
– volume: 10
  start-page: 670
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2023.128289_bib26
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2844102
– volume: 10
  start-page: 93412
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib29
  article-title: Wind turbine condition monitoring based on bagging ensemble strategy and KNN algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3164717
– volume: 15
  start-page: 5126
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib20
  article-title: A singular spectrum analysis and Gaussian process regression-based prediction method for wind power frequency regulation potential
  publication-title: Energies
  doi: 10.3390/en15145126
– volume: 462
  start-page: 169
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib30
  article-title: Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.084
– volume: 25
  start-page: 667
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2023.128289_bib8
  article-title: ARIMA-based time series model of stochastic wind power generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2033277
– volume: 13
  start-page: 4964
  issue: 18
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib27
  article-title: A novel deep learning approach for wind power forecasting based on WD-LSTM model
  publication-title: Energies
  doi: 10.3390/en13184964
– volume: 238
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib3
  article-title: A high-accuracy hybrid method for short-term wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122020
– volume: 10
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib17
  article-title: Wind farm energy storage system based on cat swarm optimization-backpropagation neural network wind power prediction
  publication-title: Front Energy Res
– volume: 160
  start-page: 974
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib33
  article-title: Data-driven multi-objective predictive control of offshore wind farm based on evolutionary optimization
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.015
– volume: 112
  start-page: 115
  year: 2016
  ident: 10.1016/j.energy.2023.128289_bib9
  article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.01.007
– volume: 263
  year: 2023
  ident: 10.1016/j.energy.2023.128289_bib1
  article-title: A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126034
– volume: 38
  start-page: 5902
  issue: 5
  year: 2011
  ident: 10.1016/j.energy.2023.128289_bib11
  article-title: Short-term load forecasting using lifting scheme and ARIMA models
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.11.033
– volume: 242
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib18
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.118447
– volume: 138
  start-page: 977
  year: 2017
  ident: 10.1016/j.energy.2023.128289_bib25
  article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.112
– volume: 214
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib34
  article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118980
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2023.128289_bib15
  article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116316
– volume: 8
  start-page: 147703
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib7
  article-title: Research on ultra-short-term wind power prediction considering source relevance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012306
– volume: 10
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib32
  article-title: A short-term wind power forecast method via XGBoost hyper-parameters optimization
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.905155
– volume: 9
  start-page: 151142
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib19
  article-title: A novel hybrid neural network-based day-ahead wind speed forecasting technique
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3126747
– volume: 41
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib38
  article-title: Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication]
  publication-title: Physical Communication
  doi: 10.1016/j.phycom.2020.101057
– volume: 22
  start-page: 7414
  issue: 19
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib24
  article-title: Research on wind power short-term forecasting method based on temporal convolutional neural network and variational modal decomposition
  publication-title: Sensors
  doi: 10.3390/s22197414
– volume: 269
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib4
  article-title: A novel wavenets long short term memory paradigm for wind power prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115098
– volume: 202
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib37
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117794
– volume: 9
  start-page: 1178
  issue: 11
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib2
  article-title: A fuzzy seasonal long short-term memory network for wind power forecasting
  publication-title: Mathematics
  doi: 10.3390/math9111178
– volume: 14
  issue: 4
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib35
  article-title: A stacking-based short-term wind power forecasting method by CBLSTM and ensemble learning
  publication-title: J Renew Sustain Energy
  doi: 10.1063/5.0097757
– volume: 12
  start-page: 1275
  issue: 2
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib21
  article-title: Dispatch planning of a wide-area wind power-energy storage scheme based on ensemble empirical mode decomposition technique
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2020.3042385
– volume: 79
  start-page: 65
  issue: 1
  year: 2005
  ident: 10.1016/j.energy.2023.128289_bib10
  article-title: Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.09.013
– volume: 220
  year: 2021
  ident: 10.1016/j.energy.2023.128289_bib6
  article-title: EALSTM-QR: interval wind-power prediction model based on numerical weather prediction and deep learning
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119692
– volume: 206
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib5
  article-title: Short-term wind power forecasting based on attention mechanism and deep learning
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2022.107776
– volume: 15
  start-page: 4334
  issue: 12
  year: 2022
  ident: 10.1016/j.energy.2023.128289_bib12
  article-title: Modified particle swarm optimization with attention-based LSTM for wind power prediction
  publication-title: Energies
  doi: 10.3390/en15124334
– volume: 156
  start-page: 1373
  year: 2020
  ident: 10.1016/j.energy.2023.128289_bib28
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.12.047
SSID ssj0005899
Score 2.5118597
Snippet The uncertainty of wind energy due to its non-stationary and random nature poses a major challenge to engineers responsible for power system scheduling. In the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128289
SubjectTerms algorithms
China
energy
Improved stacking
Multi-integration fusion
Multi-step rolling forecast
neural networks
power generation
prediction
Spatio-temporal graph deep neural network
uncertainty
wind
wind farms
wind power
Wind power forecasting
Title A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction
URI https://dx.doi.org/10.1016/j.energy.2023.128289
https://www.proquest.com/docview/2849896313
Volume 281
WOSCitedRecordID wos001046517000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQvCAYT45eMxFvw1NROYj9WUDQmNIEYUt8iJ3FZqyqtlqb0f-GVP5Q720lKJzRA4iWKLNtJel_tu_N3d4S8iiVowYJrpmVcMKFEzDKehQyMIa5BwzcD6YpNJOfncjJRH3u9700szGaRlKXcbtXqv4oa2kDYGDr7F-JuJ4UGuAehwxXEDtc_EvwoeMtA5cvRBx5gpBWb1ugSwx-zsvxp5vNRLQKbrjoojFkFmNgSWkpHCw9wdyvwJEE7ziFr80pA6wadgI7pWV2C_s5wfQ--gXnPphru8kWN-ReCFZZg8-OhYYUZCYpZ3mKhORFw8YeY-HTruPatd-JTbU9PLmfzHRh_sAyEs52W06XtN5mV22YrRk5R3Xb8uvAZxr2DY2ipci7E03ndmsibjubkor0GLBLil5V86Kq_XNsVnINifmLs55zgQ05Ca2t2u2DLTfyMU-PMYJyFMUD2FjkYJpGSfXIwej-enHUMImnLk7av0kRmWvrg9Wf9TvPZ0wGsYnNxn9zzFgkdOSQ9ID1THpI7TcB6dUiOxl0wJHT0u0H1kPwY0Q5qdAdqr-ke0KgFGkWgUQc06oFGLdDosqSa7gONeqBRAAXtgEZboFEPNGqBRjug0Q5oj8iXd-OLN6fMV_1gOedqzXSoTDLUWVGE8FaRzIppMTQxqFiZFAMtpAYreMCTLCwyEfFM80hHJlYaE2oI0OaPSL9cluYxoSJK1LQQmYSFSGRaKpGDtZCD0R7mseLTY8IbiaS5T4mPlVkWacN9nKdOjinKMXVyPCasHbVyKWFu6J80wk69WuvU1RTwecPIlw02Ulj18ShPl2ZZVykolUrC3hnyJ_88-1Nyt_u7PSP99VVtnpPb-WY9q65eeLD_BD102-w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+D-stacking+dual-fusion%2C+spatio-temporal+graph+deep+neural+network+based+on+a+multi-integrated+overlay+for+short-term+wind-farm+cluster+power+multi-step+prediction&rft.jtitle=Energy+%28Oxford%29&rft.au=Qu%2C+Zhijian&rft.au=Li%2C+Jian&rft.au=Hou%2C+Xinxing&rft.au=Gui%2C+Jianglin&rft.date=2023-10-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=281&rft_id=info:doi/10.1016%2Fj.energy.2023.128289&rft.externalDocID=S0360544223016833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon