Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems
The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learn...
Saved in:
| Published in: | IEEE Communications surveys and tutorials Vol. 23; no. 2; pp. 1342 - 1397 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.01.2021
|
| Subjects: | |
| ISSN: | 2373-745X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the central entity gave rise to a decentralized machine learning approach called Federated Learning . The main idea of federated learning is to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature, where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level classification scheme it presents. |
|---|---|
| AbstractList | The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the central entity gave rise to a decentralized machine learning approach called Federated Learning . The main idea of federated learning is to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature, where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level classification scheme it presents. |
| Author | Mourad, Azzam Otrok, Hadi Wahab, Omar Abdel Taleb, Tarik |
| Author_xml | – sequence: 1 givenname: Omar Abdel orcidid: 0000-0002-3991-4673 surname: Wahab fullname: Wahab, Omar Abdel email: omar.abdulwahab@uqo.ca organization: Department of Computer Science and Engineering, Université du Québec en Outaouais, Gatineau, Canada – sequence: 2 givenname: Azzam orcidid: 0000-0001-9434-5322 surname: Mourad fullname: Mourad, Azzam email: azzam.mourad@lau.edu.lb organization: Department of Mathematics and Computer Science, Lebanese American University, Beirut, Lebanon – sequence: 3 givenname: Hadi orcidid: 0000-0002-9574-5384 surname: Otrok fullname: Otrok, Hadi email: hadi.otrok@ku.ac.ae organization: Department of EECS, Center on Cyber-Physical Systems, Khalifa University of Science and Technology, Abu Dhabi, UAE – sequence: 4 givenname: Tarik orcidid: 0000-0003-1119-1239 surname: Taleb fullname: Taleb, Tarik email: tarik.taleb@aalto.fi organization: Department of Communications and Networking, Aalto University, Espoo, Finland |
| BookMark | eNotjU1OwzAUhC0EEqVwAdj4AE2x_fLTsEMpBaSULlokdtWL8wqGxEG2U9RbcGQKdDXS6Ptmztix7SwxdinFWEqRXxeL-XI1VkLJMYhkkmRwxAYKMoiyOHk5ZWfevwsRqzgXA_Y9o5ocBqr5HPWbscRLQmeNfb3hy95taTfi874JJippSw0vGvTebIzGYDo74lPyxmHVEC-cCeQMcrQ1n_Whd8SnxpH-BT03lhdd2_b2oP5hTxS-Ovexf-PLnQ_U-nN2ssHG08Uhh-x5drcqHqJycf9Y3JaRBshDhDKvABDzOk51RZjIjapSBKwlKBmj0EpQCpihzmgCMFGVToSiNI2TfZnCkF397xoiWn8606LbrXNIlACAH8QdZrU |
| CitedBy_id | crossref_primary_10_1016_j_cose_2023_103343 crossref_primary_10_1109_JIOT_2021_3100755 crossref_primary_10_1016_j_ins_2022_11_126 crossref_primary_10_1007_s00607_022_01078_1 crossref_primary_10_1109_JIOT_2022_3218755 crossref_primary_10_1016_j_comcom_2025_108261 crossref_primary_10_3390_electronics12122612 crossref_primary_10_3390_s21175805 crossref_primary_10_1109_ACCESS_2023_3315771 crossref_primary_10_1016_j_ins_2022_12_045 crossref_primary_10_1002_ett_4458 crossref_primary_10_1007_s13042_024_02436_5 crossref_primary_10_3390_app12189124 crossref_primary_10_1016_j_future_2024_04_051 crossref_primary_10_7717_peerj_cs_2360 crossref_primary_10_1016_j_jprocont_2022_06_011 crossref_primary_10_1016_j_comnet_2021_108668 crossref_primary_10_1155_2022_4268589 crossref_primary_10_3390_s22020450 crossref_primary_10_1109_TNSM_2024_3520109 crossref_primary_10_1109_ACCESS_2023_3251571 crossref_primary_10_1016_j_vehcom_2021_100396 crossref_primary_10_1016_j_pmcj_2024_101948 crossref_primary_10_1109_ACCESS_2025_3595270 crossref_primary_10_1007_s11277_024_11372_0 crossref_primary_10_1109_TWC_2024_3466177 crossref_primary_10_1109_COMST_2023_3316615 crossref_primary_10_1109_TNSM_2024_3514212 crossref_primary_10_1016_j_jpdc_2024_104918 crossref_primary_10_1016_j_measurement_2025_117677 crossref_primary_10_1109_MCOMSTD_0004_2200076 crossref_primary_10_1016_j_ins_2022_04_027 crossref_primary_10_1016_j_ipm_2022_103150 crossref_primary_10_1109_MWC_005_00334 crossref_primary_10_1109_TGCN_2022_3186898 crossref_primary_10_1109_TSC_2024_3376259 crossref_primary_10_3390_app13095270 crossref_primary_10_1109_TMC_2023_3321467 crossref_primary_10_1109_TII_2022_3223234 crossref_primary_10_1038_s41598_023_47078_9 crossref_primary_10_1109_ACCESS_2025_3553419 crossref_primary_10_1007_s10586_022_03644_w crossref_primary_10_1109_JIOT_2022_3203249 crossref_primary_10_1109_TNSE_2023_3260566 crossref_primary_10_1109_TNSM_2022_3216326 crossref_primary_10_1002_ett_70101 crossref_primary_10_1016_j_comcom_2025_108275 crossref_primary_10_1016_j_future_2022_07_010 crossref_primary_10_1109_TNSM_2023_3276594 crossref_primary_10_1109_TWC_2023_3273312 crossref_primary_10_1109_TKDE_2023_3332770 crossref_primary_10_1109_TNSM_2023_3336067 crossref_primary_10_1109_ACCESS_2021_3104117 crossref_primary_10_3390_s25175526 crossref_primary_10_1109_TNSM_2023_3281133 crossref_primary_10_1109_ACCESS_2024_3507695 crossref_primary_10_1016_j_jmsy_2021_09_009 crossref_primary_10_1016_j_rineng_2024_103295 crossref_primary_10_1109_ACCESS_2023_3267964 crossref_primary_10_1109_MNET_131_2200394 crossref_primary_10_1038_s41598_024_56115_0 crossref_primary_10_1109_COMST_2023_3243918 crossref_primary_10_1109_ACCESS_2024_3483455 crossref_primary_10_1016_j_comnet_2022_109048 crossref_primary_10_1145_3548686 crossref_primary_10_1016_j_bspc_2024_107107 crossref_primary_10_1109_TMC_2024_3449129 crossref_primary_10_1016_j_comcom_2022_09_012 crossref_primary_10_1109_TMC_2021_3085979 crossref_primary_10_1016_j_iot_2023_100694 crossref_primary_10_1109_JIOT_2021_3068056 crossref_primary_10_1007_s13042_024_02453_4 crossref_primary_10_1145_3664650 crossref_primary_10_1007_s11042_025_20815_0 crossref_primary_10_1109_IOTM_001_2100136 crossref_primary_10_1109_ACCESS_2021_3118642 crossref_primary_10_1109_TWC_2024_3471906 crossref_primary_10_1145_3673237 crossref_primary_10_1109_ACCESS_2022_3206020 crossref_primary_10_1109_ACCESS_2024_3449416 crossref_primary_10_1109_JIOT_2024_3363443 crossref_primary_10_1145_3625558 crossref_primary_10_3390_electronics12122703 crossref_primary_10_1109_ACCESS_2024_3424934 crossref_primary_10_32604_cmc_2023_043684 crossref_primary_10_1007_s00607_024_01356_0 crossref_primary_10_1016_j_neunet_2025_107135 crossref_primary_10_1109_TWC_2022_3188502 crossref_primary_10_2478_bipie_2022_0019 crossref_primary_10_1109_TNSM_2021_3128160 crossref_primary_10_1109_COMST_2023_3282264 crossref_primary_10_1016_j_cose_2024_104097 crossref_primary_10_1109_JIOT_2023_3327316 crossref_primary_10_1016_j_phycom_2024_102305 crossref_primary_10_1016_j_engappai_2024_108128 crossref_primary_10_1109_LCOMM_2022_3167094 crossref_primary_10_1631_FITEE_2300122 crossref_primary_10_1109_JIOT_2022_3157299 crossref_primary_10_1109_JIOT_2023_3304790 crossref_primary_10_1109_TWC_2023_3270908 crossref_primary_10_1016_j_comnet_2023_109581 crossref_primary_10_1016_j_future_2022_06_006 crossref_primary_10_1016_j_eswa_2025_128600 crossref_primary_10_1109_MNET_121_2200099 crossref_primary_10_1109_JIOT_2022_3188556 crossref_primary_10_1109_TITS_2024_3488497 crossref_primary_10_1016_j_measen_2024_101271 crossref_primary_10_3390_ai5030051 crossref_primary_10_1109_TNSM_2024_3508268 crossref_primary_10_1016_j_cosrev_2023_100595 crossref_primary_10_32604_cmc_2023_035720 crossref_primary_10_1109_ACCESS_2025_3593953 crossref_primary_10_1016_j_comnet_2023_109576 crossref_primary_10_1109_TNSM_2023_3270168 crossref_primary_10_1109_COMST_2023_3300664 crossref_primary_10_3390_fi15120400 crossref_primary_10_1016_j_adhoc_2024_103637 crossref_primary_10_1016_j_comcom_2025_108112 crossref_primary_10_1109_JSYST_2024_3450883 crossref_primary_10_1109_TKDE_2024_3382726 crossref_primary_10_1109_TSC_2023_3246988 crossref_primary_10_3390_jmse12061034 crossref_primary_10_1109_JIOT_2022_3214211 crossref_primary_10_1016_j_knosys_2023_110273 crossref_primary_10_1007_s12243_025_01089_x crossref_primary_10_3390_s25175286 crossref_primary_10_1016_j_eswa_2025_129146 crossref_primary_10_1145_3678182 crossref_primary_10_1016_j_ejor_2023_12_013 crossref_primary_10_32604_cmc_2024_048431 crossref_primary_10_1109_ACCESS_2023_3235389 crossref_primary_10_1109_ACCESS_2024_3384460 crossref_primary_10_1109_JIOT_2023_3241318 crossref_primary_10_1109_TSC_2024_3489437 crossref_primary_10_1109_TVT_2022_3229277 crossref_primary_10_1109_ACCESS_2025_3580176 crossref_primary_10_1109_TNSM_2023_3278937 crossref_primary_10_1109_JSAC_2021_3118346 crossref_primary_10_3390_s25030948 crossref_primary_10_1145_3582270 crossref_primary_10_1145_3639825 crossref_primary_10_1109_ACCESS_2024_3516657 crossref_primary_10_1109_COMST_2024_3392642 crossref_primary_10_1109_TCSS_2023_3259431 crossref_primary_10_1145_3659099 crossref_primary_10_1016_j_future_2023_07_018 crossref_primary_10_1177_15501329221092932 crossref_primary_10_1016_j_future_2022_05_003 crossref_primary_10_1016_j_comnet_2024_110192 crossref_primary_10_1002_widm_1514 crossref_primary_10_1109_TDSC_2023_3264697 crossref_primary_10_1109_TNSM_2022_3208522 crossref_primary_10_1109_JSYST_2023_3243694 crossref_primary_10_3390_s25082368 crossref_primary_10_1109_TWC_2024_3522956 crossref_primary_10_1109_TETCI_2023_3251404 crossref_primary_10_1109_COMST_2021_3094993 crossref_primary_10_1016_j_bspc_2024_106039 crossref_primary_10_1109_ACCESS_2021_3111783 crossref_primary_10_1109_TII_2024_3485720 crossref_primary_10_1109_TNET_2024_3364161 crossref_primary_10_32604_cmes_2024_056500 crossref_primary_10_1109_JSTSP_2022_3156756 crossref_primary_10_1109_TNSE_2024_3398795 crossref_primary_10_1007_s10489_022_04431_1 crossref_primary_10_7717_peerj_cs_1657 crossref_primary_10_1016_j_ins_2024_121035 crossref_primary_10_1109_JIOT_2025_3561722 crossref_primary_10_1109_TNET_2024_3365815 crossref_primary_10_1016_j_comnet_2024_110663 crossref_primary_10_1007_s10796_022_10307_z crossref_primary_10_1109_COMST_2024_3400121 crossref_primary_10_1016_j_neucom_2022_11_011 crossref_primary_10_1007_s10462_024_10796_1 crossref_primary_10_3390_s23083984 crossref_primary_10_1109_JIOT_2023_3325443 crossref_primary_10_1109_MCOM_005_210108 crossref_primary_10_3390_technologies11030076 crossref_primary_10_1109_TII_2021_3117861 crossref_primary_10_1155_2021_8414503 crossref_primary_10_1109_ACCESS_2024_3350777 crossref_primary_10_1155_2022_2235042 crossref_primary_10_1109_LCOMM_2023_3312793 crossref_primary_10_1109_TVT_2023_3328988 crossref_primary_10_1109_JIOT_2024_3379363 crossref_primary_10_1109_TNSM_2023_3282740 crossref_primary_10_1016_j_eswa_2025_126592 crossref_primary_10_3390_s22093317 crossref_primary_10_1002_ett_4762 crossref_primary_10_1109_LCOMM_2023_3348163 crossref_primary_10_1007_s00500_021_06496_5 crossref_primary_10_1177_21582440231173652 crossref_primary_10_1016_j_inffus_2025_103129 crossref_primary_10_1109_TBDATA_2022_3177222 crossref_primary_10_1007_s10489_024_05956_3 crossref_primary_10_1109_JIOT_2022_3218315 crossref_primary_10_1109_JSTSP_2022_3224597 crossref_primary_10_3390_network5010001 crossref_primary_10_1016_j_comnet_2023_110044 crossref_primary_10_1109_ACCESS_2021_3101871 crossref_primary_10_1177_21582440241237050 crossref_primary_10_1007_s12083_024_01840_6 crossref_primary_10_1109_JIOT_2023_3265564 crossref_primary_10_1109_TIFS_2022_3181848 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1016_j_comnet_2025_111139 crossref_primary_10_1016_j_inffus_2023_102141 crossref_primary_10_1016_j_ins_2023_119976 crossref_primary_10_1109_TNSE_2023_3311024 crossref_primary_10_1016_j_adhoc_2024_103462 crossref_primary_10_1016_j_comnet_2023_109712 crossref_primary_10_1016_j_jnca_2024_103987 crossref_primary_10_1155_2022_9369543 crossref_primary_10_1109_TIM_2023_3341116 crossref_primary_10_32604_iasc_2023_039255 crossref_primary_10_1002_widm_1443 crossref_primary_10_1016_j_ins_2024_120330 crossref_primary_10_1007_s11227_025_07133_w crossref_primary_10_1109_ACCESS_2022_3229044 crossref_primary_10_1049_cth2_12761 crossref_primary_10_1016_j_cose_2024_103707 crossref_primary_10_1109_MNET_117_2100730 crossref_primary_10_1109_TCAD_2021_3110743 crossref_primary_10_3390_bdcc9040085 crossref_primary_10_1145_3718363 crossref_primary_10_1109_JSTQE_2022_3170150 crossref_primary_10_1016_j_compeleceng_2024_109812 crossref_primary_10_32604_cmc_2024_051307 crossref_primary_10_1145_3731596 crossref_primary_10_1145_3570953 crossref_primary_10_3390_electronics12010158 crossref_primary_10_3390_technologies11050121 crossref_primary_10_1109_JIOT_2025_3530265 crossref_primary_10_1016_j_procs_2024_04_279 crossref_primary_10_1155_2022_6216423 crossref_primary_10_1109_JIOT_2023_3283853 crossref_primary_10_1016_j_iot_2024_101206 crossref_primary_10_1109_JIOT_2023_3283855 crossref_primary_10_1109_JIOT_2022_3167005 crossref_primary_10_3390_machines12100701 crossref_primary_10_1109_TVT_2024_3369942 crossref_primary_10_1007_s11432_024_4205_8 crossref_primary_10_1109_TITS_2023_3273167 crossref_primary_10_1145_3687124 crossref_primary_10_1109_COMST_2023_3317242 crossref_primary_10_1109_LWC_2022_3151873 crossref_primary_10_1016_j_enbuild_2024_114871 crossref_primary_10_1109_JIOT_2023_3338275 crossref_primary_10_1109_TNSM_2023_3273396 crossref_primary_10_1016_j_jairtraman_2024_102693 crossref_primary_10_1109_TNNLS_2024_3362974 crossref_primary_10_1109_MCE_2021_3117232 crossref_primary_10_1109_TWC_2022_3225812 crossref_primary_10_1109_MNET_121_2100172 crossref_primary_10_1109_TVT_2022_3211005 crossref_primary_10_1109_ACCESS_2023_3263564 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE |
| DOI | 10.1109/COMST.2021.3058573 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2373-745X |
| EndPage | 1397 |
| ExternalDocumentID | 9352033 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Academy of Finland 6Genesis Project grantid: 318927 funderid: 10.13039/501100002341 – fundername: Université du Québec en Outaouais (UQO) funderid: 10.13039/100012376 – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: RGPIN-2020-04707 funderid: 10.13039/501100000038 – fundername: Khalifa University of Science, Technology and Research (KUSTAR) – fundername: Academy of Finland CSN Project grantid: 311654 funderid: 10.13039/501100002341 – fundername: European Union’s Horizon 2020 Research and Innovation Program grantid: 101016509 (Project CHARITY) – fundername: Lebanese American University funderid: 10.13039/100010340 |
| GroupedDBID | 0R~ 29I 2WC 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IFJZH IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS |
| ID | FETCH-LOGICAL-c339t-a19b33aa9d46cbea51f2b6a3ad13214a0c20e63a7ac7e83382bc502e6645a7a63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 330 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654905700021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:51:12 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-a19b33aa9d46cbea51f2b6a3ad13214a0c20e63a7ac7e83382bc502e6645a7a63 |
| ORCID | 0000-0002-3991-4673 0000-0002-9574-5384 0000-0001-9434-5322 0000-0003-1119-1239 |
| OpenAccessLink | https://aaltodoc.aalto.fi/handle/123456789/107753 |
| PageCount | 56 |
| ParticipantIDs | ieee_primary_9352033 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Communications surveys and tutorials |
| PublicationTitleAbbrev | COMST |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0042490 |
| Score | 2.7104795 |
| Snippet | The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1342 |
| SubjectTerms | Cloud computing Collaborative work communication and networking systems Data models Federated learning federated learning tutorial Machine learning multi-level classification security Servers statistical challenges Training transfer learning Tutorials |
| Title | Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems |
| URI | https://ieeexplore.ieee.org/document/9352033 |
| Volume | 23 |
| WOSCitedRecordID | wos000654905700021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8KAHf03xNzl4XLc2aZvGmwyLh20Km7LbSJNX2aWTug38L_yTfUk7meDFWwmBQN4jeV_6vu8j5FYiQBN5oD2mBQIUpnJPCqM8LBWMVFFmcif2_DoQo1EyncrnBun8cGEAwDWfQdd-un_5ZqFX9qmsJ7Fa8DlvkqYQccXV2py6IcIIf0OK8WWv_zQcTxD-saCLGZ1E1hd9yz7F3R7pwf_WPST7dZVI76uwHpEGFMdkb0s7sE2-UisDgZWioUPXEAm01kp9u6PjVbmGzw519FpvYBuDqLO_tI1BLhYdiohzXlriFLV2BzYRqSoMTZ3ICK2PQsxJOi_oLxqJmzaq2sdxNVqLnp-Ql_Rh0n_0ansFT3Mul54KZMa5UtKEsc5ARUHOslhxZQLrXqR8zXyIuRJKC0gQyrJMRz6DOA4jHIz5KWkViwLOCNUY2EQaCQguwwS0lBnOzjWEPuiQBeekbXd19l4paMzqDb34e_iS7NrAVQ8dV6S1LFdwTXb0ejn_KG9c2L8BcRiyLg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCuqD3-K3efBx3dKkX_FNhmViV4VN2dtIk1vZSyd1G_gv_MkmaScTfPGthEAg95Lck95zDkI3XAO0MHelQ2WoAQoVucNDJRxdKigu_EzlVuz5NQnTNBqN-HMDtX64MABgm8-gbT7tv3w1lXPzVNbhulogjK2hdd_zKKnYWstz19NAgixpMYR3uk_9wVADQOq2dU5HvnFGXzFQsfdHvPu_lffQTl0n4rsqsPuoAcUB2l5RDzxEX7ERgtC1osJ92xIJuFZLfbvFg3m5gM8WtgRbJzGtQdgaYJrWIBuNFtaYc1Ia6hQ2hgcmFbEoFI6tzAiuD0OdlXhS4F9EEjstrRrI9Wq4lj0_Qi_x_bDbc2qDBUcyxmeOcHnGmBBceYHMQPhuTrNAMKFc418kiKQEAiZCIUOINJilmfQJhSDwfD0YsGPULKYFnCAsdWgjrjhoeOlFIDnP9OxcgkdAetQ9RYdmV8fvlYbGuN7Qs7-Hr9Fmb9hPxslD-niOtkwQq2ePC9SclXO4RBtyMZt8lFc2Bb4B3dS1dQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Machine+Learning%3A+Survey%2C+Multi-Level+Classification%2C+Desirable+Criteria+and+Future+Directions+in+Communication+and+Networking+Systems&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Wahab%2C+Omar+Abdel&rft.au=Mourad%2C+Azzam&rft.au=Otrok%2C+Hadi&rft.au=Taleb%2C+Tarik&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=23&rft.issue=2&rft.spage=1342&rft.epage=1397&rft_id=info:doi/10.1109%2FCOMST.2021.3058573&rft.externalDocID=9352033 |