Many-objective evolutionary algorithm based agricultural mobile robot route planning

•Many-objective optimization algorithm for the route planning of greenhouse robots.•Four up-to-date algorithms comparison based on a real greenhouse route planning problem.•HypE algorithm with best performance for many-objective route planning according to C-Metric. Agricultural robot technology has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture Jg. 200; S. 107274
Hauptverfasser: Zhang, Xinhao, Guo, Yu, Yang, Jinqi, Li, Daoliang, Wang, Yang, Zhao, Ran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2022
Schlagworte:
ISSN:0168-1699, 1872-7107
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Many-objective optimization algorithm for the route planning of greenhouse robots.•Four up-to-date algorithms comparison based on a real greenhouse route planning problem.•HypE algorithm with best performance for many-objective route planning according to C-Metric. Agricultural robot technology has experienced rapid development in the past ten years, and agricultural robots have been used to implement various complex agricultural tasks. In these processes, route planning is an important guarantee for reducing navigation distance and saving total turning angle. However, minimizing the cost of the entire navigation process on the premise of completing agricultural work is difficult. Many-objective Evolutionary Algorithm is used to solve the route planning problem of agricultural mobile robots under the premise of minimizing navigation cost. By scanning the radar map of the greenhouse, the path between all target points is calculated by using the probabilistic roadmap (PRM), and the route planning of the agricultural robot is carried out according to the sum of the path length and the path angle. To determine the best route for agricultural mobile robots, four algorithms are compared: Hypervolume Estimation Algorithm (HypE), Grid-Based Evolutionary Algorithm (GrEA), Knee Point-Driven Evolutionary Algorithm (KnEA), and Non-dominated sorting genetic algorithm (NSGA-III). The quality of the solutions was compared using C-Metric, and it could verify that HypE offers the best performance among four algorithms.
AbstractList Agricultural robot technology has experienced rapid development in the past ten years, and agricultural robots have been used to implement various complex agricultural tasks. In these processes, route planning is an important guarantee for reducing navigation distance and saving total turning angle. However, minimizing the cost of the entire navigation process on the premise of completing agricultural work is difficult. Many-objective Evolutionary Algorithm is used to solve the route planning problem of agricultural mobile robots under the premise of minimizing navigation cost. By scanning the radar map of the greenhouse, the path between all target points is calculated by using the probabilistic roadmap (PRM), and the route planning of the agricultural robot is carried out according to the sum of the path length and the path angle. To determine the best route for agricultural mobile robots, four algorithms are compared: Hypervolume Estimation Algorithm (HypE), Grid-Based Evolutionary Algorithm (GrEA), Knee Point-Driven Evolutionary Algorithm (KnEA), and Non-dominated sorting genetic algorithm (NSGA-III). The quality of the solutions was compared using C-Metric, and it could verify that HypE offers the best performance among four algorithms.
•Many-objective optimization algorithm for the route planning of greenhouse robots.•Four up-to-date algorithms comparison based on a real greenhouse route planning problem.•HypE algorithm with best performance for many-objective route planning according to C-Metric. Agricultural robot technology has experienced rapid development in the past ten years, and agricultural robots have been used to implement various complex agricultural tasks. In these processes, route planning is an important guarantee for reducing navigation distance and saving total turning angle. However, minimizing the cost of the entire navigation process on the premise of completing agricultural work is difficult. Many-objective Evolutionary Algorithm is used to solve the route planning problem of agricultural mobile robots under the premise of minimizing navigation cost. By scanning the radar map of the greenhouse, the path between all target points is calculated by using the probabilistic roadmap (PRM), and the route planning of the agricultural robot is carried out according to the sum of the path length and the path angle. To determine the best route for agricultural mobile robots, four algorithms are compared: Hypervolume Estimation Algorithm (HypE), Grid-Based Evolutionary Algorithm (GrEA), Knee Point-Driven Evolutionary Algorithm (KnEA), and Non-dominated sorting genetic algorithm (NSGA-III). The quality of the solutions was compared using C-Metric, and it could verify that HypE offers the best performance among four algorithms.
ArticleNumber 107274
Author Wang, Yang
Zhang, Xinhao
Yang, Jinqi
Guo, Yu
Zhao, Ran
Li, Daoliang
Author_xml – sequence: 1
  givenname: Xinhao
  surname: Zhang
  fullname: Zhang, Xinhao
  organization: National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
– sequence: 2
  givenname: Yu
  surname: Guo
  fullname: Guo, Yu
  organization: National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
– sequence: 3
  givenname: Jinqi
  surname: Yang
  fullname: Yang, Jinqi
  organization: Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
– sequence: 4
  givenname: Daoliang
  surname: Li
  fullname: Li, Daoliang
  organization: National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
– sequence: 5
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  email: andy_yangwang@cau.edu.cn
  organization: National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
– sequence: 6
  givenname: Ran
  surname: Zhao
  fullname: Zhao, Ran
  email: ran.zhao@cau.edu.cn
  organization: National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
BookMark eNqFkDtPwzAQgC1UJNrCP2DIyJISO0mdMCChipdUxFJmy49LceTEwXYq9d_jKkwMsNzpTved7r4FmvW2B4SucbbCGV7ftitpu4HvVyQjJLYoocUZmuOKkpTGcobmcaxK8bquL9DC-zaLdV3ROdq98f6YWtGCDPoACRysGYO2PXfHhJu9dTp8dongHlTC907L0YTRcZN0VmgDibPChhjHAMlgeN_rfn-JzhtuPFz95CX6eHrcbV7S7fvz6-Zhm8o8r0Nai5yrumxqAEFopUipJJGlqkRT4KykBaZYCqAVwSRvsGpkgXGNYV0IVRYK50t0M-0dnP0awQfWaS_BxDPAjp4Riqu8WJcRX6JiGpXOeu-gYYPTXXyS4YydJLKWTRLZSSKbJEbs7hcmdeAnP8Fxbf6D7ycYooODBse81NBLUNpF3UxZ_feCb4Qwk44
CitedBy_id crossref_primary_10_1177_01423312241264860
crossref_primary_10_1117_1_JEI_34_1_013055
crossref_primary_10_1109_ACCESS_2023_3322230
crossref_primary_10_1016_j_robot_2023_104514
crossref_primary_10_1002_rob_22315
crossref_primary_10_3390_electronics12153232
crossref_primary_10_3390_s23010517
crossref_primary_10_1038_s41598_024_58431_x
crossref_primary_10_3390_agronomy13071780
crossref_primary_10_1108_EC_08_2024_0709
crossref_primary_10_1016_j_compag_2024_109598
crossref_primary_10_1016_j_jii_2024_100699
crossref_primary_10_1007_s11370_025_00592_3
crossref_primary_10_3390_s24113573
crossref_primary_10_3389_fpls_2024_1337638
crossref_primary_10_1016_j_compag_2024_108916
crossref_primary_10_1016_j_compag_2024_109628
crossref_primary_10_1371_journal_pone_0329504
crossref_primary_10_1007_s12530_025_09680_2
crossref_primary_10_3390_math11040948
crossref_primary_10_1016_j_oceaneng_2023_115753
crossref_primary_10_1016_j_engappai_2025_111292
crossref_primary_10_3390_su17072829
crossref_primary_10_1109_ACCESS_2024_3464686
crossref_primary_10_1016_j_birob_2024_100206
crossref_primary_10_1016_j_compag_2025_110279
crossref_primary_10_3390_rs17071263
crossref_primary_10_1016_j_compag_2024_108750
crossref_primary_10_1016_j_compag_2025_109962
crossref_primary_10_3390_app15126477
crossref_primary_10_1177_17298806251356720
crossref_primary_10_3389_fchem_2023_1288626
crossref_primary_10_3390_agriculture14091473
crossref_primary_10_1016_j_compag_2023_108218
Cites_doi 10.1007/s11831-020-09415-3
10.1023/A:1016639210559
10.1109/TEVC.2003.810758
10.1016/j.jclepro.2020.124843
10.3390/su13147722
10.1016/j.compag.2012.11.015
10.5424/sjar/2013113-3865
10.1002/rob.21525
10.1109/TEVC.2014.2378512
10.1023/A:1020568125418
10.1016/j.aej.2021.01.010
10.1155/2019/5219471
10.1016/j.compag.2019.01.016
10.1109/4235.797969
10.1016/j.robot.2013.09.004
10.1162/EVCO_a_00009
10.1007/s10846-020-01291-0
10.1109/TEVC.2012.2227145
10.1016/j.jclepro.2020.122695
10.1109/TEVC.2013.2281535
10.1007/s11119-017-9522-9
10.1109/TEVC.2007.892759
10.1016/j.biosystemseng.2015.12.004
10.1162/106365600568202
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2022.107274
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2022_107274
S0168169922005865
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-9b3ad95f9eeb278d25dc2c5d8bf410574171cbe782123f1dfc41191e64bd54d13
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862587100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Fri Oct 03 00:16:05 EDT 2025
Sat Nov 29 07:22:48 EST 2025
Tue Nov 18 22:32:58 EST 2025
Fri Feb 23 02:36:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Agricultural mobile robot
Route planning
Many-objective optimization
Greenhouse
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-9b3ad95f9eeb278d25dc2c5d8bf410574171cbe782123f1dfc41191e64bd54d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718346512
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718346512
crossref_primary_10_1016_j_compag_2022_107274
crossref_citationtrail_10_1016_j_compag_2022_107274
elsevier_sciencedirect_doi_10_1016_j_compag_2022_107274
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lihong, Fanzheng, Ruihua (b0075) 2021; 37
Behmanesh, Rahimi, Gandomi (b0020) 2021; 28
Yang, Li, Liu, Zheng (b0125) 2013; 17
Zhang, Guo, Zhao, Wang, Chow, Fang (b0130) 2020; 274
Conesa-Munoz, Ribeiro, Andujar, Fernandez-Quintanilla, Dorado, Ieee (b0045) 2012
Galceran, Carreras (b0060) 2013; 61
Mahmud, M.S.A., Abidin, M.S.Z., Buyamin, S., Emmanuel, A.A., Hasan, H.S., 2021. Multi-objective Route Planning for Underwater Cleaning Robot in Water Reservoir Tank. Journal of Intelligent & Robotic Systems 101, 16.
Zitzler, Deb, Thiele (b0150) 2000; 8
Lijun, C., 2018. Design Method of Greenhouse Production Hierarchial Control System□. China Agricultural University.
Paez, Rincon, Sanchez-Hermosilla, Fernandez (b0105) 2017; 18
Choset (b0040) 2001; 31
Bac, van Henten, Hemming, Edan (b0005) 2014; 31
Vahdanjoo, Norremark, Sorensen (b0110) 2021; 13
Bakhtiari, Navid, Mehri, Berruto, Bochtis (b0015) 2013; 11
Zhang, Li (b0135) 2007; 11
Bochtis, Dogoulis, Busato, Sorensen, Berruto, Gemtos (b0030) 2013; 91
Chahidi, Fossa, Priarone, Mechaqrane (b0035) 2021; 282
Zitzler, Thiele (b0145) 1999; 3
Bader, Zitzler (b0010) 2011; 19
Bhesdadiya, Trivedi, Jangir, Jangir, Kumar, Sreeram (b0025) 2016; 3
Lin (b0085) 2017; 173
Zhang, Tian, Jin (b0140) 2015; 19
Duan, Zhang, Zhang, Wang (b0055) 2020
van Henten, Hemming, van Tuijl, Kornet, Meuleman, Bontsema, van Os (b0115) 2002; 13
Mahmud, Abidin, Mohamed, Rahman, Iida (b0090) 2019; 157
Deb, Jain (b0050) 2014; 18
Guo, Zhao, Zhang, Wang, Chow (b0065) 2021; 285
Xiaoning, S., Guo Yu, Qingwei, C., Weili, H., 2006. Application of Multi-objective Optimization Genetic Algorithm to Robot Path Planning. Journal of Nanjing University of Science and Technology, 659-663.
Gutierrez, Ansuategi, Susperregi, Tubio, Rankic, Lenza (b0070) 2019; 2019
Zangina (b0156) 2021; 60
Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (b0155) 2003; 7
Oberti, Marchi, Tirelli, Calcante, Iriti, Tona, Hocevar, Baur, Pfaff, Schutz, Ulbrich (b0100) 2016; 146
Mahmud (10.1016/j.compag.2022.107274_b0090) 2019; 157
Paez (10.1016/j.compag.2022.107274_b0105) 2017; 18
Behmanesh (10.1016/j.compag.2022.107274_b0020) 2021; 28
Zhang (10.1016/j.compag.2022.107274_b0135) 2007; 11
Duan (10.1016/j.compag.2022.107274_b0055) 2020
Guo (10.1016/j.compag.2022.107274_b0065) 2021; 285
10.1016/j.compag.2022.107274_b0095
Lihong (10.1016/j.compag.2022.107274_b0075) 2021; 37
Bac (10.1016/j.compag.2022.107274_b0005) 2014; 31
Zhang (10.1016/j.compag.2022.107274_b0130) 2020; 274
Zitzler (10.1016/j.compag.2022.107274_b0145) 1999; 3
Gutierrez (10.1016/j.compag.2022.107274_b0070) 2019; 2019
Zitzler (10.1016/j.compag.2022.107274_b0155) 2003; 7
Bhesdadiya (10.1016/j.compag.2022.107274_b0025) 2016; 3
Zhang (10.1016/j.compag.2022.107274_b0140) 2015; 19
Lin (10.1016/j.compag.2022.107274_b0085) 2017; 173
Bakhtiari (10.1016/j.compag.2022.107274_b0015) 2013; 11
Chahidi (10.1016/j.compag.2022.107274_b0035) 2021; 282
Yang (10.1016/j.compag.2022.107274_b0125) 2013; 17
Oberti (10.1016/j.compag.2022.107274_b0100) 2016; 146
Galceran (10.1016/j.compag.2022.107274_b0060) 2013; 61
Conesa-Munoz (10.1016/j.compag.2022.107274_b0045) 2012
Deb (10.1016/j.compag.2022.107274_b0050) 2014; 18
Zangina (10.1016/j.compag.2022.107274_b0156) 2021; 60
10.1016/j.compag.2022.107274_b0080
Bochtis (10.1016/j.compag.2022.107274_b0030) 2013; 91
Bader (10.1016/j.compag.2022.107274_b0010) 2011; 19
10.1016/j.compag.2022.107274_b0120
van Henten (10.1016/j.compag.2022.107274_b0115) 2002; 13
Choset (10.1016/j.compag.2022.107274_b0040) 2001; 31
Vahdanjoo (10.1016/j.compag.2022.107274_b0110) 2021; 13
Zitzler (10.1016/j.compag.2022.107274_b0150) 2000; 8
References_xml – volume: 11
  start-page: 652
  year: 2013
  end-page: 660
  ident: b0015
  article-title: Operations planning for agricultural harvesters using ant colony optimization
  publication-title: Spanish Journal of Agricultural Research
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0050
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
  publication-title: Ieee Transactions on Evolutionary Computation
– reference: Mahmud, M.S.A., Abidin, M.S.Z., Buyamin, S., Emmanuel, A.A., Hasan, H.S., 2021. Multi-objective Route Planning for Underwater Cleaning Robot in Water Reservoir Tank. Journal of Intelligent & Robotic Systems 101, 16.
– volume: 274
  start-page: 18
  year: 2020
  ident: b0130
  article-title: Methodologies of control strategies for improving energy efficiency in agricultural greenhouses
  publication-title: J. Clean Prod.
– volume: 28
  start-page: 673
  year: 2021
  end-page: 688
  ident: b0020
  article-title: Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems: A Comparative Study
  publication-title: Arch. Comput. Methods Eng.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: b0125
  article-title: A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: Ieee Transactions on Evolutionary Computation
– volume: 37
  start-page: 212
  year: 2021
  end-page: 222
  ident: b0075
  article-title: Development and verification of tomato crop一environment interaction model in second timescale greenhouse
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b0010
  article-title: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization
  publication-title: Evol. Comput.
– start-page: 1005
  year: 2020
  end-page: 1009
  ident: b0055
  article-title: Path planning based on improved multi-objective particle swarm algorithm, IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC)
– reference: Xiaoning, S., Guo Yu, Qingwei, C., Weili, H., 2006. Application of Multi-objective Optimization Genetic Algorithm to Robot Path Planning. Journal of Nanjing University of Science and Technology, 659-663.
– volume: 157
  start-page: 488
  year: 2019
  end-page: 499
  ident: b0090
  article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment
  publication-title: Computers and Electronics in Agriculture
– volume: 61
  start-page: 1258
  year: 2013
  end-page: 1276
  ident: b0060
  article-title: A survey on coverage path planning for robotics
  publication-title: Robotics and Autonomous Systems
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0150
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evol. Comput.
– volume: 31
  start-page: 888
  year: 2014
  end-page: 911
  ident: b0005
  article-title: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead
  publication-title: Journal of Field Robotics
– volume: 31
  start-page: 113
  year: 2001
  end-page: 126
  ident: b0040
  article-title: Coverage for robotics - A survey of recent results
  publication-title: Ann. Math. Artif. Intell.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0135
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: Ieee Transactions on Evolutionary Computation
– volume: 282
  start-page: 12
  year: 2021
  ident: b0035
  article-title: Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate - A case study
  publication-title: Applied Energy
– volume: 146
  start-page: 203
  year: 2016
  end-page: 215
  ident: b0100
  article-title: Selective spraying of grapevines for disease control using a modular agricultural robot
  publication-title: Biosystems Engineering
– volume: 285
  start-page: 19
  year: 2021
  ident: b0065
  article-title: Modeling and optimization of environment in agricultural greenhouses for improving cleaner and sustainable crop production
  publication-title: J. Clean Prod.
– volume: 173
  year: 2017
  ident: b0085
  article-title: The area of major greenhouse facilities in my country has exceeded 2. 1 million hectares and will develop towards ultra-low energy consumption in the future[J]
  publication-title: China Food
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0145
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach
  publication-title: Ieee Transactions on Evolutionary Computation
– volume: 3
  year: 2016
  ident: b0025
  article-title: An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem. Cogent
  publication-title: Engineering
– volume: 2019
  start-page: 15
  year: 2019
  ident: b0070
  article-title: A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
  publication-title: Journal of Sensors
– volume: 13
  start-page: 19
  year: 2021
  ident: b0110
  article-title: A System for Optimizing the Process of Straw Bale Retrieval
  publication-title: Sustainability
– volume: 13
  start-page: 241
  year: 2002
  end-page: 258
  ident: b0115
  article-title: An autonomous robot for harvesting cucumbers in greenhouses
  publication-title: Auton. Robot.
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: b0140
  article-title: A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization
  publication-title: Ieee Transactions on Evolutionary Computation
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b0155
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: Ieee Transactions on Evolutionary Computation
– reference: Lijun, C., 2018. Design Method of Greenhouse Production Hierarchial Control System□. China Agricultural University.
– volume: 18
  start-page: 1011
  year: 2017
  end-page: 1023
  ident: b0105
  article-title: Implementation of a low-cost crop detection prototype for selective spraying in greenhouses
  publication-title: Precision Agriculture
– year: 2012
  ident: b0045
  article-title: Multi-path planning based on a NSGA-II for a fleet of robots to work on agricultural tasks, IEEE Congress on Evolutionary Computation (CEC)
– volume: 91
  start-page: 49
  year: 2013
  end-page: 56
  ident: b0030
  article-title: A flow-shop problem formulation of biomass handling operations scheduling
  publication-title: Computers and Electronics in Agriculture
– volume: 60
  start-page: 3007
  year: 2021
  end-page: 3020
  ident: b0156
  article-title: Agricultural rout planning with variable rate pesticide application in a greenhouse environment
  publication-title: Alex. Eng. J.
– volume: 28
  start-page: 673
  year: 2021
  ident: 10.1016/j.compag.2022.107274_b0020
  article-title: Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems: A Comparative Study
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09415-3
– volume: 31
  start-page: 113
  year: 2001
  ident: 10.1016/j.compag.2022.107274_b0040
  article-title: Coverage for robotics - A survey of recent results
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/A:1016639210559
– volume: 7
  start-page: 117
  year: 2003
  ident: 10.1016/j.compag.2022.107274_b0155
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– volume: 285
  start-page: 19
  year: 2021
  ident: 10.1016/j.compag.2022.107274_b0065
  article-title: Modeling and optimization of environment in agricultural greenhouses for improving cleaner and sustainable crop production
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2020.124843
– volume: 13
  start-page: 19
  year: 2021
  ident: 10.1016/j.compag.2022.107274_b0110
  article-title: A System for Optimizing the Process of Straw Bale Retrieval
  publication-title: Sustainability
  doi: 10.3390/su13147722
– volume: 91
  start-page: 49
  year: 2013
  ident: 10.1016/j.compag.2022.107274_b0030
  article-title: A flow-shop problem formulation of biomass handling operations scheduling
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2012.11.015
– volume: 173
  year: 2017
  ident: 10.1016/j.compag.2022.107274_b0085
  article-title: The area of major greenhouse facilities in my country has exceeded 2. 1 million hectares and will develop towards ultra-low energy consumption in the future[J]
  publication-title: China Food
– volume: 11
  start-page: 652
  year: 2013
  ident: 10.1016/j.compag.2022.107274_b0015
  article-title: Operations planning for agricultural harvesters using ant colony optimization
  publication-title: Spanish Journal of Agricultural Research
  doi: 10.5424/sjar/2013113-3865
– volume: 31
  start-page: 888
  year: 2014
  ident: 10.1016/j.compag.2022.107274_b0005
  article-title: Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21525
– volume: 19
  start-page: 761
  year: 2015
  ident: 10.1016/j.compag.2022.107274_b0140
  article-title: A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2378512
– volume: 37
  start-page: 212
  year: 2021
  ident: 10.1016/j.compag.2022.107274_b0075
  article-title: Development and verification of tomato crop一environment interaction model in second timescale greenhouse
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 13
  start-page: 241
  year: 2002
  ident: 10.1016/j.compag.2022.107274_b0115
  article-title: An autonomous robot for harvesting cucumbers in greenhouses
  publication-title: Auton. Robot.
  doi: 10.1023/A:1020568125418
– year: 2012
  ident: 10.1016/j.compag.2022.107274_b0045
– volume: 60
  start-page: 3007
  year: 2021
  ident: 10.1016/j.compag.2022.107274_b0156
  article-title: Agricultural rout planning with variable rate pesticide application in a greenhouse environment
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.01.010
– volume: 2019
  start-page: 15
  year: 2019
  ident: 10.1016/j.compag.2022.107274_b0070
  article-title: A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
  publication-title: Journal of Sensors
  doi: 10.1155/2019/5219471
– volume: 157
  start-page: 488
  year: 2019
  ident: 10.1016/j.compag.2022.107274_b0090
  article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.01.016
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.compag.2022.107274_b0145
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 61
  start-page: 1258
  year: 2013
  ident: 10.1016/j.compag.2022.107274_b0060
  article-title: A survey on coverage path planning for robotics
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2013.09.004
– volume: 19
  start-page: 45
  year: 2011
  ident: 10.1016/j.compag.2022.107274_b0010
  article-title: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 282
  start-page: 12
  year: 2021
  ident: 10.1016/j.compag.2022.107274_b0035
  article-title: Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate - A case study
  publication-title: Applied Energy
– ident: 10.1016/j.compag.2022.107274_b0080
– ident: 10.1016/j.compag.2022.107274_b0120
– ident: 10.1016/j.compag.2022.107274_b0095
  doi: 10.1007/s10846-020-01291-0
– volume: 17
  start-page: 721
  year: 2013
  ident: 10.1016/j.compag.2022.107274_b0125
  article-title: A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2227145
– start-page: 1005
  year: 2020
  ident: 10.1016/j.compag.2022.107274_b0055
– volume: 274
  start-page: 18
  year: 2020
  ident: 10.1016/j.compag.2022.107274_b0130
  article-title: Methodologies of control strategies for improving energy efficiency in agricultural greenhouses
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2020.122695
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.compag.2022.107274_b0050
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 18
  start-page: 1011
  year: 2017
  ident: 10.1016/j.compag.2022.107274_b0105
  article-title: Implementation of a low-cost crop detection prototype for selective spraying in greenhouses
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-017-9522-9
– volume: 3
  year: 2016
  ident: 10.1016/j.compag.2022.107274_b0025
  article-title: An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem. Cogent
  publication-title: Engineering
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.compag.2022.107274_b0135
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: Ieee Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 146
  start-page: 203
  year: 2016
  ident: 10.1016/j.compag.2022.107274_b0100
  article-title: Selective spraying of grapevines for disease control using a modular agricultural robot
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2015.12.004
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.compag.2022.107274_b0150
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
SSID ssj0016987
Score 2.5100112
Snippet •Many-objective optimization algorithm for the route planning of greenhouse robots.•Four up-to-date algorithms comparison based on a real greenhouse route...
Agricultural robot technology has experienced rapid development in the past ten years, and agricultural robots have been used to implement various complex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107274
SubjectTerms Agricultural mobile robot
agriculture
algorithms
electronics
Greenhouse
greenhouses
Many-objective optimization
radar
Route planning
Title Many-objective evolutionary algorithm based agricultural mobile robot route planning
URI https://dx.doi.org/10.1016/j.compag.2022.107274
https://www.proquest.com/docview/2718346512
Volume 200
WOSCitedRecordID wos000862587100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMcEE-xvGQkxCVK1ebtY4W6glUpHLJSOFnxI91Uu0k2TVf78xnHdlJe2uXAxaosx6k8X8bfjMczCL0n01yGUkQuKULuBiwkLlFJP_NETIkkgTeTfdWSZbxaJVlGvpnbJdu-nEBcVcn1NWn-q6ihD4Strs7-g7iHSaEDfoPQoQWxQ3srwX-Bz9ut2UZrMkdembep8Lj8fF23ZXd24ajdSzj5uh1zb1zUDFSE09as7qBVAQSNKWm0T2FtHQid3Hkso9MH1o4TDoAZXNJZWZ3l9RDws-udtN93g94xw07K6rK0nUtzD75W3pj1vosCrFsbgzV4LSMwVSNdCcmqXZCZ00zA-gS72P2jMtd-hc2kj8ZfT9TMZvy4edkD-9VXeny6XNJ0kaUfmktXlRVTx--mxspddOjFIQHNfTj_vMhOhoOmiCT6Rr35h_Z2ZR8C-PuL_8ZeftnHe3KSPkIPjVWB5xoNj9EdWT1BD-ajMJ6i9Gdc4H1c4AEXuMcF3scF1rjAPS5wjwtscfEMnR4v0o-fXFNSw-W-TzqXMD8XJCyIlMyLE-GFgns8FAkrVLwv0Mt4xpkE2giMppiJggcqA6CMAibCQMz85-igqiv5AmFvyoIogi-d8ARYuGQwRDAiuJgWsT_jR8i3S0W5yTevyp6cUxtYuKF6galaYKoX-Ai5w1ONzrdyw_jYSoEazqi5IAUU3fDkOys0CipVnZPllax3W-oBX_ODCKjwy1uMeYXuj5h_jQ66diffoHv8qiu37VuDtx_qx52Z
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-objective+evolutionary+algorithm+based+agricultural+mobile+robot+route+planning&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Zhang%2C+Xinhao&rft.au=Guo%2C+Yu&rft.au=Yang%2C+Jinqi&rft.au=Li%2C+Daoliang&rft.date=2022-09-01&rft.issn=0168-1699&rft.volume=200+p.107274-&rft_id=info:doi/10.1016%2Fj.compag.2022.107274&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon