Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm

Purpose The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of ene...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of numerical methods for heat & fluid flow Ročník 28; číslo 4; s. 828 - 856
Hlavný autor: Abu Arqub, Omar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bradford Emerald Publishing Limited 03.04.2018
Emerald Group Publishing Limited
Predmet:
ISSN:0961-5539, 1758-6585
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit. Design/methodology/approach The method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W(Ω) and H(Ω) inner product spaces, while the computation of the required grid points relies on the R(y,s) (x, t) and r(y,s) (x, t) reproducing kernel functions. Findings Numerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n-term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models. Research limitations/implications Future work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers. Practical implications The study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability. Social implications Developing analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest. Originality/value This study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory.
AbstractList Purpose The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit. Design/methodology/approach The method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W(Ω) and H(Ω) inner product spaces, while the computation of the required grid points relies on the R(y,s) (x, t) and r(y,s) (x, t) reproducing kernel functions. Findings Numerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n-term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models. Research limitations/implications Future work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers. Practical implications The study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability. Social implications Developing analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest. Originality/value This study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory.
PurposeThe purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit.Design/methodology/approachThe method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W(Ω) and H(Ω) inner product spaces, while the computation of the required grid points relies on the R(y,s) (x, t) and r(y,s) (x, t) reproducing kernel functions.FindingsNumerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n-term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models.Research limitations/implicationsFuture work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers.Practical implicationsThe study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability.Social implicationsDeveloping analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest.Originality/valueThis study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory.
Author Abu Arqub, Omar
Author_xml – sequence: 1
  givenname: Omar
  surname: Abu Arqub
  fullname: Abu Arqub, Omar
  email: o.abuarqub@bau.edu.jo
BookMark eNp9UsFuHCEMRVUqdbPtvUeknmlgWGDmGEXdJlLUSFF7RgyYLMksbIBR1d_oF5fZzaVVlYst4_ds7OdzdBZTBIQ-MvqZMdpfXG-3hCrSUSYJ7VT_Bq2YEj2RohdnaEUHyYgQfHiHzkt5pJQKuZEr9PvbvIccrJlwSdNcQ4oF-5Rx3QG-T2OIuIY9EJ-NXZINdzC5huZd8B4yxGMAz7M5kZPHOzAVm-iwn-aw2PSz4NEUcDjFY-UMh5zcbEN8wE-QI0zYTA8ph7rbv0dvvZkKfHjxa_Rj--X71TW5vft6c3V5SyznQyWDkmAcZ5wyp5gTtg3K5CA7xw0oRkcYeO8G57217YFa1Ytx9LSlN64bPV-jT6e67SvPM5SqH9Oc24RF87ZRKkXX9a-hOrrpFB9UM2tETyibUykZvD7ksDf5l2ZUL_ropo-mSi_66EWfRpH_UGyoxx3WbML0GvHiRISmnJnc_1r9dQr8DzVopzU
CitedBy_id crossref_primary_10_1615_JPorMedia_2024053402
crossref_primary_10_1007_s12190_018_1176_x
crossref_primary_10_1016_j_asoc_2022_109609
crossref_primary_10_1016_j_enganabound_2023_11_026
crossref_primary_10_1016_j_physa_2019_122149
crossref_primary_10_1016_j_matcom_2022_12_008
crossref_primary_10_1016_j_enganabound_2023_07_045
crossref_primary_10_1007_s40435_023_01333_z
crossref_primary_10_1002_jnm_3181
crossref_primary_10_1007_s40995_023_01507_6
crossref_primary_10_1615_JPorMedia_2025055514
crossref_primary_10_1016_j_chaos_2019_03_020
crossref_primary_10_1007_s11071_018_4142_0
crossref_primary_10_1155_2024_7279779
crossref_primary_10_1016_j_cam_2023_115622
crossref_primary_10_3390_fractalfract3020027
crossref_primary_10_1007_s12190_023_01897_1
crossref_primary_10_1515_ijnsns_2021_0230
crossref_primary_10_1007_s40995_023_01414_w
crossref_primary_10_1007_s11071_018_4459_8
crossref_primary_10_1088_1402_4896_abb420
crossref_primary_10_1515_phys_2024_0029
crossref_primary_10_1108_HFF_12_2024_0935
crossref_primary_10_1002_mma_5497
crossref_primary_10_1002_mma_5530
crossref_primary_10_1007_s10973_024_13810_4
crossref_primary_10_1016_j_chaos_2019_05_025
crossref_primary_10_1080_00207160_2018_1544367
crossref_primary_10_1142_S0217984924502300
crossref_primary_10_1016_j_physa_2019_122271
crossref_primary_10_1142_S0217979225501887
crossref_primary_10_1002_jnm_70073
crossref_primary_10_1007_s12190_019_01272_z
crossref_primary_10_1016_j_physa_2019_123257
crossref_primary_10_1088_1402_4896_ab96e0
crossref_primary_10_1007_s11082_023_06102_y
crossref_primary_10_1002_mma_10650
crossref_primary_10_1007_s10973_022_11224_8
crossref_primary_10_1016_j_enganabound_2023_05_010
crossref_primary_10_1007_s11071_023_09164_5
crossref_primary_10_1002_num_22209
crossref_primary_10_1016_j_matcom_2023_02_012
crossref_primary_10_1002_mma_5365
crossref_primary_10_1007_s10973_024_12992_1
crossref_primary_10_1016_j_geomphys_2022_104512
crossref_primary_10_1002_mma_7305
crossref_primary_10_1140_epjp_s13360_025_06267_3
crossref_primary_10_1002_mma_7825
crossref_primary_10_1615_JPorMedia_2022044645
crossref_primary_10_1186_s13662_019_2334_7
crossref_primary_10_1108_HFF_04_2022_0262
crossref_primary_10_1007_s40435_024_01541_1
crossref_primary_10_1016_j_cjph_2022_10_002
crossref_primary_10_1007_s40819_022_01334_0
crossref_primary_10_1007_s11071_020_05574_x
crossref_primary_10_1016_j_chaos_2019_07_023
crossref_primary_10_1016_j_physa_2019_123494
crossref_primary_10_1016_j_health_2022_100111
crossref_primary_10_3934_dcdss_2025097
crossref_primary_10_1016_j_enganabound_2022_05_003
crossref_primary_10_1016_j_jcp_2024_113341
crossref_primary_10_1007_s40096_022_00495_9
crossref_primary_10_1016_j_enganabound_2023_05_028
crossref_primary_10_1007_s40995_023_01430_w
crossref_primary_10_1080_27684830_2025_2476871
crossref_primary_10_1016_j_enganabound_2024_105973
crossref_primary_10_1002_mma_10481
crossref_primary_10_1016_j_enganabound_2024_106026
crossref_primary_10_1108_HFF_03_2020_0178
crossref_primary_10_1108_HFF_10_2017_0394
crossref_primary_10_1088_1402_4896_ac4c50
crossref_primary_10_1142_S0217979225502078
crossref_primary_10_1177_1687814018819341
crossref_primary_10_1615_JPorMedia_2024051144
crossref_primary_10_1016_j_chaos_2018_10_013
crossref_primary_10_1007_s11082_022_04362_8
crossref_primary_10_1016_j_amc_2018_12_054
crossref_primary_10_3390_math11051173
crossref_primary_10_1515_ms_2022_0027
crossref_primary_10_3390_fractalfract3030037
crossref_primary_10_1002_jnm_70012
crossref_primary_10_1109_JSEN_2019_2959704
crossref_primary_10_1140_epjs_s11734_023_00913_6
crossref_primary_10_1002_fld_4901
crossref_primary_10_1016_j_chaos_2019_04_020
crossref_primary_10_1016_j_jtice_2025_106389
crossref_primary_10_1088_1402_4896_abd904
crossref_primary_10_3390_axioms13080551
crossref_primary_10_1155_2020_9865682
crossref_primary_10_1016_j_rico_2025_100562
crossref_primary_10_1016_j_sciaf_2022_e01490
crossref_primary_10_1016_j_sciaf_2024_e02215
crossref_primary_10_1002_qua_27529
crossref_primary_10_1007_s13540_025_00426_0
crossref_primary_10_1108_HFF_11_2018_0700
crossref_primary_10_1016_j_chaos_2021_111127
crossref_primary_10_1088_1402_4896_ad3b41
crossref_primary_10_1177_16878132231201299
crossref_primary_10_1007_s10973_024_13399_8
crossref_primary_10_1007_s10013_019_00340_y
crossref_primary_10_1016_j_chaos_2018_10_007
crossref_primary_10_1088_1402_4896_ac0867
crossref_primary_10_1007_s10092_018_0274_3
crossref_primary_10_1002_mma_5850
crossref_primary_10_1142_S0218348X25401425
crossref_primary_10_1007_s11277_023_10455_8
crossref_primary_10_1002_eng2_70288
crossref_primary_10_1088_1572_9494_ab8a29
crossref_primary_10_1615_JPorMedia_2024049723
crossref_primary_10_1515_ijnsns_2017_0097
crossref_primary_10_1007_s12190_023_01902_7
crossref_primary_10_1007_s12190_025_02558_1
crossref_primary_10_1108_HFF_01_2020_0060
crossref_primary_10_1002_num_22236
crossref_primary_10_1016_j_chaos_2019_109552
crossref_primary_10_1016_j_apm_2019_11_017
crossref_primary_10_1007_s10973_024_12988_x
crossref_primary_10_3390_sym17030452
crossref_primary_10_1615_JPorMedia_2024052250
crossref_primary_10_3390_sym16121610
crossref_primary_10_1016_j_physa_2019_122769
crossref_primary_10_1007_s00366_023_01924_6
crossref_primary_10_1002_mma_10614
crossref_primary_10_1615_JPorMedia_2024049715
crossref_primary_10_1002_mma_7228
crossref_primary_10_1007_s10973_023_12627_x
crossref_primary_10_1007_s11071_017_3999_7
crossref_primary_10_1007_s40995_024_01739_0
crossref_primary_10_1080_17455030_2022_2112637
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1016_j_physa_2019_122496
crossref_primary_10_3390_math11051200
crossref_primary_10_1016_j_isatra_2022_07_027
crossref_primary_10_1016_j_cnsns_2024_107869
crossref_primary_10_1016_j_amc_2018_09_020
crossref_primary_10_1007_s10973_024_13735_y
crossref_primary_10_1108_EC_03_2019_0117
crossref_primary_10_1108_HFF_02_2020_0077
crossref_primary_10_1142_S0217984924502488
crossref_primary_10_1007_s00500_020_04687_0
crossref_primary_10_3389_fenrg_2023_1223608
crossref_primary_10_1016_j_enganabound_2022_04_019
crossref_primary_10_1007_s11071_019_05238_5
crossref_primary_10_1371_journal_pone_0318157
Cites_doi 10.1080/10407790.2013.778719
10.1080/10618560903367759
10.1016/j.jcp.2014.08.004
10.1016/S0165-1684(03)00181-6
10.1016/j.matcom.2016.08.002
10.1002/fld.3936
10.1016/j.camwa.2016.02.024
10.1007/s00521-015-2110-x
10.18576/amis/100429
10.1063/1.4825908
10.1007/s00521-016-2484-4
10.1016/j.aml.2013.05.006
10.1504/IJCSM.2013.054668
10.1007/s10910-014-0384-3
10.1615/InterJFluidMechRes.v41.i6.70
10.1016/j.cnsns.2010.12.019
10.1007/s00500-015-1707-4
10.1002/mma.3884
10.1016/j.cpc.2014.03.025
10.1016/j.amc.2012.12.009
10.1002/num.21947
10.1016/j.camwa.2015.04.030
10.1016/j.amc.2013.03.123
10.1016/j.amc.2013.03.006
10.1016/j.cam.2013.04.040
10.1016/j.amc.2005.11.025
10.1016/j.camwa.2016.01.001
10.1016/j.chaos.2005.09.002
10.1016/j.amc.2014.06.063
10.1002/num.22046
10.1108/09615531211199818
10.1016/j.jcp.2014.09.034
10.1088/0031-8949/75/1/008
10.1016/j.apm.2015.01.021
10.1016/j.amc.2007.05.048
10.1002/mma.4023
10.1016/j.aml.2005.10.010
10.1016/j.cam.2009.01.012
10.1007/s00500-016-2262-3
10.1016/j.cam.2015.11.037
10.1515/fca-2015-0045
10.1016/j.amc.2014.12.121
10.1155/2015/457013
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2018
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2018
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SC
7TB
7U5
7WY
7WZ
7XB
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
F~G
GNUQQ
H8D
H96
HCIFZ
JQ2
K6~
KR7
L.-
L.0
L.G
L6V
L7M
L~C
L~D
M0C
M2P
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1108/HFF-07-2016-0278
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest Natural Science Collection (Hollins)
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
DatabaseTitleList
ProQuest Central Student
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1758-6585
EndPage 856
ExternalDocumentID 10_1108_HFF_07_2016_0278
10.1108/HFF-07-2016-0278
GroupedDBID 0R~
29J
3V.
4.4
490
5GY
5VS
70U
7WY
8FE
8FG
8FH
8R4
8R5
9E0
AAGBP
AAMCF
AATHL
AAUDR
ABIJV
ABJCF
ABKQV
ABSDC
ACGFS
ACGOD
ACIWK
ACZLT
ADOMW
AEBZA
AENEX
AFKRA
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
ECCUG
EJD
FNNZZ
GEI
GEL
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HZ~
IJT
IPNFZ
J1Y
JI-
JL0
K6~
KBGRL
L6V
LK5
M0C
M2P
M42
M7R
M7S
O9-
P2P
P62
PCBAR
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
RIG
S0W
SBBZN
~02
AAYXX
ABJNI
ABYQI
AEUYN
AFFHD
AHMHQ
AKXVL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7U5
7XB
8FD
AFNTC
F1W
FR3
H8D
H96
JQ2
KR7
L.-
L.0
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c339t-976ead31301d71d5c58516962d3ae710be938d9dffccae70c785bbf0d3a4d2bf3
IEDL.DBID BENPR
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432838300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0961-5539
IngestDate Sat Aug 16 21:43:09 EDT 2025
Sat Aug 23 13:19:28 EDT 2025
Tue Nov 18 22:14:01 EST 2025
Sat Nov 29 07:42:46 EST 2025
Thu Sep 26 11:02:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Heat
Gas dynamics
Reproducing kernel algorithm
Time-fractional partial differential equations
Navier–Stokes
Burgers’ and Fitzhugh–Nagumo equations
Robin boundary conditions
Advection–diffusion
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-976ead31301d71d5c58516962d3ae710be938d9dffccae70c785bbf0d3a4d2bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2042739727
PQPubID 25764
PageCount 29
ParticipantIDs crossref_primary_10_1108_HFF_07_2016_0278
emerald_primary_10_1108_HFF-07-2016-0278
proquest_journals_2042739727
proquest_journals_3108065228
crossref_citationtrail_10_1108_HFF_07_2016_0278
PublicationCentury 2000
PublicationDate 20180403
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 20180403
  day: 03
PublicationDecade 2010
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle International journal of numerical methods for heat & fluid flow
PublicationYear 2018
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2024092312243986000_ref005) 2014; 243
(key2024092312243986000_ref047) 2008; 196
(key2024092312243986000_ref025) 2011; 16
(key2024092312243986000_ref021) 2015
(key2024092312243986000_ref054) 2009; 23
(key2024092312243986000_ref040) 2017; 132
(key2024092312243986000_ref006) 2013; 219
(key2024092312243986000_ref031) 2006; 19
(key2024092312243986000_ref052) 2015; 70
(key2024092312243986000_ref014) 2003
(key2024092312243986000_ref002) 2016; 39
(key2024092312243986000_ref032) 2006; 28
(key2024092312243986000_ref055) 2014; 76
(key2024092312243986000_ref013) 2009
(key2024092312243986000_ref028) 2006
(key2024092312243986000_ref001) 2015; 28
(key2024092312243986000_ref004) 2016; 145
(key2024092312243986000_ref019) 2015; 39
(key2024092312243986000_ref008) 2015; 20
(key2024092312243986000_ref039) 2015; 39
(key2024092312243986000_ref010) 2004
(key2024092312243986000_ref018) 2013; 26
(key2024092312243986000_ref024) 2013; 219
(key2024092312243986000_ref044) 2014; 52
(key2024092312243986000_ref046) 2016; 11
(key2024092312243986000_ref048) 2015; 2015
(key2024092312243986000_ref053) 2008
(key2024092312243986000_ref011) 2015; 18
(key2024092312243986000_ref051) 1982
(key2024092312243986000_ref022) 2000
(key2024092312243986000_ref020) 2014; 255
(key2024092312243986000_ref003) 2016; 29
(key2024092312243986000_ref012) 2016; 71
(key2024092312243986000_ref057) 2015; 31
(key2024092312243986000_ref023) 2016; 32
(key2024092312243986000_ref038) 2013; 63
(key2024092312243986000_ref036) 2003; 83
(key2024092312243986000_ref007) 2015; 293
(key2024092312243986000_ref037) 2013
(key2024092312243986000_ref042) 2013; 4
(key2024092312243986000_ref017) 2015; 257
(key2024092312243986000_ref045) 2016; 10
(key2024092312243986000_ref015) 2008
(key2024092312243986000_ref034) 2017
(key2024092312243986000_ref058) 2009; 230
(key2024092312243986000_ref027) 2009; 10
(key2024092312243986000_ref035) 2006
(key2024092312243986000_ref029) 2014; 185
(key2024092312243986000_ref041) 2007; 75
(key2024092312243986000_ref050) 2013; 219
(key2024092312243986000_ref016) 2015; 293
(key2024092312243986000_ref030) 2016; 299
(key2024092312243986000_ref026) 2012; 22
(key2024092312243986000_ref056) 2014; 41
(key2024092312243986000_ref049) 2013; 14
(key2024092312243986000_ref009) 2016; 21
(key2024092312243986000_ref043) 2016; 71
(key2024092312243986000_ref033) 2006; 177
References_xml – volume: 63
  start-page: 540
  issue: 6
  year: 2013
  ident: key2024092312243986000_ref038
  article-title: Higher-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions
  publication-title: Numerical Heat Transfer, Part B
  doi: 10.1080/10407790.2013.778719
– volume: 23
  start-page: 623
  issue: 9
  year: 2009
  ident: key2024092312243986000_ref054
  article-title: Validation of hyperbolic model for two-phase flow in conservative form
  publication-title: International Journal of Computational Fluid Dynamics
  doi: 10.1080/10618560903367759
– volume: 39
  start-page: 3075
  issue: 10/11
  year: 2015
  ident: key2024092312243986000_ref039
  article-title: An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP
  publication-title: Applied Mathematical Modeling
– volume: 293
  start-page: 81
  year: 2015
  ident: key2024092312243986000_ref016
  article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2014.08.004
– volume: 83
  start-page: 2285
  issue: 11
  year: 2003
  ident: key2024092312243986000_ref036
  article-title: Fractional signal processing and applications
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(03)00181-6
– volume: 132
  start-page: 139
  year: 2017
  ident: key2024092312243986000_ref040
  article-title: Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley-Torvik equation
  publication-title: Computer and Mathematics in Simulations
  doi: 10.1016/j.matcom.2016.08.002
– volume: 76
  start-page: 312
  issue: 5
  year: 2014
  ident: key2024092312243986000_ref055
  article-title: Application of a thermodynamically compatible two-phase flow model to the high-resolution simulations of compressible gas-magma flow
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.3936
– volume: 71
  start-page: 1818
  issue: 9
  year: 2016
  ident: key2024092312243986000_ref012
  article-title: Spectral methods for the time fractional diffusion–wave equation in a semi-infinite channel
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2016.02.024
– volume: 28
  start-page: 1591
  issue: 7
  year: 2015
  ident: key2024092312243986000_ref001
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-015-2110-x
– volume-title: Reproducing Kernel Hilbert Space in Probability and Statistics
  year: 2004
  ident: key2024092312243986000_ref010
– volume-title: Functional Fractional Calculus for System Identification and Controls
  year: 2008
  ident: key2024092312243986000_ref015
– volume: 10
  start-page: 1513
  issue: 4
  year: 2016
  ident: key2024092312243986000_ref045
  article-title: Application of novel schemes based on Haar wavelet collocation method for Burger and Boussinesq-Burger equations
  publication-title: Applied Mathematics & Information Sciences
  doi: 10.18576/amis/100429
– year: 2013
  ident: key2024092312243986000_ref037
  article-title: Exact solutions of the time-fractional Fitzhugh-Nagumo equation
  doi: 10.1063/1.4825908
– volume: 29
  start-page: 1465
  issue: 5
  year: 2016
  ident: key2024092312243986000_ref003
  article-title: Maayah, solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-016-2484-4
– volume: 26
  start-page: 998
  issue: 10
  year: 2013
  ident: key2024092312243986000_ref018
  article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2013.05.006
– volume-title: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing
  year: 1982
  ident: key2024092312243986000_ref051
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: key2024092312243986000_ref042
  article-title: Numerical solutions of (1 + 1) dimensional time fractional coupled Burger equations using new coupled fractional reduced differential transform method
  publication-title: International Journal of Computing Science and Mathematics
  doi: 10.1504/IJCSM.2013.054668
– volume: 52
  start-page: 2277
  issue: 8
  year: 2014
  ident: key2024092312243986000_ref044
  article-title: A two-dimensional Haar wavelet approach for the numerical simulations of time and space fractional Fokker-Planck equations in modelling of anomalous diffusion systems
  publication-title: Journal of Mathematical Chemistry
  doi: 10.1007/s10910-014-0384-3
– volume: 41
  start-page: 547
  issue: 6
  year: 2014
  ident: key2024092312243986000_ref056
  article-title: Implementation of velocity and pressure non-equilibrium in gas-liquid two-phase flow computations
  publication-title: International Journal of Fluid Mechanics Research
  doi: 10.1615/InterJFluidMechRes.v41.i6.70
– volume: 16
  start-page: 3639
  issue: 9
  year: 2011
  ident: key2024092312243986000_ref025
  article-title: Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2010.12.019
– volume: 20
  start-page: 3283
  issue: 8
  year: 2015
  ident: key2024092312243986000_ref008
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1707-4
– volume: 39
  start-page: 4549
  issue: 15
  year: 2016
  ident: key2024092312243986000_ref002
  article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.3884
– volume: 185
  start-page: 1947
  year: 2014
  ident: key2024092312243986000_ref029
  article-title: New analytical method for gas dynamics equation arising in shock fronts
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2014.03.025
– volume: 219
  start-page: 5918
  issue: 11
  year: 2013
  ident: key2024092312243986000_ref050
  article-title: Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2012.12.009
– volume: 31
  start-page: 1345
  issue: 5
  year: 2015
  ident: key2024092312243986000_ref057
  article-title: A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.21947
– volume: 70
  start-page: 254
  year: 2015
  ident: key2024092312243986000_ref052
  article-title: The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2015.04.030
– volume: 219
  start-page: 10225
  issue: 20
  year: 2013
  ident: key2024092312243986000_ref024
  article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.03.123
– volume: 145
  start-page: 1
  year: 2016
  ident: key2024092312243986000_ref004
  article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm
  publication-title: Fundamenta Informaticae
– volume: 219
  start-page: 8938
  issue: 17
  year: 2013
  ident: key2024092312243986000_ref006
  article-title: Solving Fredholm integro-differential equations using reproducing kernel hilbert space method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.03.006
– volume: 255
  start-page: 97
  year: 2014
  ident: key2024092312243986000_ref020
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2013.04.040
– volume-title: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order
  year: 2006
  ident: key2024092312243986000_ref035
– volume: 177
  start-page: 488
  issue: 2
  year: 2006
  ident: key2024092312243986000_ref033
  article-title: Analytical solution of a time-fractional Navier-stokes equation by Adomian decomposition method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2005.11.025
– volume-title: Applications of Fractional Calculus in Physics
  year: 2000
  ident: key2024092312243986000_ref022
– volume: 71
  start-page: 859
  year: 2016
  ident: key2024092312243986000_ref043
  article-title: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2016.01.001
– volume: 28
  start-page: 930
  issue: 4
  year: 2006
  ident: key2024092312243986000_ref032
  article-title: Non-perturbative analytical solutions of the space- and time-fractional burgers equations
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2005.09.002
– volume: 243
  start-page: 911
  year: 2014
  ident: key2024092312243986000_ref005
  article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2014.06.063
– volume: 32
  start-page: 1184
  issue: 4
  year: 2016
  ident: key2024092312243986000_ref023
  article-title: High-order compact finite difference and Laplace transform method for the solution of time-fractional heat equations with Dirchlet and Neumann boundary conditions
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.22046
– volume: 22
  start-page: 175
  year: 2012
  ident: key2024092312243986000_ref026
  article-title: Numerical solutions of time-fractional Burgers equations: a comparison between generalized differential transformation technique and homotopy perturbation method
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
  doi: 10.1108/09615531211199818
– volume: 293
  start-page: 385
  year: 2015
  ident: key2024092312243986000_ref007
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2014.09.034
– volume-title: Fractional Partial Differential Equations and Their Numerical Solutions
  year: 2015
  ident: key2024092312243986000_ref021
– volume: 75
  start-page: 53
  issue: 1
  year: 2007
  ident: key2024092312243986000_ref041
  article-title: Exact solutions for time-fractional diffusion-wave equations by decomposition method
  publication-title: Physica Scripta
  doi: 10.1088/0031-8949/75/1/008
– volume: 39
  start-page: 5592
  issue: 18
  year: 2015
  ident: key2024092312243986000_ref019
  article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2015.01.021
– volume: 196
  start-page: 294
  issue: 1
  year: 2008
  ident: key2024092312243986000_ref047
  article-title: Application of modified decomposition method for the analytical solution of space fractional diffusion equation
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.05.048
– year: 2017
  ident: key2024092312243986000_ref034
  article-title: Modified iteration method for solving fractional gas dynamics equation
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.4023
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: key2024092312243986000_ref028
– volume: 19
  start-page: 808
  issue: 8
  year: 2006
  ident: key2024092312243986000_ref031
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2005.10.010
– volume-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space
  year: 2009
  ident: key2024092312243986000_ref013
– volume: 230
  start-page: 770
  issue: 2
  year: 2009
  ident: key2024092312243986000_ref058
  article-title: Numerical algorithm for parabolic problems with non-classical conditions
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2009.01.012
– volume: 21
  start-page: 7191
  issue: 23
  year: 2016
  ident: key2024092312243986000_ref009
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2262-3
– volume: 14
  start-page: 875
  issue: 1
  year: 2013
  ident: key2024092312243986000_ref049
  article-title: Inverse heat problem of determining time-dependent source parameter in reproducing kernel space
  publication-title: Nonlinear Analysis: Real World Applications
– volume: 299
  start-page: 159
  year: 2016
  ident: key2024092312243986000_ref030
  article-title: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (III)
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2015.11.037
– volume: 11
  start-page: 1
  year: 2016
  ident: key2024092312243986000_ref046
  article-title: Numerical solution of fractional partial differential equation of parabolic type with Dirichlet boundary conditions using two-dimensional Legendre wavelets method
  publication-title: Journal of Computational and Nonlinear Dynamics
– start-page: 1
  year: 2008
  ident: key2024092312243986000_ref053
  article-title: Reproducing kernel methods for solving linear initial-boundary-value problems
  publication-title: Electronic Journal of Differential Equations
– volume: 18
  start-page: 735
  year: 2015
  ident: key2024092312243986000_ref011
  article-title: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)
  publication-title: Fractional Calculus and Applied Analysis
  doi: 10.1515/fca-2015-0045
– volume-title: Reproducing Kernel Spaces and Applications
  year: 2003
  ident: key2024092312243986000_ref014
– volume: 257
  start-page: 119
  year: 2015
  ident: key2024092312243986000_ref017
  article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2014.12.121
– volume: 10
  start-page: 1127
  year: 2009
  ident: key2024092312243986000_ref027
  article-title: Analytical study of NAVIER-stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
– volume: 2015
  start-page: 13
  year: 2015
  ident: key2024092312243986000_ref048
  article-title: A new approach and solution technique to solve time fractional nonlinear reaction-diffusion equations
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2015/457013
SSID ssj0005646
Score 2.5475001
Snippet Purpose The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations...
PurposeThe purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 828
SubjectTerms Algorithms
Applied mathematics
Boundary conditions
Circuit design
Circuits
Computation
Computational fluid dynamics
Computer simulation
Conduction heating
Conductive heat transfer
Convergence
Differential equations
Differential thermal analysis
Dynamics
Energy conservation
Engineering
Exact solutions
Fluid dynamics
Fluid flow
Groundwater
Groundwater treatment
Heat conduction
Heat transfer
Hilbert space
Hydrodynamics
Hydrologic models
Hydrology
Kernel functions
Mathematical analysis
Mathematical functions
Mathematical models
Multiphase flow
Nonlinear equations
Numerical methods
Numerical models
Partial differential equations
Physics
Realism
Representations
Series (mathematics)
Solutions
Solvers
Title Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
URI https://www.emerald.com/insight/content/doi/10.1108/HFF-07-2016-0278/full/html
https://www.proquest.com/docview/2042739727
https://www.proquest.com/docview/3108065228
Volume 28
WOSCitedRecordID wos000432838300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: M0C
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: P5Z
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: PCBAR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: M7S
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: 7WY
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: BENPR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1758-6585
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005646
  issn: 0961-5539
  databaseCode: M2P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLUhw4FFALJTKBw5wiDa7TmL7hKDqqgdYrXiIwiVav6AiJNvNLvwPfjEzjtMtqOqFiyPLTuJovsx8tsczAM98YdFMFy4xOdK3LDcuUdzinEehrc1TI1IdJP1GzGby5ETN44JbG90qe50YFLVtDK2Rjzg5wxXIFuTL5VlCWaNodzWm0NiBXYpUlg1g9_XRbP5u6-RRdEd1VDFO8pyrfqMylaPj6ZTW6NAAkhcupVm7YJj-OZ271dDB7Ezv_O-A78LtSDjZqw4h9-Caq_fg1oUwhHtwI7iBmvY-_J5tuh2cip1jkiGtZUgTWTgqxigZfeJX3XkI7Lck7OG1z7QSKu6siyDessYzUvdsUVvmq80plc2vlpH1tKypw5MpsiYFnsXRsO9uVbuKLaqv-DHrbz8ewMfp0YfD4yRmbUgM52qdIL9BdHK0jWMrxjY3tPFYoOgtXzjkM9opLq2y3iN4nEA4yFxrn2JzZifa84cwqJvaPQKGf7B3giiJTjPrpNJ-nGnv0kJOrJB6CKNeZKWJIc0ps0ZVhqlNKksUcpmKkoRckpCH8OL8jmUXzuOKvs8jCi7r-hd2hrDfY6CMOqDFB2XIDRUSxEubt_h4fHXzE7iJL5LBXYjvw2C92rincN38XJ-2qwPYEZ8-H0TcY-1tekjlZE6leI_lPP_yB4eeDQ8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioceBQQCwV8AAkO0XrXedgHhFBhtVWXFYci9RbWsQ2rpsl2k6Xib_BD-I3MOEm3oKq3Hrgkiuw4jvN5vnE8D4CXLjZI07ENsgjVtzDKbKCEwTWPQq6NeJZw7b_0JJlO5eGh-rwBvztfGDKr7GSiF9SmzOgfeV-QMVyM2oJ8tzgJKGsU7a52KTQaWOzbn6e4ZKve7n3A7_tqOBx9PNgdB21WgSATQtUB8i-OnkDZPTDJwEQZbYzF2DUjZhb5VlslpFHGOXw5m2B3ZaS141gcmqF2Atu9BtfDEKcDmQry3bVJSdw4Bql4EESRUN22KJf98WhEfwSRbsnml5K6naPBf3yB13zgSW50938bnntwp1Wn2fsG__dhwxbbcPtckMVtuOmNXLPqAfyarpr9qZydzTiGSjtDJZh5RzhWz49t4JaNtwfWW9DMwnOXR8Zf2JMmPnrFSseIzNisMMzlqzkdy9OKkW5gWFn4liluKIXVxd6wI7ssbM5m-TccvPr78UP4ciXD8wg2i7Kwj4GhfHI2IYVL89BYqbQbhNpZHsuhSaTuQb-DSJq1Adspb0ie-oUblymCKuVJSqBKCVQ9eHN2x6IJVnJJ3dct6i6q-hdWe7DTYS5tJVyFDYWo-SpUfy8sXuPxyeXFL2BrfPBpkk72pvtP4RY-VHrDKLEDm_VyZZ_BjexHPa-Wz_1cY_D1qtH7B9imZak
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVTlwKMUsVDAB5DgEK03zsM-IFRaolatVisEUm9hE9t01TTZbrKt-Bv8HH4dM3l0C6p664FLosiO4zif5xvH8wB4YwONNB0YJ_VRffP81DhKaFzzKORan6chT-ovfRiORvLoSI1X4HfnC0NmlZ1MrAW1LlL6Rz4QZAwXoLYgB7Y1ixjvRh9nZw5lkKKd1i6dRgORA_PzApdv5Yf9XfzWb103-vx1Z89pMww4qRCqcpCLcSQFyvGhDofaT2mTLMBuajExyL2JUUJqpa3FFzUhdl36SWI5FnvaTazAdu_AqgxC7vZgdbzzafvL0sAkaNyEVDB0fF-obpOUy8FeFNH_QSRfsgCmFG9XSPEfz-AlO9SUFz38nwfrETxoFW223cyMx7Bi8g24fyX84gbcq81f0_IJ_Botmp2rjF3ORYbqPEP1mNUucqyanhrHzhs_EKw3ozmH5y7DTH1hzprI6SUrLCOaY5NcM5stpnQsLkpGWoNmRV63TBFFKeAu9oadmHluMjbJfuDgVcenm_DtVobnKfTyIjfPgKHksiYkVSzhnjZSJXboJdbwQLo6lEkfBh1c4rQN5U4ZRbK4XtJxGSPAYh7GBLCYANaH95d3zJowJjfUfdci8Lqqf-G2D1sd_uJW9pXYkIc6sULF-NriJTaf31z8GtYQtPHh_ujgBazjM2VtMSW2oFfNF-Yl3E3Pq2k5f9VOPAbfbxu-fwD4WW_G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solutions+for+the+Robin+time-fractional+partial+differential+equations+of+heat+and+fluid+flows+based+on+the+reproducing+kernel+algorithm&rft.jtitle=International+journal+of+numerical+methods+for+heat+%26+fluid+flow&rft.au=Abu+Arqub%2C+Omar&rft.date=2018-04-03&rft.pub=Emerald+Publishing+Limited&rft.issn=0961-5539&rft.volume=28&rft.issue=4&rft.spage=828&rft.epage=856&rft_id=info:doi/10.1108%2FHFF-07-2016-0278&rft.externalDocID=10.1108%2FHFF-07-2016-0278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-5539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-5539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-5539&client=summon