An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition

Accurate prediction of the state of health (SOH) of lithium-ion batteries is important for real-time monitoring and safety control of lithium-ion batteries. In this paper, a hybrid kernel least square support vector regression (HKLSSVR) prediction model based on variational modal decomposition (VMD)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 306; s. 132464
Hlavní autori: Zhu, Tao, Wang, Shunli, Fan, Yongcun, Hai, Nan, Huang, Qi, Fernandez, Carlos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.10.2024
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate prediction of the state of health (SOH) of lithium-ion batteries is important for real-time monitoring and safety control of lithium-ion batteries. In this paper, a hybrid kernel least square support vector regression (HKLSSVR) prediction model based on variational modal decomposition (VMD) and improved dung beetle optimization (IDBO) is proposed. First, the original data is decomposed using VMD to reduce the non-smoothness of the data and to reduce the impact of non-smoothness on the prediction performance. The prediction is then carried out using the IDBO-HKLSSVR model, where the parameters in the prediction model are optimized using the IDBO optimization algorithm. Finally, all prediction components are superimposed to obtain the final results. The experimental results show that the coefficients of determination of the SOH of the six batteries predicted by the model are above 0.98388, which are higher than those of the other algorithms, confirming the high accuracy of the model in predicting the SOH of lithium-ion batteries. Meanwhile, compared with the existing prediction methods, the VMD-IDBO-HKLSSVR model proposed in this paper can predict the SOH of lithium-ion batteries more accurately. •The algorithm was validated using both NASA and CALCE datasets.•Improving the dung beetle optimization algorithm using three strategies.•The superiority, robustness and stability of the algorithm are verified.
AbstractList Accurate prediction of the state of health (SOH) of lithium-ion batteries is important for real-time monitoring and safety control of lithium-ion batteries. In this paper, a hybrid kernel least square support vector regression (HKLSSVR) prediction model based on variational modal decomposition (VMD) and improved dung beetle optimization (IDBO) is proposed. First, the original data is decomposed using VMD to reduce the non-smoothness of the data and to reduce the impact of non-smoothness on the prediction performance. The prediction is then carried out using the IDBO-HKLSSVR model, where the parameters in the prediction model are optimized using the IDBO optimization algorithm. Finally, all prediction components are superimposed to obtain the final results. The experimental results show that the coefficients of determination of the SOH of the six batteries predicted by the model are above 0.98388, which are higher than those of the other algorithms, confirming the high accuracy of the model in predicting the SOH of lithium-ion batteries. Meanwhile, compared with the existing prediction methods, the VMD-IDBO-HKLSSVR model proposed in this paper can predict the SOH of lithium-ion batteries more accurately.
Accurate prediction of the state of health (SOH) of lithium-ion batteries is important for real-time monitoring and safety control of lithium-ion batteries. In this paper, a hybrid kernel least square support vector regression (HKLSSVR) prediction model based on variational modal decomposition (VMD) and improved dung beetle optimization (IDBO) is proposed. First, the original data is decomposed using VMD to reduce the non-smoothness of the data and to reduce the impact of non-smoothness on the prediction performance. The prediction is then carried out using the IDBO-HKLSSVR model, where the parameters in the prediction model are optimized using the IDBO optimization algorithm. Finally, all prediction components are superimposed to obtain the final results. The experimental results show that the coefficients of determination of the SOH of the six batteries predicted by the model are above 0.98388, which are higher than those of the other algorithms, confirming the high accuracy of the model in predicting the SOH of lithium-ion batteries. Meanwhile, compared with the existing prediction methods, the VMD-IDBO-HKLSSVR model proposed in this paper can predict the SOH of lithium-ion batteries more accurately. •The algorithm was validated using both NASA and CALCE datasets.•Improving the dung beetle optimization algorithm using three strategies.•The superiority, robustness and stability of the algorithm are verified.
ArticleNumber 132464
Author Wang, Shunli
Zhu, Tao
Fan, Yongcun
Huang, Qi
Fernandez, Carlos
Hai, Nan
Author_xml – sequence: 1
  givenname: Tao
  surname: Zhu
  fullname: Zhu, Tao
  organization: School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 2
  givenname: Shunli
  orcidid: 0000-0003-0485-8082
  surname: Wang
  fullname: Wang, Shunli
  email: wangshunli1985@qq.com
  organization: School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 3
  givenname: Yongcun
  surname: Fan
  fullname: Fan, Yongcun
  organization: School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 4
  givenname: Nan
  surname: Hai
  fullname: Hai, Nan
  organization: School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 5
  givenname: Qi
  orcidid: 0000-0002-8637-0269
  surname: Huang
  fullname: Huang, Qi
  organization: School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 6
  givenname: Carlos
  orcidid: 0000-0001-6588-9590
  surname: Fernandez
  fullname: Fernandez, Carlos
  organization: School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10-7GJ, UK
BookMark eNqFUU1v1DAU9KFI_aD_oAcfuWRxYueLA1JVQUGqxAXOlmM_73rrxOmzs9Ly8_hlOA0nDnCyPZ4ZvTdzTS6mMAEhdyXblaxs3h93MAHuz7uKVWJX8ko04oJcMd6wohaiuiTXMR4ZY3XX91fk1_1E3ThjOIGhZpn2dABIHmiYkxvdT8CCHs4DOkOfASfw1IOKicaXRSHQuMxzwERPoFNAirBHiNGFiSq_D-jSYaQ2f8SkUva09ADKpwOFmN1VWokZ9JnnlrFYn4NKCdBBzLeYZ8rQSaF75SpPx2DyDAZ0GOcQ3Yq-JW-s8hFu_5w35MfnT98fvhRP3x6_Ptw_FZrzPhV9bXnVdUNbtzWIxnSi7XXXlaAHW1qlBsOEsUPVVy0oUE3fcCtsDrDXvR6g5Dfk3eab03pZ8gZydFGD92qCsETJy5q3vG5Zm6kfNqrGECOCldql1xUSKudlyeRaljzKrSy5liW3srJY_CWeMYeF5__JPm4yyBmcHKCM2sGkwTjM7UgT3L8NfgONpLwC
CitedBy_id crossref_primary_10_3390_en18051236
crossref_primary_10_1016_j_energy_2025_134578
crossref_primary_10_1016_j_energy_2025_137888
crossref_primary_10_1016_j_patcog_2025_111860
crossref_primary_10_1016_j_energy_2024_133881
crossref_primary_10_1016_j_jpowsour_2025_237027
crossref_primary_10_1016_j_est_2025_117600
crossref_primary_10_1007_s00521_025_11371_7
crossref_primary_10_1016_j_est_2025_116644
crossref_primary_10_1109_TIM_2025_3552877
crossref_primary_10_1016_j_ins_2025_122097
crossref_primary_10_1007_s11581_025_06589_3
crossref_primary_10_1016_j_jpowsour_2025_237932
crossref_primary_10_3390_app15169129
crossref_primary_10_1007_s12065_025_01040_y
crossref_primary_10_3390_pr13072223
Cites_doi 10.3390/su141911865
10.1186/s41601-022-00261-y
10.1016/j.est.2022.106437
10.3390/wevj14050122
10.1016/j.apenergy.2017.08.096
10.1016/j.energy.2022.124538
10.1016/j.est.2023.107322
10.1016/j.est.2021.103245
10.1007/s11227-022-04959-6
10.3390/pr11082333
10.1016/j.est.2023.106787
10.1016/j.est.2022.104215
10.1063/5.0139376
10.1109/ACCESS.2022.3167759
10.3390/en14113284
10.1016/j.energy.2023.128761
10.1093/ijlct/ctad032
10.1109/ACCESS.2021.3089032
10.1007/s43236-021-00318-5
10.1016/j.energy.2023.127378
10.1007/s11760-023-02532-z
10.3389/fenrg.2023.1218580
10.1016/j.measurement.2021.109057
10.1016/j.energy.2022.124933
10.1016/j.jpowsour.2020.228069
10.3390/en16103993
10.3390/wevj15020068
10.1016/j.energy.2021.119901
10.1016/j.energy.2023.126880
10.1109/TVT.2020.3014932
10.1080/15435075.2022.2027773
10.1016/j.energy.2021.121022
10.1109/TIE.2020.3044779
10.3390/en16104243
10.3390/su15076261
10.1109/CSITSS57437.2022.10026410
10.1049/cje.2020.10.012
10.1002/ente.202100767
10.1109/JESTPE.2021.3106708
10.1016/j.microrel.2015.06.133
10.1109/ACCESS.2022.3151975
10.3390/batteries9030177
10.1016/j.electacta.2024.143778
10.1016/j.energy.2022.123622
10.3390/en16010132
10.1016/j.jclepro.2021.125834
10.1109/ACCESS.2020.2977429
10.1109/ACCESS.2021.3092743
10.1149/1945-7111/ac8a1a
10.3390/batteries9090448
10.1016/j.microrel.2023.114975
10.3390/en13092380
10.3390/en16073167
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.132464
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_132464
S0360544224022382
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-95f3288b7575e46d8479c881ecbf1faabd04dfb2927eaea6963f4f1329c9cbe13
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001276141300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Wed Oct 01 11:59:55 EDT 2025
Sat Nov 29 06:36:04 EST 2025
Tue Nov 18 21:52:04 EST 2025
Sat Aug 17 15:40:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Improved dung beetle optimizer
State of health
Hybrid kernel least square support vector regression
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-95f3288b7575e46d8479c881ecbf1faabd04dfb2927eaea6963f4f1329c9cbe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8637-0269
0000-0001-6588-9590
0000-0003-0485-8082
PQID 3153735707
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153735707
crossref_citationtrail_10_1016_j_energy_2024_132464
crossref_primary_10_1016_j_energy_2024_132464
elsevier_sciencedirect_doi_10_1016_j_energy_2024_132464
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xue, Shen (bib49) 2023; 79
Yao, Chen, Pecht, Chen (bib51) 2023; 58
Zhang, Yang, Du, Sun, Li, Wang (bib19) 2023; 16
Wei, Ye, Zhang, Lian, Xia, Wang (bib4) 2024; 477
Ma, Li, Gao, Chen (bib55) 2024
Guo, Wu, Liu, Ye, Wang, Fu (bib9) 2023; 270
Gou, Xu, Feng (bib16) 2020; 69
Yao, He, Wu, Ding, Meng (bib26) 2022; 248
Li, Bai, Zuo, Zhang (bib23) 2023; 9
Li, Liu, Cheng (bib13) 2023; 62
Cui, Kang, Li, Wang, Wang (bib6) 2022; 259
Zhang, Chen, Li, Zheng, Chen, Jin (bib24) 2021; 44
Mao, Hu, Chen, Zhao, Qu, Jiang (bib41) 2023; 11
An, Guo, Lv, Zhao, He, Zhao (bib46) 2023; 16
Zhao, Zhu, Zhang, Liu, Wang, Liu (bib28) 2022; 14
Wu, Huang, Xu, Jiang, Liu, Li (bib35) 2023; 20
Chen, Hong, Zhou (bib18) 2022; 10
Xing, Liu, Luo, Wu (bib21) 2023; 14
Xia, Wang, Chen (bib39) 2022; 10
Wang, Xia, Zeng (bib2) 2023; 18
Qin, Zeng, Guo (bib47) 2015; 55
Zhang, Hu, Wu (bib52) 2024; 15
Li, Zhang, Xiong, Ding, Hou, Luo (bib12) 2020; 459
Hu, Wang, Ding (bib43) 2023; 17
Jia, Wang, Pang, Shi, Wen, Zeng (bib15) 2021; 30
Ravi S, Koushik P, Varma VCK, Rajeswari S. Li-Ion batteries SoH estimation using LSTM. Conference Li-ion batteries SoH estimation using LSTM. IEEE, p. 1-6..
Qian, Xuan, Chen (bib34) 2023; 11
Qiao, Liu, Chen (bib38) 2020; 8
Zhang, Peng, Guan, Wu (bib11) 2021; 221
Feng, Shi (bib27) 2021; 21
Xia, Abu Qahouq (bib20) 2021; 9
Zhang, Ji, Yu, Liu (bib53) 2023; 9
Hasib, Islam, Chakrabortty, Ryan, Saha, Ahamed (bib10) 2021; 9
Ahmad, Zhang, Huang, Zhang, Dai, Song (bib5) 2021; 289
Wu, Fu, Huang, Xu, Meng (bib50) 2023; 16
Guo, Yang, Zhang, Wang, Wang (bib45) 2022; 7
Zhang, Wang, Yu, Xie, Fernandez (bib48) 2022; 169
Ding, Chen (bib25) 2023; 144
Yang, Wang, Pan, Chen, Chen (bib32) 2018; 227
Li, Li, Zhao, Wang, Wang (bib33) 2022; 50
Liping, Xinyuan, M La, Changcheng, Xiaobo, Huifang (bib54) 2023; 73
Chen, Zhou, Liu, Gao, Wu (bib1) 2023; 158
Bian, Wei, He, Yan, Liu (bib8) 2021; 68
Ge, Liu, Jiang, Liu (bib14) 2021; 174
Zhang, Hou, Wang, Jiang (bib44) 2023; 16
Semeraro, Caggiano, Olabi, Dassisti (bib29) 2022; 255
Ding, Wang, Zhu (bib42) 2022; 10
Zhou, Wang, Xie, Shen, Fernandez (bib31) 2023; 285
Espedal, Jinasena, Burheim, Lamb (bib3) 2021; 14
Li, Ju, Geng, Jiang (bib17) 2023; 274
Chen, Wei, Li (bib22) 2023; 11
Cheng, Wang, He (bib36) 2021; 232
Duan, Song, Xiao, Chen, Peng, Song (bib7) 2023; 65
Mao, Xu, Chen, Zhao, Wu, Yao (bib37) 2020; 13
Tang, Wan, Wang, Gu, Wang, Gan (bib40) 2023; 15
Ma (10.1016/j.energy.2024.132464_bib55) 2024
Tang (10.1016/j.energy.2024.132464_bib40) 2023; 15
Qian (10.1016/j.energy.2024.132464_bib34) 2023; 11
Zhang (10.1016/j.energy.2024.132464_bib52) 2024; 15
Qiao (10.1016/j.energy.2024.132464_bib38) 2020; 8
Yang (10.1016/j.energy.2024.132464_bib32) 2018; 227
Wu (10.1016/j.energy.2024.132464_bib50) 2023; 16
Chen (10.1016/j.energy.2024.132464_bib1) 2023; 158
Zhang (10.1016/j.energy.2024.132464_bib44) 2023; 16
Cheng (10.1016/j.energy.2024.132464_bib36) 2021; 232
Hasib (10.1016/j.energy.2024.132464_bib10) 2021; 9
Xing (10.1016/j.energy.2024.132464_bib21) 2023; 14
Zhang (10.1016/j.energy.2024.132464_bib48) 2022; 169
Chen (10.1016/j.energy.2024.132464_bib18) 2022; 10
Li (10.1016/j.energy.2024.132464_bib12) 2020; 459
Li (10.1016/j.energy.2024.132464_bib17) 2023; 274
Yao (10.1016/j.energy.2024.132464_bib51) 2023; 58
Chen (10.1016/j.energy.2024.132464_bib22) 2023; 11
Guo (10.1016/j.energy.2024.132464_bib45) 2022; 7
Wei (10.1016/j.energy.2024.132464_bib4) 2024; 477
Cui (10.1016/j.energy.2024.132464_bib6) 2022; 259
Zhang (10.1016/j.energy.2024.132464_bib53) 2023; 9
Zhang (10.1016/j.energy.2024.132464_bib19) 2023; 16
Zhou (10.1016/j.energy.2024.132464_bib31) 2023; 285
Feng (10.1016/j.energy.2024.132464_bib27) 2021; 21
Zhang (10.1016/j.energy.2024.132464_bib11) 2021; 221
Jia (10.1016/j.energy.2024.132464_bib15) 2021; 30
Semeraro (10.1016/j.energy.2024.132464_bib29) 2022; 255
Qin (10.1016/j.energy.2024.132464_bib47) 2015; 55
Zhang (10.1016/j.energy.2024.132464_bib24) 2021; 44
Yao (10.1016/j.energy.2024.132464_bib26) 2022; 248
Hu (10.1016/j.energy.2024.132464_bib43) 2023; 17
Ding (10.1016/j.energy.2024.132464_bib25) 2023; 144
Gou (10.1016/j.energy.2024.132464_bib16) 2020; 69
Li (10.1016/j.energy.2024.132464_bib13) 2023; 62
Zhao (10.1016/j.energy.2024.132464_bib28) 2022; 14
Xia (10.1016/j.energy.2024.132464_bib20) 2021; 9
Mao (10.1016/j.energy.2024.132464_bib41) 2023; 11
An (10.1016/j.energy.2024.132464_bib46) 2023; 16
Xue (10.1016/j.energy.2024.132464_bib49) 2023; 79
Wang (10.1016/j.energy.2024.132464_bib2) 2023; 18
Xia (10.1016/j.energy.2024.132464_bib39) 2022; 10
Ding (10.1016/j.energy.2024.132464_bib42) 2022; 10
10.1016/j.energy.2024.132464_bib30
Ahmad (10.1016/j.energy.2024.132464_bib5) 2021; 289
Bian (10.1016/j.energy.2024.132464_bib8) 2021; 68
Ge (10.1016/j.energy.2024.132464_bib14) 2021; 174
Mao (10.1016/j.energy.2024.132464_bib37) 2020; 13
Espedal (10.1016/j.energy.2024.132464_bib3) 2021; 14
Li (10.1016/j.energy.2024.132464_bib23) 2023; 9
Li (10.1016/j.energy.2024.132464_bib33) 2022; 50
Duan (10.1016/j.energy.2024.132464_bib7) 2023; 65
Wu (10.1016/j.energy.2024.132464_bib35) 2023; 20
Liping (10.1016/j.energy.2024.132464_bib54) 2023; 73
Guo (10.1016/j.energy.2024.132464_bib9) 2023; 270
References_xml – volume: 169
  year: 2022
  ident: bib48
  article-title: Improved particle swarm optimization-extreme learning machine modeling strategies for the accurate lithium-ion battery state of health estimation and high-adaptability remaining useful life prediction
  publication-title: J Electrochem Soc
– volume: 69
  start-page: 10854
  year: 2020
  end-page: 10867
  ident: bib16
  article-title: State-of-Health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: IEEE Trans Veh Technol
– volume: 10
  year: 2022
  ident: bib39
  article-title: State-of-Health prediction for lithium-ion batteries based on complete Ensemble empirical mode decomposition with adaptive noise-gate recurrent unit fusion model
  publication-title: Energy Technol
– volume: 17
  start-page: 3109
  year: 2023
  end-page: 3117
  ident: bib43
  article-title: RUL prediction for lithium-ion batteries based on variational mode decomposition and hybrid network model
  publication-title: Signal Image and Video Processing
– volume: 248
  year: 2022
  ident: bib26
  article-title: Remaining useful life prediction of lithium-ion batteries using a hybrid model
  publication-title: Energy
– volume: 7
  year: 2022
  ident: bib45
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Protection and Control of Modern Power Systems
– volume: 68
  start-page: 12173
  year: 2021
  end-page: 12184
  ident: bib8
  article-title: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans Ind Electron
– volume: 477
  year: 2024
  ident: bib4
  article-title: Robust state of charge estimation of LiFePO4 batteries based on Sage_Husa adaptive Kalman filter and dynamic neural network
  publication-title: Electrochim Acta
– volume: 16
  year: 2023
  ident: bib50
  article-title: Lithium-ion battery health state prediction based on VMD and DBO-SVR
  publication-title: Energies
– volume: 79
  start-page: 7305
  year: 2023
  end-page: 7336
  ident: bib49
  article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
  publication-title: J Supercomput
– volume: 14
  start-page: 122
  year: 2023
  ident: bib21
  article-title: State of health estimation for lithium-ion batteries using IAO–SVR
  publication-title: World Electric Vehicle Journal
– volume: 15
  start-page: 6261
  year: 2023
  ident: bib40
  article-title: Lithium-ion battery remaining useful life prediction based on hybrid model
  publication-title: Sustainability
– volume: 14
  year: 2022
  ident: bib28
  article-title: Method of predicting SOH and RUL of lithium-ion battery based on the combination of LSTM and GPR
  publication-title: Sustainability
– volume: 459
  year: 2020
  ident: bib12
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J Power Sources
– volume: 65
  year: 2023
  ident: bib7
  article-title: Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter
  publication-title: J Energy Storage
– volume: 50
  year: 2022
  ident: bib33
  article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression
  publication-title: J Energy Storage
– volume: 11
  year: 2023
  ident: bib34
  article-title: Battery SOH estimation based on decision tree and improved support vector machine regression algorithm
  publication-title: Front Energy Res
– volume: 30
  start-page: 26
  year: 2021
  end-page: 35
  ident: bib15
  article-title: Multi-scale prediction of RUL and SOH for lithium-ion batteries based on WNN-UPF combined model
  publication-title: Chin J Electron
– volume: 9
  start-page: 86166
  year: 2021
  end-page: 86193
  ident: bib10
  article-title: A comprehensive review of available battery datasets, RUL prediction approaches, and advanced battery management
  publication-title: IEEE Access
– volume: 11
  start-page: 187
  year: 2023
  end-page: 200
  ident: bib41
  article-title: Online state-of-health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network
  publication-title: Ieee Journal of Emerging and Selected Topics in Power Electronics
– reference: Ravi S, Koushik P, Varma VCK, Rajeswari S. Li-Ion batteries SoH estimation using LSTM. Conference Li-ion batteries SoH estimation using LSTM. IEEE, p. 1-6..
– volume: 13
  year: 2020
  ident: bib37
  article-title: A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD
  publication-title: Energies
– volume: 16
  year: 2023
  ident: bib44
  article-title: Joint SOH-SOC estimation model for lithium-ion batteries based on GWO-BP neural network
  publication-title: Energies
– volume: 10
  start-page: 89402
  year: 2022
  end-page: 89413
  ident: bib42
  article-title: Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU
  publication-title: IEEE Access
– volume: 58
  year: 2023
  ident: bib51
  article-title: A novel graph-based framework for state of health prediction of lithium-ion battery
  publication-title: J Energy Storage
– volume: 255
  year: 2022
  ident: bib29
  article-title: Battery monitoring and prognostics optimization techniques: challenges and opportunities
  publication-title: Energy
– volume: 158
  year: 2023
  ident: bib1
  article-title: State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine
  publication-title: J Chem Phys
– volume: 62
  year: 2023
  ident: bib13
  article-title: The co-estimation of states for lithium-ion batteries based on segment data
  publication-title: J Energy Storage
– year: 2024
  ident: bib55
  article-title: State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature
  publication-title: Energy
– volume: 174
  year: 2021
  ident: bib14
  article-title: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries
  publication-title: Measurement
– volume: 21
  start-page: 1845
  year: 2021
  end-page: 1854
  ident: bib27
  article-title: SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression
  publication-title: Journal of Power Electronics
– volume: 9
  start-page: 98287
  year: 2021
  end-page: 98304
  ident: bib20
  article-title: Lithium-ion battery ageing behavior pattern characterization and state-of-health estimation using data-driven method
  publication-title: IEEE Access
– volume: 221
  year: 2021
  ident: bib11
  article-title: Prognostics of battery cycle life in the early-cycle stage based on hybrid model
  publication-title: Energy
– volume: 9
  start-page: 448
  year: 2023
  ident: bib23
  article-title: Remaining useful life prediction for lithium-ion batteries based on iterative transfer learning and mogrifier LSTM
  publication-title: Batteries
– volume: 15
  start-page: 68
  year: 2024
  ident: bib52
  article-title: A state-of-health estimation method for lithium batteries under multi-dimensional features
  publication-title: World Electric Vehicle Journal
– volume: 232
  year: 2021
  ident: bib36
  article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
  publication-title: Energy
– volume: 289
  year: 2021
  ident: bib5
  article-title: Artificial intelligence in sustainable energy industry: status Quo, challenges and opportunities
  publication-title: J Clean Prod
– volume: 285
  year: 2023
  ident: bib31
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm
  publication-title: Energy
– volume: 144
  year: 2023
  ident: bib25
  article-title: A RUL prediction method for lithium-ion batteries based on improved singular spectrum analysis and CSA-KELM
  publication-title: Microelectron Reliab
– volume: 16
  year: 2023
  ident: bib19
  article-title: A review of SOH prediction of Li-ion batteries based on data-driven algorithms
  publication-title: Energies
– volume: 44
  year: 2021
  ident: bib24
  article-title: A hybrid approach for remaining useful life prediction of lithium-ion battery with adaptive levy flight optimized particle filter and long short-term memory network
  publication-title: J Energy Storage
– volume: 11
  start-page: 2333
  year: 2023
  ident: bib22
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid deep learning model
  publication-title: Processes
– volume: 227
  start-page: 273
  year: 2018
  end-page: 283
  ident: bib32
  article-title: State-of-health estimation for the lithium-ion battery based on support vector regression
  publication-title: Appl Energy
– volume: 8
  start-page: 42760
  year: 2020
  end-page: 42767
  ident: bib38
  article-title: Prediction of the remaining useful life of lithium-ion batteries based on empirical mode decomposition and deep neural networks
  publication-title: IEEE Access
– volume: 73
  year: 2023
  ident: bib54
  article-title: State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method
  publication-title: J Energy Storage
– volume: 14
  year: 2021
  ident: bib3
  article-title: Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles
  publication-title: Energies
– volume: 274
  year: 2023
  ident: bib17
  article-title: Data-driven state-of-health estimation for lithium-ion battery based on aging features
  publication-title: Energy
– volume: 10
  start-page: 19621
  year: 2022
  end-page: 19628
  ident: bib18
  article-title: Transformer network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Access
– volume: 20
  start-page: 227
  year: 2023
  end-page: 236
  ident: bib35
  article-title: SOH prediction for lithium-ion battery based on improved support vector regression
  publication-title: Int J Green Energy
– volume: 259
  year: 2022
  ident: bib6
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
– volume: 9
  start-page: 177
  year: 2023
  ident: bib53
  article-title: Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method
  publication-title: Batteries
– volume: 270
  year: 2023
  ident: bib9
  article-title: Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network
  publication-title: Energy
– volume: 16
  year: 2023
  ident: bib46
  article-title: Joint prediction of the state of charge and the state of health of lithium-ion batteries based on the PSO-XGBoost algorithm
  publication-title: Energies
– volume: 55
  start-page: 1280
  year: 2015
  end-page: 1284
  ident: bib47
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model
  publication-title: Microelectron Reliab
– volume: 18
  start-page: 443
  year: 2023
  end-page: 448
  ident: bib2
  article-title: State of charge and state of health estimation strategies for lithium-ion batteries
  publication-title: Int J Low Carbon Technol
– volume: 14
  issue: 19
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib28
  article-title: Method of predicting SOH and RUL of lithium-ion battery based on the combination of LSTM and GPR
  publication-title: Sustainability
  doi: 10.3390/su141911865
– volume: 7
  issue: 1
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib45
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-022-00261-y
– volume: 58
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib51
  article-title: A novel graph-based framework for state of health prediction of lithium-ion battery
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106437
– volume: 14
  start-page: 122
  issue: 5
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib21
  article-title: State of health estimation for lithium-ion batteries using IAO–SVR
  publication-title: World Electric Vehicle Journal
  doi: 10.3390/wevj14050122
– volume: 227
  start-page: 273
  year: 2018
  ident: 10.1016/j.energy.2024.132464_bib32
  article-title: State-of-health estimation for the lithium-ion battery based on support vector regression
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.096
– volume: 255
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib29
  article-title: Battery monitoring and prognostics optimization techniques: challenges and opportunities
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124538
– volume: 65
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib7
  article-title: Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107322
– volume: 44
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib24
  article-title: A hybrid approach for remaining useful life prediction of lithium-ion battery with adaptive levy flight optimized particle filter and long short-term memory network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103245
– volume: 79
  start-page: 7305
  issue: 7
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib49
  article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04959-6
– volume: 11
  start-page: 2333
  issue: 8
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib22
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid deep learning model
  publication-title: Processes
  doi: 10.3390/pr11082333
– volume: 62
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib13
  article-title: The co-estimation of states for lithium-ion batteries based on segment data
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.106787
– volume: 50
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib33
  article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104215
– volume: 158
  issue: 10
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib1
  article-title: State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine
  publication-title: J Chem Phys
  doi: 10.1063/5.0139376
– volume: 10
  start-page: 89402
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib42
  article-title: Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3167759
– volume: 14
  issue: 11
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib3
  article-title: Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles
  publication-title: Energies
  doi: 10.3390/en14113284
– volume: 285
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib31
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128761
– volume: 18
  start-page: 443
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib2
  article-title: State of charge and state of health estimation strategies for lithium-ion batteries
  publication-title: Int J Low Carbon Technol
  doi: 10.1093/ijlct/ctad032
– volume: 9
  start-page: 86166
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib10
  article-title: A comprehensive review of available battery datasets, RUL prediction approaches, and advanced battery management
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3089032
– volume: 21
  start-page: 1845
  issue: 12
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib27
  article-title: SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression
  publication-title: Journal of Power Electronics
  doi: 10.1007/s43236-021-00318-5
– volume: 274
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib17
  article-title: Data-driven state-of-health estimation for lithium-ion battery based on aging features
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127378
– volume: 17
  start-page: 3109
  issue: 6
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib43
  article-title: RUL prediction for lithium-ion batteries based on variational mode decomposition and hybrid network model
  publication-title: Signal Image and Video Processing
  doi: 10.1007/s11760-023-02532-z
– volume: 11
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib34
  article-title: Battery SOH estimation based on decision tree and improved support vector machine regression algorithm
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2023.1218580
– volume: 174
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib14
  article-title: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109057
– volume: 259
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib6
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124933
– volume: 459
  year: 2020
  ident: 10.1016/j.energy.2024.132464_bib12
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228069
– volume: 16
  issue: 10
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib50
  article-title: Lithium-ion battery health state prediction based on VMD and DBO-SVR
  publication-title: Energies
  doi: 10.3390/en16103993
– volume: 15
  start-page: 68
  issue: 2
  year: 2024
  ident: 10.1016/j.energy.2024.132464_bib52
  article-title: A state-of-health estimation method for lithium batteries under multi-dimensional features
  publication-title: World Electric Vehicle Journal
  doi: 10.3390/wevj15020068
– volume: 221
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib11
  article-title: Prognostics of battery cycle life in the early-cycle stage based on hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119901
– volume: 270
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib9
  article-title: Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126880
– volume: 69
  start-page: 10854
  issue: 10
  year: 2020
  ident: 10.1016/j.energy.2024.132464_bib16
  article-title: State-of-Health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.3014932
– volume: 20
  start-page: 227
  issue: 3
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib35
  article-title: SOH prediction for lithium-ion battery based on improved support vector regression
  publication-title: Int J Green Energy
  doi: 10.1080/15435075.2022.2027773
– year: 2024
  ident: 10.1016/j.energy.2024.132464_bib55
  article-title: State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature
  publication-title: Energy
– volume: 232
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib36
  article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121022
– volume: 73
  issue: PD
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib54
  article-title: State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method
  publication-title: J Energy Storage
– volume: 68
  start-page: 12173
  issue: 12
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib8
  article-title: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.3044779
– volume: 16
  issue: 10
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib46
  article-title: Joint prediction of the state of charge and the state of health of lithium-ion batteries based on the PSO-XGBoost algorithm
  publication-title: Energies
  doi: 10.3390/en16104243
– volume: 15
  start-page: 6261
  issue: 7
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib40
  article-title: Lithium-ion battery remaining useful life prediction based on hybrid model
  publication-title: Sustainability
  doi: 10.3390/su15076261
– ident: 10.1016/j.energy.2024.132464_bib30
  doi: 10.1109/CSITSS57437.2022.10026410
– volume: 30
  start-page: 26
  issue: 1
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib15
  article-title: Multi-scale prediction of RUL and SOH for lithium-ion batteries based on WNN-UPF combined model
  publication-title: Chin J Electron
  doi: 10.1049/cje.2020.10.012
– volume: 10
  issue: 4
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib39
  article-title: State-of-Health prediction for lithium-ion batteries based on complete Ensemble empirical mode decomposition with adaptive noise-gate recurrent unit fusion model
  publication-title: Energy Technol
  doi: 10.1002/ente.202100767
– volume: 11
  start-page: 187
  issue: 1
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib41
  article-title: Online state-of-health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network
  publication-title: Ieee Journal of Emerging and Selected Topics in Power Electronics
  doi: 10.1109/JESTPE.2021.3106708
– volume: 55
  start-page: 1280
  issue: 9–10
  year: 2015
  ident: 10.1016/j.energy.2024.132464_bib47
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2015.06.133
– volume: 10
  start-page: 19621
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib18
  article-title: Transformer network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151975
– volume: 9
  start-page: 177
  issue: 3
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib53
  article-title: Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method
  publication-title: Batteries
  doi: 10.3390/batteries9030177
– volume: 477
  year: 2024
  ident: 10.1016/j.energy.2024.132464_bib4
  article-title: Robust state of charge estimation of LiFePO4 batteries based on Sage_Husa adaptive Kalman filter and dynamic neural network
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2024.143778
– volume: 248
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib26
  article-title: Remaining useful life prediction of lithium-ion batteries using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123622
– volume: 16
  issue: 1
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib44
  article-title: Joint SOH-SOC estimation model for lithium-ion batteries based on GWO-BP neural network
  publication-title: Energies
  doi: 10.3390/en16010132
– volume: 289
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib5
  article-title: Artificial intelligence in sustainable energy industry: status Quo, challenges and opportunities
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.125834
– volume: 8
  start-page: 42760
  year: 2020
  ident: 10.1016/j.energy.2024.132464_bib38
  article-title: Prediction of the remaining useful life of lithium-ion batteries based on empirical mode decomposition and deep neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977429
– volume: 9
  start-page: 98287
  year: 2021
  ident: 10.1016/j.energy.2024.132464_bib20
  article-title: Lithium-ion battery ageing behavior pattern characterization and state-of-health estimation using data-driven method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092743
– volume: 169
  issue: 8
  year: 2022
  ident: 10.1016/j.energy.2024.132464_bib48
  article-title: Improved particle swarm optimization-extreme learning machine modeling strategies for the accurate lithium-ion battery state of health estimation and high-adaptability remaining useful life prediction
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ac8a1a
– volume: 9
  start-page: 448
  issue: 9
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib23
  article-title: Remaining useful life prediction for lithium-ion batteries based on iterative transfer learning and mogrifier LSTM
  publication-title: Batteries
  doi: 10.3390/batteries9090448
– volume: 144
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib25
  article-title: A RUL prediction method for lithium-ion batteries based on improved singular spectrum analysis and CSA-KELM
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2023.114975
– volume: 13
  issue: 9
  year: 2020
  ident: 10.1016/j.energy.2024.132464_bib37
  article-title: A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD
  publication-title: Energies
  doi: 10.3390/en13092380
– volume: 16
  issue: 7
  year: 2023
  ident: 10.1016/j.energy.2024.132464_bib19
  article-title: A review of SOH prediction of Li-ion batteries based on data-driven algorithms
  publication-title: Energies
  doi: 10.3390/en16073167
SSID ssj0005899
Score 2.530166
Snippet Accurate prediction of the state of health (SOH) of lithium-ion batteries is important for real-time monitoring and safety control of lithium-ion batteries. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132464
SubjectTerms algorithms
dung beetles
energy
Hybrid kernel least square support vector regression
hybrids
Improved dung beetle optimizer
Lithium-ion battery
prediction
regression analysis
State of health
Title An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition
URI https://dx.doi.org/10.1016/j.energy.2024.132464
https://www.proquest.com/docview/3153735707
Volume 306
WOSCitedRecordID wos001276141300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Jj9MwFICtMoMEFwQDoxk2GQlxiTJqGydOjhXqCFBVOHRQ4RLFidNkaJ1Olqrwv_gD_DKe7Swti2Y4cIlay1mk9yVv8Xt-CL3k0YC5NgvMmID5Rlg_NhkLLTOkUeQ6nhcFqr7i44ROp-587n3o9b43tTCbJRXC3W699X8VNYyBsGXp7D-Iu70oDMBvEDocQexwvJHgR0KWPubZBkzJCF5lg3FeyhRC-Dis0m88N43kq6zTMr7wXPClbBxRlEZxVckksKJaS4vc2KhovpHzhU6UFUawXGR5WiYrlZmoCpEaS7NMDLlZx6o1P8G2T9JqZcq_TO3gCQ65ITVmJFcnNuCgN0FI1YrHiLjMba8TyPZWC3RtotwUdavz8NvIxeekUrQFWbcqUAe_k0os0xZNHeP9lIlFWInuk5vW2mU38DEkUmPo0s-24Ktv2oTsfczBAzLWZ-BiE4eYf1QROlpxecbV85_JK9fzO5XYpAFM3_vnF5OJPxvPZ6_WV6ZsViYX9evOLbfQ4ZDaHuiDw9Hb8fxdl1vkqsal7RM2NZsqsfD3G__NJvrFOlAmz-w-ulf7KnikGXuAelwcoTtNKXtxhI7HXZkkTKz1RPEQ_RgJ3ECIJYRYQ4g7CLGGEGsIsYIQawhxDSHWEOIOQtxCiAEGrCDEWYw1hLiDUA7uQIhbCLGCEMPQDoRYQYj3IHyELs7Hs9dvzLpbiBlalleanh1bQ9dlFBwQTpwIzC4vdN0BD1k8iIOARX0SxWzoDSkPeOCA5olJDALwQi9kfGAdowORCX6CsMMsHhBKrQGxwZDoBxz8GicmMOzQwIlPkdXIyw_rrfRlR5el3-RMXvpayr6Usq-lfIrM9qy13krmmvm0QcGvzWFt5vqA8jVnvmjI8UFbyCXAQPCsKnwLDBxq2bRPH99gzhN0t3vxnqKDMq_4M3Q73JRpkT-vof8JW6LvJA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+dung+beetle+optimizer-+hybrid+kernel+least+square+support+vector+regression+algorithm+for+state+of+health+estimation+of+lithium-ion+batteries+based+on+variational+model+decomposition&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhu%2C+Tao&rft.au=Wang%2C+Shunli&rft.au=Fan%2C+Yongcun&rft.au=Hai%2C+Nan&rft.date=2024-10-15&rft.issn=0360-5442&rft.volume=306+p.132464-&rft_id=info:doi/10.1016%2Fj.energy.2024.132464&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon