An Efficient LSTM Network for Emotion Recognition From Multichannel EEG Signals
Most previous EEG-based emotion recognition methods studied hand-crafted EEG features extracted from different electrodes. In this article, we study the relation among different EEG electrodes and propose a deep learning method to automatically extract the spatial features that characterize the func...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on affective computing Jg. 13; H. 3; S. 1528 - 1540 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1949-3045, 1949-3045 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Most previous EEG-based emotion recognition methods studied hand-crafted EEG features extracted from different electrodes. In this article, we study the relation among different EEG electrodes and propose a deep learning method to automatically extract the spatial features that characterize the functional relation between EEG signals at different electrodes. Our proposed deep model is called AT tention-based LSTM with D omain D iscriminator (ATDD-LSTM), a model based on Long Short-Term Memory (LSTM) for emotion recognition that can characterize nonlinear relations among EEG signals of different electrodes. To achieve state-of-the-art emotion recognition performance, the architecture of ATDD-LSTM has two distinguishing characteristics: (1) By applying the attention mechanism to the feature vectors produced by LSTM, ATDD-LSTM automatically selects suitable EEG channels for emotion recognition, which makes the learned model concentrate on the emotion related channels in response to a given emotion; (2) To minimize the significant feature distribution shift between different sessions and/or subjects, ATDD-LSTM uses a domain discriminator to modify the data representation space and generate domain-invariant features. We evaluate the proposed ATDD-LSTM model on three public EEG emotional databases (DEAP, SEED and CMEED) for emotion recognition. The experimental results demonstrate that our ATDD-LSTM model achieves superior performance on subject-dependent (for the same subject), subject-independent (for different subjects) and cross-session (for the same subject) evaluation. |
|---|---|
| AbstractList | Most previous EEG-based emotion recognition methods studied hand-crafted EEG features extracted from different electrodes. In this article, we study the relation among different EEG electrodes and propose a deep learning method to automatically extract the spatial features that characterize the functional relation between EEG signals at different electrodes. Our proposed deep model is called AT tention-based LSTM with D omain D iscriminator (ATDD-LSTM), a model based on Long Short-Term Memory (LSTM) for emotion recognition that can characterize nonlinear relations among EEG signals of different electrodes. To achieve state-of-the-art emotion recognition performance, the architecture of ATDD-LSTM has two distinguishing characteristics: (1) By applying the attention mechanism to the feature vectors produced by LSTM, ATDD-LSTM automatically selects suitable EEG channels for emotion recognition, which makes the learned model concentrate on the emotion related channels in response to a given emotion; (2) To minimize the significant feature distribution shift between different sessions and/or subjects, ATDD-LSTM uses a domain discriminator to modify the data representation space and generate domain-invariant features. We evaluate the proposed ATDD-LSTM model on three public EEG emotional databases (DEAP, SEED and CMEED) for emotion recognition. The experimental results demonstrate that our ATDD-LSTM model achieves superior performance on subject-dependent (for the same subject), subject-independent (for different subjects) and cross-session (for the same subject) evaluation. |
| Author | Zhang, Guanhua Lai, Yu-Kun Wang, Hongan Zhao, Guozhen Li, Jinyao Liu, Yong-Jin Ma, Cuixia Du, Xiaobing Deng, Xiaoming |
| Author_xml | – sequence: 1 givenname: Xiaobing surname: Du fullname: Du, Xiaobing email: duxiaobing16@mails.ucas.ac.cn organization: Beijing Key Laboratory of Human Computer Interactions, Institute of Software, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Cuixia orcidid: 0000-0003-3999-7429 surname: Ma fullname: Ma, Cuixia email: cuixia@iscas.ac.cn organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Guanhua surname: Zhang fullname: Zhang, Guanhua email: zgh17@mails.tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, MOE-Key Laboratory of Pervasive Computing, Tsinghua University, Beijing, China – sequence: 4 givenname: Jinyao surname: Li fullname: Li, Jinyao email: lijinyao19@mails.ucas.ac.cn organization: Beijing Key Laboratory of Human Computer Interactions, Institute of Software, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Yu-Kun orcidid: 0000-0002-2094-5680 surname: Lai fullname: Lai, Yu-Kun email: laiy4@cardiff.ac.uk organization: School of Computer Science and Informatics, Cardiff University, Cardiff, Wales, U.K – sequence: 6 givenname: Guozhen orcidid: 0000-0003-4438-5320 surname: Zhao fullname: Zhao, Guozhen email: zhaogz@psych.ac.cn organization: CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China – sequence: 7 givenname: Xiaoming surname: Deng fullname: Deng, Xiaoming email: xiaoming@iscas.ac.cn organization: Beijing Key Laboratory of Human Computer Interactions, Institute of Software, Chinese Academy of Sciences, Beijing, China – sequence: 8 givenname: Yong-Jin orcidid: 0000-0001-5774-1916 surname: Liu fullname: Liu, Yong-Jin email: liuyongjin@tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, MOE-Key Laboratory of Pervasive Computing, Tsinghua University, Beijing, China – sequence: 9 givenname: Hongan surname: Wang fullname: Wang, Hongan email: hongan@iscas.ac.cn organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNp9kF9PwjAUxRuDiYh8AX1p4vOwf9ZtfSRkoAlIIvjcdF2HxdFiV2L89m5AjPHB-3LOw_nd3HuuQc86qwG4xWiEMeIP6_F0OhkRRNCIIkxTjC9AH_OYRxTFrPfLX4Fh02xRO5TShKR9sBxbmFeVUUbbAOer9QI-6_Dp_DusnIf5zgXjLHzRym2sOfqpdzu4ONTBqDdpra5hns_gymysrJsbcFm1oodnHYDXab6ePEbz5expMp5HilIeIs7KQqZFyUipJNGMKlZkcUniNNEswzxTWcyZUhhRnFCuWYXLLC0kSQhXKEvpANyf9u69-zjoJoitO_juAkFSxDFLWMLbVHZKKe-axutKKBNk90Xw0tQCI9E1KI4Niq5BcW6wRckfdO_NTvqv_6G7E2S01j9Ae03MWEq_AWGpfCs |
| CODEN | ITACBQ |
| CitedBy_id | crossref_primary_10_1088_1741_2552_aced22 crossref_primary_10_1007_s12293_024_00434_2 crossref_primary_10_1109_JBHI_2021_3049119 crossref_primary_10_1109_TAFFC_2023_3261867 crossref_primary_10_1109_TCE_2025_3533002 crossref_primary_10_1007_s11571_024_10162_5 crossref_primary_10_1109_TNNLS_2023_3305621 crossref_primary_10_3389_fnbot_2024_1442080 crossref_primary_10_3389_fnins_2024_1400444 crossref_primary_10_1007_s11571_025_10324_z crossref_primary_10_1007_s13534_025_00475_7 crossref_primary_10_1016_j_bspc_2022_103612 crossref_primary_10_3389_fpsyg_2024_1326791 crossref_primary_10_1109_TNSRE_2021_3137340 crossref_primary_10_1109_TAFFC_2022_3221554 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_3390_brainsci14080817 crossref_primary_10_3389_fncom_2025_1589247 crossref_primary_10_1016_j_inffus_2025_103279 crossref_primary_10_1016_j_inffus_2023_102220 crossref_primary_10_1109_ACCESS_2024_3412328 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_1007_s11042_023_16294_w crossref_primary_10_1109_TNSRE_2024_3380595 crossref_primary_10_3389_fnins_2024_1458815 crossref_primary_10_1142_S0219519425400184 crossref_primary_10_1109_ACCESS_2024_3454082 crossref_primary_10_1007_s11760_025_04124_5 crossref_primary_10_1016_j_jneumeth_2024_110317 crossref_primary_10_1016_j_bspc_2024_107435 crossref_primary_10_3389_fpsyt_2025_1633860 crossref_primary_10_1007_s11760_024_03360_5 crossref_primary_10_1016_j_knosys_2025_113368 crossref_primary_10_1016_j_neunet_2025_107614 crossref_primary_10_1186_s40708_025_00265_y crossref_primary_10_1109_TNSRE_2022_3173724 crossref_primary_10_1088_1361_6579_ad9661 crossref_primary_10_3389_fnhum_2024_1324897 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1109_JBHI_2023_3240891 crossref_primary_10_1088_2057_1976_ad0f3f crossref_primary_10_1109_TCE_2024_3414154 crossref_primary_10_1007_s40031_024_01079_y crossref_primary_10_1007_s11709_024_1092_0 crossref_primary_10_1016_j_neunet_2025_107457 crossref_primary_10_1109_ACCESS_2024_3436556 crossref_primary_10_26599_BDMA_2024_9020071 crossref_primary_10_1007_s00521_024_10469_8 crossref_primary_10_1016_j_bspc_2024_106276 crossref_primary_10_3389_fnins_2025_1592070 crossref_primary_10_1007_s11571_023_10034_4 crossref_primary_10_1109_TAFFC_2023_3319397 crossref_primary_10_1186_s40537_025_01177_8 crossref_primary_10_1007_s11042_023_14354_9 crossref_primary_10_1016_j_neunet_2025_107483 crossref_primary_10_1109_TNSRE_2021_3111689 crossref_primary_10_3389_fnins_2023_1247082 crossref_primary_10_1109_TAFFC_2023_3336531 crossref_primary_10_1016_j_bspc_2021_103361 crossref_primary_10_1109_JSEN_2023_3343358 crossref_primary_10_15302_J_QB_021_0267 crossref_primary_10_1109_TAFFC_2024_3480355 crossref_primary_10_1007_s42486_021_00078_y crossref_primary_10_1088_2057_1976_acf137 crossref_primary_10_1109_TAFFC_2022_3170369 crossref_primary_10_1016_j_engappai_2025_110004 crossref_primary_10_1109_TIFS_2025_3602266 crossref_primary_10_1007_s10115_025_02354_0 crossref_primary_10_1016_j_neucom_2024_128445 crossref_primary_10_1016_j_neucom_2024_129255 crossref_primary_10_3390_ai6090215 crossref_primary_10_1016_j_neunet_2025_107800 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_3390_s23041917 crossref_primary_10_1109_TAFFC_2022_3163609 crossref_primary_10_1109_TNNLS_2022_3168935 crossref_primary_10_3390_brainsci13091293 crossref_primary_10_1016_j_bspc_2025_107550 crossref_primary_10_1016_j_knosys_2024_112826 crossref_primary_10_1109_TAFFC_2023_3288118 crossref_primary_10_3390_math12071048 crossref_primary_10_3389_fninf_2023_1067095 crossref_primary_10_1016_j_cogsys_2023_101152 crossref_primary_10_1016_j_compbiomed_2024_108857 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1016_j_asoc_2025_113659 crossref_primary_10_1088_1742_6596_1693_1_012206 crossref_primary_10_1109_TIM_2025_3533618 crossref_primary_10_1007_s11760_022_02447_1 crossref_primary_10_1016_j_knosys_2025_114115 crossref_primary_10_1109_TAFFC_2023_3334520 crossref_primary_10_1109_JBHI_2023_3242090 crossref_primary_10_3390_bioengineering11080782 crossref_primary_10_1016_j_jksuci_2023_03_019 crossref_primary_10_1109_TAFFC_2023_3288885 crossref_primary_10_1109_TIM_2025_3565702 crossref_primary_10_1186_s40708_024_00242_x crossref_primary_10_1016_j_knosys_2024_111826 crossref_primary_10_1109_JSEN_2024_3514094 crossref_primary_10_1109_JSEN_2023_3309260 crossref_primary_10_1109_TCSS_2024_3412074 crossref_primary_10_1016_j_autcon_2023_104892 crossref_primary_10_1109_TNNLS_2024_3493425 crossref_primary_10_1080_10447318_2023_2278926 crossref_primary_10_1016_j_neucom_2025_130418 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_3389_fnins_2024_1355512 crossref_primary_10_1080_10255842_2023_2252551 crossref_primary_10_1007_s12539_025_00750_2 crossref_primary_10_1016_j_knosys_2025_113613 crossref_primary_10_1088_1741_2552_ad618a crossref_primary_10_1109_TNNLS_2023_3319315 crossref_primary_10_1007_s11571_025_10272_8 crossref_primary_10_1016_j_csi_2025_103973 crossref_primary_10_1016_j_eswa_2025_127456 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_1109_TSMC_2023_3340710 crossref_primary_10_1007_s11571_023_10004_w crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1109_TSMC_2024_3458949 crossref_primary_10_3390_math13010087 crossref_primary_10_1109_TFUZZ_2024_3434709 crossref_primary_10_1109_JSEN_2022_3172133 crossref_primary_10_3389_fnins_2024_1479570 crossref_primary_10_1109_ACCESS_2024_3375393 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1016_j_measurement_2024_116046 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1109_TAFFC_2024_3477302 crossref_primary_10_1088_1741_2552_ad085a crossref_primary_10_1109_TAI_2024_3445325 crossref_primary_10_1109_TCYB_2025_3550191 crossref_primary_10_1109_TNSRE_2023_3320693 crossref_primary_10_1007_s10489_023_04971_0 crossref_primary_10_1109_JBHI_2024_3403188 crossref_primary_10_1007_s40998_024_00710_4 crossref_primary_10_1109_TIM_2025_3571107 crossref_primary_10_1016_j_neucom_2024_128920 crossref_primary_10_1016_j_knosys_2025_113752 crossref_primary_10_3390_math12081180 crossref_primary_10_1016_j_eswa_2025_129654 crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1109_JBHI_2023_3307606 crossref_primary_10_3390_math13071072 crossref_primary_10_1016_j_inffus_2025_103417 crossref_primary_10_1016_j_bspc_2025_108443 crossref_primary_10_1016_j_bspc_2025_107594 crossref_primary_10_1016_j_bspc_2024_106249 crossref_primary_10_1007_s00371_024_03652_4 crossref_primary_10_3389_fninf_2024_1303380 crossref_primary_10_1109_ACCESS_2023_3344476 crossref_primary_10_1038_s41598_025_96616_0 crossref_primary_10_1007_s13534_023_00316_5 crossref_primary_10_1109_TIM_2024_3428607 crossref_primary_10_1088_1741_2552_ad9956 crossref_primary_10_1016_j_knosys_2025_114318 crossref_primary_10_1016_j_eswa_2025_129422 crossref_primary_10_3389_fnins_2023_1345770 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_3390_s24113464 |
| Cites_doi | 10.1109/TCYB.2018.2797176 10.1016/S0959-4388(02)00301-X 10.1109/34.954607 10.5555/2946645.2946704 10.1109/TAFFC.2018.2840973 10.1007/978-981-13-2354-6_5 10.1109/TAFFC.2017.2714671 10.1016/0013-4694(70)90143-4 10.18653/v1/p17-1036 10.1109/TAFFC.2018.2817622 10.1111/j.1469-8986.1993.tb03207.x 10.1109/TNSRE.2011.2174652 10.1109/EMBC.2013.6611075 10.1162/neco.1997.9.8.1735 10.1007/978-3-319-70093-9_86 10.1088/1741-2560/14/1/016003 10.1109/TAMD.2015.2431497 10.1016/j.biopsycho.2004.03.002 10.1109/TBME.2007.893452 10.1007/978-3-030-04221-9_25 10.3389/fnbeh.2018.00225 10.1016/j.neubiorev.2011.05.001 10.1038/s41598-018-26133-w 10.1609/aaai.v31i2.19105 10.1162/089976698300017467 10.1109/NER.2011.5910636 10.1016/j.cmpb.2016.08.010 10.1007/978-3-642-38803-3_6 10.1109/T-AFFC.2012.16 10.1109/TAFFC.2017.2660485 10.1007/s12553-019-00394-5 10.5555/3045118.3045336 10.1109/TNN.2010.2091281 10.18653/v1/N16-1180 10.1007/s00221-014-3902-4 10.18653/v1/D15-1166 10.24963/ijcai.2018/216 10.18653/v1/d16-1058 10.1109/TAFFC.2017.2772882 10.1109/TITB.2009.2034649 10.1109/BIBM.2016.7822545 10.1109/TBME.2014.2347318 10.1109/ACII.2015.7344684 10.1016/j.biopsycho.2004.03.003 10.1177/1534582302001001003 10.1109/TAFFC.2014.2339834 10.1037/h0054570 10.1109/TCDS.2016.2587290 10.1109/CVPR.2017.316 10.1109/TAFFC.2017.2712143 10.1109/T-AFFC.2011.15 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TAFFC.2020.3013711 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1949-3045 |
| EndPage | 1540 |
| ExternalDocumentID | 10_1109_TAFFC_2020_3013711 9154557 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2016YFB1001200 – fundername: National Natural Science Foundation of China; Natural Science Foundation of China grantid: U1736220; 61725204; 61872346 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c339t-95dba7bd52dca2e53c5b84d2476e58198c8495cc1031639e5f1d87ba2629c0873 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 226 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000849263500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3045 |
| IngestDate | Sun Nov 09 05:30:54 EST 2025 Sat Nov 29 04:16:08 EST 2025 Tue Nov 18 19:50:35 EST 2025 Wed Aug 27 02:29:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-95dba7bd52dca2e53c5b84d2476e58198c8495cc1031639e5f1d87ba2629c0873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4438-5320 0000-0002-2094-5680 0000-0003-3999-7429 0000-0001-5774-1916 |
| OpenAccessLink | http://ir.psych.ac.cn/handle/311026/39338 |
| PQID | 2709156569 |
| PQPubID | 2040414 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAFFC_2020_3013711 ieee_primary_9154557 crossref_primary_10_1109_TAFFC_2020_3013711 proquest_journals_2709156569 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on affective computing |
| PublicationTitleAbbrev | TAFFC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref47 ref42 ref41 ref49 Defferrard (ref56) ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Mnih (ref43) ref35 Keltner (ref29) 2000 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Bahdanau (ref44) 2014 Hoffman (ref48) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref60 Ganin (ref53); 37 Long (ref50) |
| References_xml | – ident: ref38 doi: 10.1109/TCYB.2018.2797176 – ident: ref52 doi: 10.1016/S0959-4388(02)00301-X – ident: ref1 doi: 10.1109/34.954607 – ident: ref47 doi: 10.5555/2946645.2946704 – ident: ref19 doi: 10.1109/TAFFC.2018.2840973 – ident: ref26 doi: 10.1007/978-981-13-2354-6_5 – ident: ref37 doi: 10.1109/TAFFC.2017.2714671 – ident: ref32 doi: 10.1016/0013-4694(70)90143-4 – ident: ref55 doi: 10.18653/v1/p17-1036 – ident: ref14 doi: 10.1109/TAFFC.2018.2817622 – ident: ref58 doi: 10.1111/j.1469-8986.1993.tb03207.x – ident: ref8 doi: 10.1109/TNSRE.2011.2174652 – ident: ref36 doi: 10.1109/EMBC.2013.6611075 – ident: ref41 doi: 10.1162/neco.1997.9.8.1735 – ident: ref39 doi: 10.1007/978-3-319-70093-9_86 – ident: ref40 doi: 10.1088/1741-2560/14/1/016003 – start-page: 1989 ident: ref48 article-title: CyCADA: Cycle-consistent adversarial domain adaptation – ident: ref57 doi: 10.1109/TAMD.2015.2431497 – ident: ref59 doi: 10.1016/j.biopsycho.2004.03.002 – ident: ref6 doi: 10.1109/TBME.2007.893452 – year: 2014 ident: ref44 article-title: Neural machine translation by jointly learning to align and translate – ident: ref51 doi: 10.1007/978-3-030-04221-9_25 – ident: ref16 doi: 10.3389/fnbeh.2018.00225 – ident: ref5 doi: 10.1016/j.neubiorev.2011.05.001 – ident: ref17 doi: 10.1038/s41598-018-26133-w – ident: ref23 doi: 10.1609/aaai.v31i2.19105 – start-page: 2204 volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst. ident: ref43 article-title: Recurrent models of visual attention – ident: ref27 doi: 10.1162/089976698300017467 – ident: ref35 doi: 10.1109/NER.2011.5910636 – ident: ref10 doi: 10.1016/j.cmpb.2016.08.010 – ident: ref33 doi: 10.1007/978-3-642-38803-3_6 – start-page: 1647 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. ident: ref50 article-title: Conditional adversarial domain adaptation – ident: ref3 doi: 10.1109/T-AFFC.2012.16 – ident: ref11 doi: 10.1109/TAFFC.2017.2660485 – start-page: 236 volume-title: Handbook of Emotions year: 2000 ident: ref29 article-title: The psychophysiology of emotion – volume: 37 start-page: 1180 ident: ref53 article-title: Unsupervised domain adaptation by backpropagation – ident: ref18 doi: 10.1007/s12553-019-00394-5 – ident: ref42 doi: 10.5555/3045118.3045336 – ident: ref28 doi: 10.1109/TNN.2010.2091281 – ident: ref54 doi: 10.18653/v1/N16-1180 – ident: ref60 doi: 10.1007/s00221-014-3902-4 – ident: ref45 doi: 10.18653/v1/D15-1166 – ident: ref25 doi: 10.24963/ijcai.2018/216 – ident: ref46 doi: 10.18653/v1/d16-1058 – ident: ref7 doi: 10.1109/TAFFC.2017.2772882 – ident: ref34 doi: 10.1109/TITB.2009.2034649 – start-page: 3837 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. ident: ref56 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref12 doi: 10.1109/BIBM.2016.7822545 – ident: ref9 doi: 10.1109/TBME.2014.2347318 – ident: ref22 doi: 10.1109/ACII.2015.7344684 – ident: ref15 doi: 10.1016/j.biopsycho.2004.03.003 – ident: ref4 doi: 10.1177/1534582302001001003 – ident: ref31 doi: 10.1109/TAFFC.2014.2339834 – ident: ref30 doi: 10.1037/h0054570 – ident: ref13 doi: 10.1109/TCDS.2016.2587290 – ident: ref49 doi: 10.1109/CVPR.2017.316 – ident: ref20 doi: 10.1109/TAFFC.2017.2712143 – ident: ref2 doi: 10.1109/T-AFFC.2011.15 – ident: ref24 doi: 10.1109/TNN.2010.2091281 – ident: ref21 doi: 10.1109/TAMD.2015.2431497 |
| SSID | ssj0000333627 |
| Score | 2.6628006 |
| Snippet | Most previous EEG-based emotion recognition methods studied hand-crafted EEG features extracted from different electrodes. In this article, we study the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1528 |
| SubjectTerms | attention mechanism Brain modeling Channels Data models domain adaptation Domains Electrodes Electroencephalography Emotion recognition Emotions Feature extraction Frequency-domain analysis LSTM Machine learning multichannel EEG |
| Title | An Efficient LSTM Network for Emotion Recognition From Multichannel EEG Signals |
| URI | https://ieeexplore.ieee.org/document/9154557 https://www.proquest.com/docview/2709156569 |
| Volume | 13 |
| WOSCitedRecordID | wos000849263500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3045 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333627 issn: 1949-3045 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8MEXp05xOiUPvmldmzS75nGMVh90ipuwt9KmmQxmJ_vw7zdJP0AUwbdAk1LuernfJXf3A7jyfP0AkTsavbmOz1J0kkRRRxul9FgiBVOuJZvA0SiYTsVzA27qWhillE0-U7dmaO_ys6XcmqOynjD-nuMO7CBiUatVn6e4jOm9GKu6GFf0JoMoGuoIkOrA1DTW87xvvseSqfzYga1biVr_-6AD2C_hIxkU-j6EhsqPoFVRM5DSUtvwNMhJaLtD6BeQh_HkkYyKhG-iUSoJC_Ie8lKlD-lxtFq-E1uPa4qBc7UgYXhHxvM302H5GF6jcDK8d0ruBEcyJjaO4FmaYJpxmsmEKs4kTwM_oz72FdcoIJCBDo2kNCwPGqQoPvOyANOE9qmQboDsBJr5MlenQDwpcTZThqV45jNzbUpdlibc9xWmfZZ1wKukGsuysbjht1jENsBwRWw1ERtNxKUmOnBdr_ko2mr8ObttZF_PLMXegW6lvLi0vHVMUSMgg1LF2e-rzmGPmhIGm3LbheZmtVUXsCs_N_P16tL-VF8Tu8h_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPTFqVOcTs2Db1rXJs3SPI7ROnGb4ibsrbRpKoPZyX7495uk7UAUwbdAk1Luernvkrv7AK4dVz1gjFoKvdmWS2JmRZHEljJK4ZBIcCJtQzbBhkNvMuHPFbjd1MJIKU3ymbzTQ3OXn8zFWh-Vtbj295RtwTZ1Xezk1VqbExWbELUbs7IyxuatcScIuioGxCo01a31HOeb9zF0Kj_2YONYgtr_PukA9gsAiTq5xg-hIrMjqJXkDKiw1To8dTLkm_4Q6gWoPxoP0DBP-UYKpyI_p-9BL2UCkRoHi_k7MhW5uhw4kzPk-_doNH3TPZaP4TXwx92eVbAnWIIQvrI4TeKIxQnFiYiwpETQ2HMT7LK2pAoHeMJTwZEQmudBwRRJUyfxWBzhNubC9hg5gWo2z-QpIEcIlqZS8xSnLtEXp9gmcaSUIFncJkkDnFKqoShai2uGi1loQgybh0YTodZEWGiiATebNR95Y40_Z9e17DczC7E3oFkqLyxsbxlipjCQxqn87PdVV7DbGw_6Yf9h-HgOe1gXNJgE3CZUV4u1vIAd8bmaLheX5gf7Aqzoy8Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+LSTM+Network+for+Emotion+Recognition+From+Multichannel+EEG+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Du%2C+Xiaobing&rft.au=Ma%2C+Cuixia&rft.au=Zhang%2C+Guanhua&rft.au=Li%2C+Jinyao&rft.date=2022-07-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=13&rft.issue=3&rft.spage=1528&rft.epage=1540&rft_id=info:doi/10.1109%2FTAFFC.2020.3013711&rft.externalDocID=9154557 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |