Dynamic programming solutions extracted SOC-trajectory online learning generation algorithm based approximate global optimization control strategy for a fuel cell hybrid electric vehicle

The trajectory of the battery state of charge (SOC) optimized by using dynamic programming (DP) is the global optimization solution to enhance the economy performance of the fuel cell hybrid electric vehicles under various driving cycles, however, this method requires prior knowledge of the future d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 295; s. 130728
Hlavní autori: Lin, Xinyou, Huang, Hao, Xu, Xinhao, Xie, Liping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.05.2024
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The trajectory of the battery state of charge (SOC) optimized by using dynamic programming (DP) is the global optimization solution to enhance the economy performance of the fuel cell hybrid electric vehicles under various driving cycles, however, this method requires prior knowledge of the future driving cycles. To utilize the solutions of DP, a SOC-trajectory online learning generation algorithm based approximate global optimization energy management control strategy is proposed. Initially, the global optimality of DP is used to extract the optimal SOC gradients for diverse driving scenarios. Real-time generation of optimal gradient factors for SOC trajectories is facilitated through the training of a backpropagation neural network with DP solutions. Subsequently, the deterministic rules are designed to plan SOC under actual driving conditions, with a dynamically updated threshold by the trained agents. Finally, based on the above, the optimal calculation of energy allocation is performed by combining sequence quadratic programming. Numerical verification, inclusive of hardware-in-the-loop experiments, show the effectiveness of the proposed strategy. The results demonstrate that the proposed strategy improves fuel economy by 7.39% compared to ECMS. Additionally, it reduces the cost of fuel cell life loss by 32.09% and achieves over 90% optimization of global driving cost. •BPNN agent online learning-based approach to estimate optimal gradient factor in real-time for SOC trajectories by using DP solutions.•The constructed SOC threshold value deterministic rule enables the planning of SOC trajectory for diverse driving modes.•Combining the sequence quadratic programming algorithm enables real-time optimal solving, allowing the design of an approximate global optimal strategy.•Comparative analysis proves that the proposed strategy is effective in achieving global cost optimization.
AbstractList The trajectory of the battery state of charge (SOC) optimized by using dynamic programming (DP) is the global optimization solution to enhance the economy performance of the fuel cell hybrid electric vehicles under various driving cycles, however, this method requires prior knowledge of the future driving cycles. To utilize the solutions of DP, a SOC-trajectory online learning generation algorithm based approximate global optimization energy management control strategy is proposed. Initially, the global optimality of DP is used to extract the optimal SOC gradients for diverse driving scenarios. Real-time generation of optimal gradient factors for SOC trajectories is facilitated through the training of a backpropagation neural network with DP solutions. Subsequently, the deterministic rules are designed to plan SOC under actual driving conditions, with a dynamically updated threshold by the trained agents. Finally, based on the above, the optimal calculation of energy allocation is performed by combining sequence quadratic programming. Numerical verification, inclusive of hardware-in-the-loop experiments, show the effectiveness of the proposed strategy. The results demonstrate that the proposed strategy improves fuel economy by 7.39% compared to ECMS. Additionally, it reduces the cost of fuel cell life loss by 32.09% and achieves over 90% optimization of global driving cost. •BPNN agent online learning-based approach to estimate optimal gradient factor in real-time for SOC trajectories by using DP solutions.•The constructed SOC threshold value deterministic rule enables the planning of SOC trajectory for diverse driving modes.•Combining the sequence quadratic programming algorithm enables real-time optimal solving, allowing the design of an approximate global optimal strategy.•Comparative analysis proves that the proposed strategy is effective in achieving global cost optimization.
The trajectory of the battery state of charge (SOC) optimized by using dynamic programming (DP) is the global optimization solution to enhance the economy performance of the fuel cell hybrid electric vehicles under various driving cycles, however, this method requires prior knowledge of the future driving cycles. To utilize the solutions of DP, a SOC-trajectory online learning generation algorithm based approximate global optimization energy management control strategy is proposed. Initially, the global optimality of DP is used to extract the optimal SOC gradients for diverse driving scenarios. Real-time generation of optimal gradient factors for SOC trajectories is facilitated through the training of a backpropagation neural network with DP solutions. Subsequently, the deterministic rules are designed to plan SOC under actual driving conditions, with a dynamically updated threshold by the trained agents. Finally, based on the above, the optimal calculation of energy allocation is performed by combining sequence quadratic programming. Numerical verification, inclusive of hardware-in-the-loop experiments, show the effectiveness of the proposed strategy. The results demonstrate that the proposed strategy improves fuel economy by 7.39% compared to ECMS. Additionally, it reduces the cost of fuel cell life loss by 32.09% and achieves over 90% optimization of global driving cost.
ArticleNumber 130728
Author Huang, Hao
Lin, Xinyou
Xie, Liping
Xu, Xinhao
Author_xml – sequence: 1
  givenname: Xinyou
  orcidid: 0000-0002-4061-1055
  surname: Lin
  fullname: Lin, Xinyou
  email: linxinyoou@fzu.edu.cn
– sequence: 2
  givenname: Hao
  surname: Huang
  fullname: Huang, Hao
– sequence: 3
  givenname: Xinhao
  surname: Xu
  fullname: Xu, Xinhao
– sequence: 4
  givenname: Liping
  surname: Xie
  fullname: Xie, Liping
  email: lpxie@fzu.edu.cn
BookMark eNqFkb-O1DAQxl0cEncHb0AxJU0WO7HXCQUSWv5KJ10B1JbjTLJeOfZie08XHo2nwyFUFFDNFPP7Zr75bsiVDx4JecHojlG2f3Xaocc4Lbua1nzHGirr9opc02ZPK8F5_ZTcpHSilIq2667Jz3eL17M1cI5hinqerZ8gBXfJNvgE-JijNhkH-HJ_qEp_QpNDXCB4Zz2CQx39ikzrVr1CoN0Uos3HGXqdCqnPRfvRzjojTC702kE4ZzvbH9u8CT7H4CAV-YzTAmOIoGG8oAODzsFx6aMdAF3ZHcupD3i0xuEz8mTULuHzP_WWfPvw_uvhU3V3__Hz4e1dZZqmy1U7jDWKuqWNZKjNIJiRmnayp0aWTmDdaiMkCt6jqfuRdoyj6DotKeW8Nc0tebnpFhvfL5iymm1aD9MewyWpholGSr7vRBl9vY2aGFKKOCpj82-XxZt1ilG1hqROagtJrSGpLaQC87_gcyxfi8v_sDcbhuUHDxajSsaiNzjYWB6mhmD_LfALmde49g
CitedBy_id crossref_primary_10_1016_j_energy_2025_138164
crossref_primary_10_3390_wevj16080467
crossref_primary_10_1109_TIE_2024_3481880
crossref_primary_10_3390_wevj15090414
crossref_primary_10_1016_j_apenergy_2024_124198
crossref_primary_10_1016_j_energy_2025_137591
Cites_doi 10.1109/TITS.2017.2729621
10.1016/j.jpowsour.2020.228798
10.1016/j.energy.2020.117224
10.1109/TCST.2015.2409235
10.1016/j.energy.2020.117499
10.1016/j.apenergy.2015.06.003
10.1109/TVT.2019.2903119
10.1016/j.apenergy.2015.01.021
10.1016/j.apenergy.2015.10.152
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.130728
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_130728
S0360544224005000
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-8df2e5280371eacd51c7a097b0c7c7a5e28ac57e54bec2bf0914e599a700448c3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258469900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Oct 02 21:42:27 EDT 2025
Sat Nov 29 06:35:53 EST 2025
Tue Nov 18 21:48:13 EST 2025
Sat May 04 15:43:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy management strategy
Back propagation neural network
Dynamic programming
Fuel cell electric vehicle
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-8df2e5280371eacd51c7a097b0c7c7a5e28ac57e54bec2bf0914e599a700448c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4061-1055
PQID 3153774695
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153774695
crossref_citationtrail_10_1016_j_energy_2024_130728
crossref_primary_10_1016_j_energy_2024_130728
elsevier_sciencedirect_doi_10_1016_j_energy_2024_130728
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie (bib26) 2019
Fengyan (bib9) 2022; 14
Sun, Sun, He (bib28) 2016; 185
Hongxu (bib20) 2023
Zhang (bib39) 2021; 481
Adrian (bib5) 2022; 7
Lulu (bib29) 2017; 18
Zhou (bib31) 2020
Jianfei, Hongwen, Dong (bib36) 2021; 281
Onori, Tribioli (bib12) 2015; 147
Yaqian, Xiaohong (bib38) 2022; 15
Wang, Zeng, Song (bib3) 2020; 199
Alexis (bib11) 2023; 344
Liu (bib17) 2019; 68
Xinyou, Xinhao, Zhaorui (bib23) 2022
Li, Zhang, He (bib32) 2016; 194
Du (bib4) 2020; 234
Robert (bib7) 2022; 47
Zhang, Xiong (bib15) 2015; 155
Hansang, Wencong (bib35) 2018; 67
Zeng, Wang (bib27) 2015; 23
Yupeng (bib14) 2022; 236
van Harselaar (bib18) 2019; 52
Hujun (bib13) 2021
Hu (bib19) 2020
Li (bib33) 2016; 162
MK (bib1) 2022; 47
Geng (bib30) 2020; 199
Nan (bib16) 2022; 312
Yang, Alexandre, Marie-Cécile (bib21) 2021; 229
Chunhua (bib37) 2022; 543
Bragadeshwaran (bib24) 2023; 280
Krishnaiah, Naik (bib2) 2022; 72
Xiaodong (bib10) 2023; 267
Fangwu (bib22) 2021; 92
Roberta, Cristina, Ezio (bib6) 2022; 317
He (bib34) 2018; 19
Shabbir, Evangelou (bib8) 2019
Xinyou, Jiajin, Lian (bib25) 2022; 52
Liu (10.1016/j.energy.2024.130728_bib17) 2019; 68
Nan (10.1016/j.energy.2024.130728_bib16) 2022; 312
He (10.1016/j.energy.2024.130728_bib34) 2018; 19
Yaqian (10.1016/j.energy.2024.130728_bib38) 2022; 15
Hu (10.1016/j.energy.2024.130728_bib19) 2020
MK (10.1016/j.energy.2024.130728_bib1) 2022; 47
Roberta (10.1016/j.energy.2024.130728_bib6) 2022; 317
Jianfei (10.1016/j.energy.2024.130728_bib36) 2021; 281
Wang (10.1016/j.energy.2024.130728_bib3) 2020; 199
Xinyou (10.1016/j.energy.2024.130728_bib23) 2022
Du (10.1016/j.energy.2024.130728_bib4) 2020; 234
Fangwu (10.1016/j.energy.2024.130728_bib22) 2021; 92
Xinyou (10.1016/j.energy.2024.130728_bib25) 2022; 52
Hansang (10.1016/j.energy.2024.130728_bib35) 2018; 67
Bragadeshwaran (10.1016/j.energy.2024.130728_bib24) 2023; 280
Sun (10.1016/j.energy.2024.130728_bib28) 2016; 185
Hongxu (10.1016/j.energy.2024.130728_bib20) 2023
Li (10.1016/j.energy.2024.130728_bib32) 2016; 194
Xiaodong (10.1016/j.energy.2024.130728_bib10) 2023; 267
Onori (10.1016/j.energy.2024.130728_bib12) 2015; 147
Lulu (10.1016/j.energy.2024.130728_bib29) 2017; 18
van Harselaar (10.1016/j.energy.2024.130728_bib18) 2019; 52
Adrian (10.1016/j.energy.2024.130728_bib5) 2022; 7
Alexis (10.1016/j.energy.2024.130728_bib11) 2023; 344
Zeng (10.1016/j.energy.2024.130728_bib27) 2015; 23
Xie (10.1016/j.energy.2024.130728_bib26) 2019
Yang (10.1016/j.energy.2024.130728_bib21) 2021; 229
Chunhua (10.1016/j.energy.2024.130728_bib37) 2022; 543
Zhang (10.1016/j.energy.2024.130728_bib39) 2021; 481
Krishnaiah (10.1016/j.energy.2024.130728_bib2) 2022; 72
Fengyan (10.1016/j.energy.2024.130728_bib9) 2022; 14
Zhou (10.1016/j.energy.2024.130728_bib31) 2020
Robert (10.1016/j.energy.2024.130728_bib7) 2022; 47
Yupeng (10.1016/j.energy.2024.130728_bib14) 2022; 236
Hujun (10.1016/j.energy.2024.130728_bib13) 2021
Geng (10.1016/j.energy.2024.130728_bib30) 2020; 199
Zhang (10.1016/j.energy.2024.130728_bib15) 2015; 155
Li (10.1016/j.energy.2024.130728_bib33) 2016; 162
Shabbir (10.1016/j.energy.2024.130728_bib8) 2019
References_xml – volume: 47
  year: 2022
  ident: bib7
  article-title: Comparative study of energy management systems for a hybrid fuel cell electric vehicle - a novel mutative fuzzy logic controller to prolong fuel cell lifetime
  publication-title: Int J Hydrogen Energy
– volume: 14
  year: 2022
  ident: bib9
  article-title: Energy management strategy for hybrid energy storage electric vehicles based on Pontryagin's minimum principle considering battery degradation
  publication-title: Sustainability
– volume: 68
  year: 2019
  ident: bib17
  article-title: Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Vehicular Technology
– volume: 19
  start-page: 1607
  year: 2018
  end-page: 1617
  ident: bib34
  article-title: Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus
  publication-title: IEEE Trans Intell Transport Syst
– volume: 47
  year: 2022
  ident: bib1
  article-title: Towards health-aware energy management strategies in fuel cell hybrid electric vehicles: a review
  publication-title: Int J Hydrogen Energy
– volume: 199
  year: 2020
  ident: bib30
  article-title: A cascaded energy management optimization method of multimode power-split hybrid electric vehicles
  publication-title: Energy
– volume: 194
  year: 2016
  ident: bib32
  article-title: Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus
  publication-title: Appl Energy
– volume: 7
  year: 2022
  ident: bib5
  article-title: Probabilistic feasibility space of scaling up green hydrogen supply
  publication-title: Nat Energy
– year: 2020
  ident: bib19
  article-title: Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming
  publication-title: Energy
– volume: 344
  year: 2023
  ident: bib11
  article-title: Optimal energy management of hybrid electric vehicles considering pollutant emissions during transient operations
  publication-title: Appl Energy
– volume: 267
  year: 2023
  ident: bib10
  article-title: Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication
  publication-title: Energy
– volume: 15
  year: 2022
  ident: bib38
  article-title: Dual heuristic dynamic programming based energy management control for hybrid electric vehicles
  publication-title: Energies
– volume: 52
  year: 2019
  ident: bib18
  article-title: Improved implementation of dynamic programming on the example of hybrid electric vehicle control
  publication-title: IFAC-PapersOnLine
– volume: 72
  year: 2022
  ident: bib2
  article-title: A review on hybrid electrical vehicles
  publication-title: Strojnícky časopis - Journal of Mechanical Engineering
– start-page: 282
  year: 2021
  ident: bib13
  article-title: Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: from analytical derivation to validation on test bench
  publication-title: Appl Energy
– volume: 92
  year: 2021
  ident: bib22
  article-title: Eco-driving-based cooperative adaptive cruise control of connected vehicles platoon at signalized intersections
  publication-title: Transport Res Part D
– start-page: 236
  year: 2019
  ident: bib26
  article-title: Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
– volume: 185
  year: 2016
  ident: bib28
  article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles
  publication-title: Appl Energy
– start-page: 235
  year: 2019
  ident: bib8
  article-title: Threshold-changing control strategy for series hybrid electric vehicles
  publication-title: Appl Energy
– volume: 236
  year: 2022
  ident: bib14
  article-title: A novel hybrid energy management strategy of a diesel-electric hybrid ship based on dynamic programing and model predictive control
  publication-title: Proc IME M J Eng Marit Environ
– volume: 481
  year: 2021
  ident: bib39
  article-title: Bi-Level energy management of plug-in hybrid electric vehicles for fuel economy and battery lifetime with intelligent state-of-charge reference
  publication-title: J Power Sources
– volume: 52
  year: 2022
  ident: bib25
  article-title: A trip distance adaptive real-time optimal energy management strategy for a plug-in hybrid vehicle integrated driving condition prediction
  publication-title: J Energy Storage
– start-page: 451
  year: 2020
  ident: bib31
  article-title: An integrated predictive energy management for light-duty range-extended plug-in fuel cell electric vehicle
  publication-title: J Power Sources
– volume: 280
  year: 2023
  ident: bib24
  article-title: Intelligent energy management through neuro-fuzzy based adaptive ECMS approach for an optimal battery utilization in plugin parallel hybrid electric vehicle
  publication-title: Energy Convers Manag
– volume: 147
  year: 2015
  ident: bib12
  article-title: Adaptive Pontryagin's Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt
  publication-title: Appl Energy
– volume: 317
  year: 2022
  ident: bib6
  article-title: Investigation by modelling of a plug-in hybrid electric commercial vehicle with diesel engine on WLTC
  publication-title: Fuel
– volume: 67
  year: 2018
  ident: bib35
  article-title: Hierarchical energy management for power-split plug-in HEVs using distance-based optimized speed and SOC profiles
  publication-title: IEEE Trans Veh Technol
– start-page: 321
  year: 2022
  ident: bib23
  article-title: Deep Q-learning network based trip pattern adaptive battery longevity-conscious strategy of plug-in fuel cell hybrid electric vehicle
  publication-title: Appl Energy
– volume: 162
  start-page: 868
  year: 2016
  end-page: 879
  ident: bib33
  article-title: Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses
  publication-title: Appl Energy
– volume: 543
  year: 2022
  ident: bib37
  article-title: Reinforcement learning-based energy management strategies of fuel cell hybrid vehicles with multi-objective control
  publication-title: J Power Sources
– volume: 234
  year: 2020
  ident: bib4
  article-title: Parameter optimization of rule-based control strategy for multi-mode hybrid electric vehicle
  publication-title: Proc Inst Mech Eng - Part D J Automob Eng
– volume: 312
  year: 2022
  ident: bib16
  article-title: Global optimization energy management for multi-energy source vehicles based on “Information layer - physical layer - energy layer - dynamic programming” (IPE-DP)
  publication-title: Appl Energy
– volume: 155
  year: 2015
  ident: bib15
  article-title: Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming
  publication-title: Appl Energy
– start-page: 284
  year: 2023
  ident: bib20
  article-title: Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus
  publication-title: Energy
– volume: 199
  year: 2020
  ident: bib3
  article-title: Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information
  publication-title: Energy
– volume: 281
  year: 2021
  ident: bib36
  article-title: Intelligent SOC-consumption allocation of commercial plug-in hybrid electric vehicles in variable scenario
  publication-title: Appl Energy
– volume: 229
  year: 2021
  ident: bib21
  article-title: Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell hybrid electric vehicles
  publication-title: Energy Convers Manag
– volume: 18
  year: 2017
  ident: bib29
  article-title: Optimal energy management for HEVs in eco-driving applications using Bi-level MPC
  publication-title: IEEE Trans Intell Transport Syst
– volume: 23
  year: 2015
  ident: bib27
  article-title: A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview
  publication-title: IEEE Trans. Contr. Sys. Techn.
– volume: 19
  start-page: 1607
  issue: 5
  year: 2018
  ident: 10.1016/j.energy.2024.130728_bib34
  article-title: Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2017.2729621
– volume: 281
  year: 2021
  ident: 10.1016/j.energy.2024.130728_bib36
  article-title: Intelligent SOC-consumption allocation of commercial plug-in hybrid electric vehicles in variable scenario
  publication-title: Appl Energy
– volume: 18
  issue: 8
  year: 2017
  ident: 10.1016/j.energy.2024.130728_bib29
  article-title: Optimal energy management for HEVs in eco-driving applications using Bi-level MPC
  publication-title: IEEE Trans Intell Transport Syst
– volume: 481
  year: 2021
  ident: 10.1016/j.energy.2024.130728_bib39
  article-title: Bi-Level energy management of plug-in hybrid electric vehicles for fuel economy and battery lifetime with intelligent state-of-charge reference
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228798
– volume: 199
  year: 2020
  ident: 10.1016/j.energy.2024.130728_bib30
  article-title: A cascaded energy management optimization method of multimode power-split hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117224
– volume: 14
  issue: 3
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib9
  article-title: Energy management strategy for hybrid energy storage electric vehicles based on Pontryagin's minimum principle considering battery degradation
  publication-title: Sustainability
– volume: 344
  year: 2023
  ident: 10.1016/j.energy.2024.130728_bib11
  article-title: Optimal energy management of hybrid electric vehicles considering pollutant emissions during transient operations
  publication-title: Appl Energy
– volume: 312
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib16
  article-title: Global optimization energy management for multi-energy source vehicles based on “Information layer - physical layer - energy layer - dynamic programming” (IPE-DP)
  publication-title: Appl Energy
– volume: 7
  issue: 9
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib5
  article-title: Probabilistic feasibility space of scaling up green hydrogen supply
  publication-title: Nat Energy
– volume: 194
  year: 2016
  ident: 10.1016/j.energy.2024.130728_bib32
  article-title: Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus
  publication-title: Appl Energy
– volume: 67
  issue: 10
  year: 2018
  ident: 10.1016/j.energy.2024.130728_bib35
  article-title: Hierarchical energy management for power-split plug-in HEVs using distance-based optimized speed and SOC profiles
  publication-title: IEEE Trans Veh Technol
– volume: 234
  issue: 10–11
  year: 2020
  ident: 10.1016/j.energy.2024.130728_bib4
  article-title: Parameter optimization of rule-based control strategy for multi-mode hybrid electric vehicle
  publication-title: Proc Inst Mech Eng - Part D J Automob Eng
– volume: 23
  issue: 6
  year: 2015
  ident: 10.1016/j.energy.2024.130728_bib27
  article-title: A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview
  publication-title: IEEE Trans. Contr. Sys. Techn.
  doi: 10.1109/TCST.2015.2409235
– year: 2020
  ident: 10.1016/j.energy.2024.130728_bib19
  article-title: Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming
  publication-title: Energy
– volume: 47
  issue: 17
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib1
  article-title: Towards health-aware energy management strategies in fuel cell hybrid electric vehicles: a review
  publication-title: Int J Hydrogen Energy
– volume: 199
  year: 2020
  ident: 10.1016/j.energy.2024.130728_bib3
  article-title: Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117499
– volume: 92
  year: 2021
  ident: 10.1016/j.energy.2024.130728_bib22
  article-title: Eco-driving-based cooperative adaptive cruise control of connected vehicles platoon at signalized intersections
  publication-title: Transport Res Part D
– volume: 52
  issue: 5
  year: 2019
  ident: 10.1016/j.energy.2024.130728_bib18
  article-title: Improved implementation of dynamic programming on the example of hybrid electric vehicle control
  publication-title: IFAC-PapersOnLine
– volume: 543
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib37
  article-title: Reinforcement learning-based energy management strategies of fuel cell hybrid vehicles with multi-objective control
  publication-title: J Power Sources
– volume: 52
  issue: PC
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib25
  article-title: A trip distance adaptive real-time optimal energy management strategy for a plug-in hybrid vehicle integrated driving condition prediction
  publication-title: J Energy Storage
– volume: 236
  issue: 3
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib14
  article-title: A novel hybrid energy management strategy of a diesel-electric hybrid ship based on dynamic programing and model predictive control
  publication-title: Proc IME M J Eng Marit Environ
– volume: 155
  year: 2015
  ident: 10.1016/j.energy.2024.130728_bib15
  article-title: Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.06.003
– volume: 68
  issue: 5
  year: 2019
  ident: 10.1016/j.energy.2024.130728_bib17
  article-title: Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2019.2903119
– volume: 47
  issue: 57
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib7
  article-title: Comparative study of energy management systems for a hybrid fuel cell electric vehicle - a novel mutative fuzzy logic controller to prolong fuel cell lifetime
  publication-title: Int J Hydrogen Energy
– volume: 147
  year: 2015
  ident: 10.1016/j.energy.2024.130728_bib12
  article-title: Adaptive Pontryagin's Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.021
– volume: 185
  year: 2016
  ident: 10.1016/j.energy.2024.130728_bib28
  article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles
  publication-title: Appl Energy
– start-page: 235
  year: 2019
  ident: 10.1016/j.energy.2024.130728_bib8
  article-title: Threshold-changing control strategy for series hybrid electric vehicles
  publication-title: Appl Energy
– volume: 317
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib6
  article-title: Investigation by modelling of a plug-in hybrid electric commercial vehicle with diesel engine on WLTC
  publication-title: Fuel
– volume: 280
  year: 2023
  ident: 10.1016/j.energy.2024.130728_bib24
  article-title: Intelligent energy management through neuro-fuzzy based adaptive ECMS approach for an optimal battery utilization in plugin parallel hybrid electric vehicle
  publication-title: Energy Convers Manag
– volume: 72
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib2
  article-title: A review on hybrid electrical vehicles
  publication-title: Strojnícky časopis - Journal of Mechanical Engineering
– volume: 229
  year: 2021
  ident: 10.1016/j.energy.2024.130728_bib21
  article-title: Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell hybrid electric vehicles
  publication-title: Energy Convers Manag
– volume: 162
  start-page: 868
  year: 2016
  ident: 10.1016/j.energy.2024.130728_bib33
  article-title: Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.152
– volume: 15
  issue: 9
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib38
  article-title: Dual heuristic dynamic programming based energy management control for hybrid electric vehicles
  publication-title: Energies
– volume: 267
  year: 2023
  ident: 10.1016/j.energy.2024.130728_bib10
  article-title: Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication
  publication-title: Energy
– start-page: 236
  year: 2019
  ident: 10.1016/j.energy.2024.130728_bib26
  article-title: Pontryagin's Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
– start-page: 284
  year: 2023
  ident: 10.1016/j.energy.2024.130728_bib20
  article-title: Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus
  publication-title: Energy
– start-page: 321
  year: 2022
  ident: 10.1016/j.energy.2024.130728_bib23
  article-title: Deep Q-learning network based trip pattern adaptive battery longevity-conscious strategy of plug-in fuel cell hybrid electric vehicle
  publication-title: Appl Energy
– start-page: 282
  year: 2021
  ident: 10.1016/j.energy.2024.130728_bib13
  article-title: Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: from analytical derivation to validation on test bench
  publication-title: Appl Energy
– start-page: 451
  year: 2020
  ident: 10.1016/j.energy.2024.130728_bib31
  article-title: An integrated predictive energy management for light-duty range-extended plug-in fuel cell electric vehicle
  publication-title: J Power Sources
SSID ssj0005899
Score 2.4914186
Snippet The trajectory of the battery state of charge (SOC) optimized by using dynamic programming (DP) is the global optimization solution to enhance the economy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130728
SubjectTerms algorithms
Back propagation neural network
batteries
Dynamic programming
energy
Energy management strategy
Fuel cell electric vehicle
fuel cells
fuels
vehicles (equipment)
Title Dynamic programming solutions extracted SOC-trajectory online learning generation algorithm based approximate global optimization control strategy for a fuel cell hybrid electric vehicle
URI https://dx.doi.org/10.1016/j.energy.2024.130728
https://www.proquest.com/docview/3153774695
Volume 295
WOSCitedRecordID wos001258469900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1bb9MwFICt0iHBC4LBxLjpIPEWpcrFnuPHCYoGQhMPQ-pblCZOL2qTqWmr9q_xF_hTHMd2km6CsQdeoshyHKfnq8-Jcy6EfIgypfUUvCykLvVl6IqIUvcszWgapSHNvaQuNsEvL6PRSHzv9X7ZWJjtghdFtNuJ6_8qamxDYavQ2XuIuxkUG_AchY5HFDse_0nwn3SNeet5taw3DOwdHVyL6wTNmcqB4OL5vN623zs6ZYatIjFRpZWloSNZTMrVbD1dOkrnZToP-W6Gtq60CUVKXHmWJqSzcX-vdOZb7RKaOPlGLhz1ocCZ7lWcmKNL8OBUt3LaPIX9SqBjElUy1J32v292LL7ptAejWbEvNy2WZuP7Iilt22hj-k07baaytCrZPelueQRUfa3XQZ9NqJfnMkoPlvFAsM5CjKqZ66jzWzpCb1fMB7J-kIG6waDtfpiS-4aqbBwYrW_cPNajxGqUWI_ygBwFnImoT47OvwxHX1uPo6guZ9rM3kZy1u6Gt2fzJ0vphs1QG0JXT8kT8wYD55q8Z6Qni2PyyAa4V8fkZNgGT2JHoz2q5-SnQRM6aEKDJjRowiGaoNEEiya0aEKDJtRoQgdN0GhCF00waIJFE5AtSEChCQpN0GiCRRMMmi_Ij8_Dq48Xrqkd4qZhKNZulOWBZKr0GvfRtsiYn_LEE3zspRzPmAyiJGVcMoqLWDDO0WymkgmRqHIPFBepE9IvykK-JBCqcPKcSW_MM8rzsRBS5F7q-0nky3Scn5LQyilOTWJ9Vd9lEf-NklPiNldd68Qyd_TnFoHYGMfa6I2R6zuufG-JiVF3qB8zKWS5qeIQzR18_TsT7NU9Z_OaPG7_mG9If73ayLfkYbpdz6rVOwP-b5ua9S8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+programming+solutions+extracted+SOC-trajectory+online+learning+generation+algorithm+based+approximate+global+optimization+control+strategy+for+a+fuel+cell+hybrid+electric+vehicle&rft.jtitle=Energy+%28Oxford%29&rft.au=Lin%2C+Xinyou&rft.au=Huang%2C+Hao&rft.au=Xu%2C+Xinhao&rft.au=Xie%2C+Liping&rft.date=2024-05-15&rft.issn=0360-5442&rft.volume=295&rft.spage=130728&rft_id=info:doi/10.1016%2Fj.energy.2024.130728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2024_130728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon