An investigation of photovoltaic power forecasting in buildings considering shadow effects: Modeling approach and SHAP analysis

The power generation of distributed photovoltaic (PV) systems often suffers interference due to shadows cast by surrounding buildings. To improve the accuracy of PV power forecasts, this paper presents a PV power prediction method that takes shadow effects into consideration. Firstly, a convenient P...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy Vol. 245; p. 122821
Main Authors: Fu, Jiaqian, Sun, Yuying, Li, Yunhe, Wang, Wei, Wei, Wenzhe, Ren, Jinyang, Han, Shulun, Di, Haoran
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2025
Subjects:
ISSN:0960-1481
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The power generation of distributed photovoltaic (PV) systems often suffers interference due to shadows cast by surrounding buildings. To improve the accuracy of PV power forecasts, this paper presents a PV power prediction method that takes shadow effects into consideration. Firstly, a convenient PV shadow model was formulated for predicting the proportion of PV shaded (PPS), using theoretical derivation and a zoning shading judgment strategy. Subsequently, a PV power prediction method was proposed based on PV shadow forecasting and the convolutional deep neural network algorithm. Finally, this method was applied to a carport PV system in a building in Beijing, China, and SHAP analysis was utilized for the interpretation. The results show that the proposed method can automatically recognize shadow conditions, and significantly improve the predictive accuracy of PV power, reducing the MAE by 10.1 % and increasing the R2 value from 0.91 to 0.94. The ranking of feature importance to the PV power prediction model is as follows: solar radiation, hour, ambient temperature, PPS, and relative humidity. This study offers a feasible solution for predicting power generation of PV systems that are subject to shadow shading from buildings.
AbstractList The power generation of distributed photovoltaic (PV) systems often suffers interference due to shadows cast by surrounding buildings. To improve the accuracy of PV power forecasts, this paper presents a PV power prediction method that takes shadow effects into consideration. Firstly, a convenient PV shadow model was formulated for predicting the proportion of PV shaded (PPS), using theoretical derivation and a zoning shading judgment strategy. Subsequently, a PV power prediction method was proposed based on PV shadow forecasting and the convolutional deep neural network algorithm. Finally, this method was applied to a carport PV system in a building in Beijing, China, and SHAP analysis was utilized for the interpretation. The results show that the proposed method can automatically recognize shadow conditions, and significantly improve the predictive accuracy of PV power, reducing the MAE by 10.1 % and increasing the R2 value from 0.91 to 0.94. The ranking of feature importance to the PV power prediction model is as follows: solar radiation, hour, ambient temperature, PPS, and relative humidity. This study offers a feasible solution for predicting power generation of PV systems that are subject to shadow shading from buildings.
The power generation of distributed photovoltaic (PV) systems often suffers interference due to shadows cast by surrounding buildings. To improve the accuracy of PV power forecasts, this paper presents a PV power prediction method that takes shadow effects into consideration. Firstly, a convenient PV shadow model was formulated for predicting the proportion of PV shaded (PPS), using theoretical derivation and a zoning shading judgment strategy. Subsequently, a PV power prediction method was proposed based on PV shadow forecasting and the convolutional deep neural network algorithm. Finally, this method was applied to a carport PV system in a building in Beijing, China, and SHAP analysis was utilized for the interpretation. The results show that the proposed method can automatically recognize shadow conditions, and significantly improve the predictive accuracy of PV power, reducing the MAE by 10.1 % and increasing the R² value from 0.91 to 0.94. The ranking of feature importance to the PV power prediction model is as follows: solar radiation, hour, ambient temperature, PPS, and relative humidity. This study offers a feasible solution for predicting power generation of PV systems that are subject to shadow shading from buildings.
ArticleNumber 122821
Author Wei, Wenzhe
Wang, Wei
Di, Haoran
Han, Shulun
Sun, Yuying
Li, Yunhe
Ren, Jinyang
Fu, Jiaqian
Author_xml – sequence: 1
  givenname: Jiaqian
  surname: Fu
  fullname: Fu, Jiaqian
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Yuying
  surname: Sun
  fullname: Sun, Yuying
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Yunhe
  surname: Li
  fullname: Li, Yunhe
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3680-7191
  surname: Wang
  fullname: Wang, Wei
  email: mrwangwei@bjut.edu.cn
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Wenzhe
  surname: Wei
  fullname: Wei, Wenzhe
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 6
  givenname: Jinyang
  surname: Ren
  fullname: Ren, Jinyang
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 7
  givenname: Shulun
  surname: Han
  fullname: Han, Shulun
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
– sequence: 8
  givenname: Haoran
  surname: Di
  fullname: Di, Haoran
  organization: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
BookMark eNqFkEtLQzEQhbNQUKv_wEWWblrzuI_UhVDEFygK6jqkycSmXJNrkra48q-bel25UM5iBuacYeY7QDs-eEDomJIJJbQ5XU4i-KIJI6yeUMYEozton0wbMqaVoHvoIKUlIbQWbbWPPmceO7-GlN2ryi54HCzuFyGHdeiychr3YQMR2xBBq-Lyr8WP5yvXmdInrINPzkDcDtJCmbDBYC3onM7wfTDQbQeq72NQeoGVN_jpZvZYGtV9JJcO0a5VXYKjnzpCL1eXzxc347uH69uL2d1Ycz7NY6FoC4YJ0WrQddMoZuo5ASBVK1rbElMLmFMjamtaY6zh3FZMGNIUJC0nnI_QybC3HPK-Ku_KN5c0dJ3yEFZJckYaOuV10QidDVYdQ0oRrNQuf7PJUblOUiK3pOVSDqTllrQcSJdw9SvcR_em4sd_sfMhBoXB2kGUSTvwGowr3LM0wf294AuZDqDp
CitedBy_id crossref_primary_10_3390_sym17050784
crossref_primary_10_3390_math13162581
crossref_primary_10_3390_en18133572
crossref_primary_10_1016_j_apenergy_2025_126015
crossref_primary_10_1016_j_apenergy_2025_126771
Cites_doi 10.1016/j.apenergy.2024.123620
10.1016/j.renene.2024.121834
10.1016/j.ref.2023.100504
10.1109/ACCESS.2019.2923006
10.1016/j.renene.2024.120922
10.1016/j.apenergy.2024.125058
10.1016/j.scs.2022.103821
10.1016/j.energy.2025.134511
10.1016/j.artint.2022.103667
10.1016/j.rser.2017.08.017
10.1016/j.rser.2016.05.027
10.1016/j.inffus.2023.101819
10.1016/j.scitotenv.2022.154050
10.1016/j.apenergy.2024.124620
10.1016/j.jclepro.2019.119476
10.1016/j.rser.2015.04.081
10.4028/p-nqJi1m
10.1016/j.epsr.2022.108796
10.1016/j.inffus.2023.01.021
10.1016/j.solener.2015.03.006
10.1007/s00521-020-05249-z
10.1016/j.enbuild.2024.114244
10.1016/j.applthermaleng.2024.123901
10.3390/en12091621
10.1016/j.renene.2018.03.070
10.1016/j.solener.2023.111968
10.1016/j.jclepro.2020.123948
10.1016/j.heliyon.2024.e33419
10.1016/j.solener.2016.06.073
10.1016/j.egyr.2022.11.208
10.1016/j.renene.2023.118997
10.1016/j.enconman.2014.12.015
10.1109/ACCESS.2021.3138917
10.1016/j.energy.2019.07.168
10.1016/j.renene.2024.121853
10.1016/j.jclepro.2020.122167
10.1016/j.solener.2023.01.019
10.1016/j.rser.2019.109372
10.1016/j.egyr.2022.10.071
10.1016/j.applthermaleng.2024.125189
10.1016/j.scs.2021.103035
10.1016/j.enconman.2020.112766
10.1016/j.rser.2020.109792
10.1016/j.ijepes.2021.107777
10.1016/j.enconman.2019.111800
10.1016/j.buildenv.2019.106508
10.1049/iet-smt.2013.0135
10.3390/sym12111777
10.1016/j.energy.2024.130621
10.1016/j.enconman.2017.10.008
10.1016/j.compeleceng.2024.109529
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2025.122821
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_renene_2025_122821
S0960148125004835
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
ZCA
~02
~G-
29P
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LY6
LY9
R2-
SAC
SEN
SET
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-8a17ed2887cec566a2d5b0ee04787f70d58eb1d85fd7ddfd33f428d0601673033
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447846800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Thu Oct 02 22:59:59 EDT 2025
Tue Nov 18 22:12:43 EST 2025
Sat Nov 29 08:02:00 EST 2025
Sat Apr 26 15:41:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Power prediction
SHAP analysis
Photovoltaic power
Shadow effect
Convolutional deep neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-8a17ed2887cec566a2d5b0ee04787f70d58eb1d85fd7ddfd33f428d0601673033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3680-7191
PQID 3206193535
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206193535
crossref_citationtrail_10_1016_j_renene_2025_122821
crossref_primary_10_1016_j_renene_2025_122821
elsevier_sciencedirect_doi_10_1016_j_renene_2025_122821
PublicationCentury 2000
PublicationDate 2025-06-01
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Yi, Peng, Wang, Liu, Jiang, Liu (bib16) 2017; 153
Pan, Li, Gao, Huang, You, Gu, Qin (bib25) 2020; 277
Rodríguez, Azcárate, Vadillo, Galarza (bib33) 2022; 137
He, Gao, Jin, Liu (bib49) 2022; 8
Jung, Jung, Kim, Han (bib30) 2020; 250
Gao, Li, Hong, Long (bib51) 2019; 187
Li, Ding, Zhao, Wei, Guo, Meng, Huang, Zhu (bib36) 2024; 293
Liu, Zhou, Shen, Sun, Yan (bib42) 2024; 315
Ncir, El Akchioui, El Fathi (bib27) 2023; 47
Keddouda, Ihaddadene, Boukhari, Atia, Arıcı, Lebbihiat, Ihaddadene (bib15) 2024; 231
Zhang, Wang, Liu, Tong, Sun (bib26) 2021; 33
Zhao, Wang, Wang, Xu, Ma (bib41) 2024; 121
Wang, Wei, Wang, Sun, Li, Dai, Huang, Tang, Deng (bib6) 2025; 262
De Giorgi, Congedo, Malvoni (bib19) 2014; 8
Wu, Wang, G, Wang, Tian (bib45) 2016; 40
Mohammadi, Shamshirband, Anisi, Alam, Petković (bib23) 2015; 91
Mehdi, Ammari, Merrouni, Dahmani, Benazzouz (bib58) 2023; 954
Chen, Ma, Li, Wang, Li (bib38) 2023; 97
Lin, Sun, Chen (bib55) 2023
Wang, Liu, Li, Xie, Chang (bib24) 2020
Zhang, Tang, Li, Wang (bib17) 2025; 316
Zhou, Zhang, Yang, Liu, Yan, Du (bib50) 2019; 7
Lu, Sun, Ma (bib4) 2024; 370
Kumar, Cherukuri, Kaniganti, Karuppiah, Muniraj, Babu, Alhelou (bib47) 2022; 10
Kazem, Chaichan (bib59) 2016; 2
Wencheng, Zhizhong (bib53) 2024; 119
Yang, Jiang, Zhang, Li, Su (bib39) 2024; 237
Gandoman, Raeisi, Ahmadi (bib34) 2016; 63
(bib7) 2023
Visser, AlSkaif, Hu, Louwen, van Sark (bib5) 2023; 251
Ahmed, Sreeram, Mishra, Arif (bib9) 2020; 124
Almeida, Perpiñán, Narvarte (bib20) 2015; 115
Zhi, Sun, Yang (bib52) 2023; 75
Salamah, Ramahi, Alamara, Juaidi, Abdallah, Abdelkareem, Amer, Olabi (bib46) 2022; 827
Rodríguez, Fleetwood, Galarza, Fontán (bib10) 2018; 126
Raza, Nadarajah, Ekanayake (bib13) 2016; 136
Sarmas, Spiliotis, Stamatopoulos, Marinakis, Doukas (bib21) 2023; 216
Chen, Chai, Wang (bib40) 2025; 238
Lian, Ji, Niu, Gu, Xie, Liu (bib18) 2025; 377
Rezk, Al-Oran, Gomaa, Tolba, Fathy, Abdelkareem, Olabi, El-Sayed (bib48) 2019; 115
Li, Han (bib54) 2022; 80
Zhang, Li, Wang, Zhang, Shen, Gao (bib2) 2024
Zheng, Xiao, Pei (bib1) 2025; 380
Wei, Feng, Sun, Wang, Jin, Zhang, Dai (bib3) 2024; 90
Nespoli, Ogliari, Leva, Massi Pavan, Mellit, Lughi, Dolara (bib28) 2019
Chtioui, Khouya (bib11) 2024
Das, Tey, Seyedmahmoudian, Mekhilef, Idris, Van Deventer, Horan, Stojcevski (bib12) 2018; 81
Terrén-Serrano, Martínez-Ramón (bib32) 2023; 264
Baptista, Goebel, Henriques (bib57) 2022; 306
Ameur, Berrada, Loudiyi, Aggour (bib8) 2020; 267
Gu, Ma, Song, Li, Shen (bib14) 2019; 198
Zhang, Peng, Nazir (bib31) 2022; 213
Ren, Suganthan, Srikanth (bib35) 2015; 50
Hong, Chen, Luo, Luo, Lee (bib44) 2020; 168
Wang, Xuan, Zhen, Li, Wang, Shi (bib29) 2020; 212
Wang, Liu, Zhang (bib43) 2021; 72
Alcañiz, Grzebyk, Ziar, Isabella (bib22) 2023; 9
Husein, Gago, Hasan, Pegalajar (bib56) 2024; 10
Troncoso-García, Martínez-Ballesteros, Martínez-Álvarez, Troncoso (bib37) 2023; 94
Zhang (10.1016/j.renene.2025.122821_bib31) 2022; 213
Zhi (10.1016/j.renene.2025.122821_bib52) 2023; 75
Wencheng (10.1016/j.renene.2025.122821_bib53) 2024; 119
Zheng (10.1016/j.renene.2025.122821_bib1) 2025; 380
Chtioui (10.1016/j.renene.2025.122821_bib11) 2024
Kazem (10.1016/j.renene.2025.122821_bib59) 2016; 2
Wang (10.1016/j.renene.2025.122821_bib16) 2017; 153
Lian (10.1016/j.renene.2025.122821_bib18) 2025; 377
Wu (10.1016/j.renene.2025.122821_bib45) 2016; 40
Lin (10.1016/j.renene.2025.122821_bib55) 2023
He (10.1016/j.renene.2025.122821_bib49) 2022; 8
Ncir (10.1016/j.renene.2025.122821_bib27) 2023; 47
Rezk (10.1016/j.renene.2025.122821_bib48) 2019; 115
Zhou (10.1016/j.renene.2025.122821_bib50) 2019; 7
Ahmed (10.1016/j.renene.2025.122821_bib9) 2020; 124
Zhang (10.1016/j.renene.2025.122821_bib17) 2025; 316
Zhang (10.1016/j.renene.2025.122821_bib2) 2024
Visser (10.1016/j.renene.2025.122821_bib5) 2023; 251
Hong (10.1016/j.renene.2025.122821_bib44) 2020; 168
Husein (10.1016/j.renene.2025.122821_bib56) 2024; 10
Rodríguez (10.1016/j.renene.2025.122821_bib10) 2018; 126
Rodríguez (10.1016/j.renene.2025.122821_bib33) 2022; 137
De Giorgi (10.1016/j.renene.2025.122821_bib19) 2014; 8
Terrén-Serrano (10.1016/j.renene.2025.122821_bib32) 2023; 264
Ren (10.1016/j.renene.2025.122821_bib35) 2015; 50
Mehdi (10.1016/j.renene.2025.122821_bib58) 2023; 954
Almeida (10.1016/j.renene.2025.122821_bib20) 2015; 115
Chen (10.1016/j.renene.2025.122821_bib38) 2023; 97
Gao (10.1016/j.renene.2025.122821_bib51) 2019; 187
Raza (10.1016/j.renene.2025.122821_bib13) 2016; 136
Gu (10.1016/j.renene.2025.122821_bib14) 2019; 198
Wang (10.1016/j.renene.2025.122821_bib24) 2020
Baptista (10.1016/j.renene.2025.122821_bib57) 2022; 306
Keddouda (10.1016/j.renene.2025.122821_bib15) 2024; 231
Wang (10.1016/j.renene.2025.122821_bib29) 2020; 212
Liu (10.1016/j.renene.2025.122821_bib42) 2024; 315
Wang (10.1016/j.renene.2025.122821_bib6) 2025; 262
Pan (10.1016/j.renene.2025.122821_bib25) 2020; 277
Zhang (10.1016/j.renene.2025.122821_bib26) 2021; 33
Zhao (10.1016/j.renene.2025.122821_bib41) 2024; 121
Gandoman (10.1016/j.renene.2025.122821_bib34) 2016; 63
Wei (10.1016/j.renene.2025.122821_bib3) 2024; 90
Yang (10.1016/j.renene.2025.122821_bib39) 2024; 237
Li (10.1016/j.renene.2025.122821_bib36) 2024; 293
Alcañiz (10.1016/j.renene.2025.122821_bib22) 2023; 9
Lu (10.1016/j.renene.2025.122821_bib4) 2024; 370
Wang (10.1016/j.renene.2025.122821_bib43) 2021; 72
Das (10.1016/j.renene.2025.122821_bib12) 2018; 81
Kumar (10.1016/j.renene.2025.122821_bib47) 2022; 10
Chen (10.1016/j.renene.2025.122821_bib40) 2025; 238
Nespoli (10.1016/j.renene.2025.122821_bib28) 2019
Salamah (10.1016/j.renene.2025.122821_bib46) 2022; 827
Mohammadi (10.1016/j.renene.2025.122821_bib23) 2015; 91
Ameur (10.1016/j.renene.2025.122821_bib8) 2020; 267
Sarmas (10.1016/j.renene.2025.122821_bib21) 2023; 216
Troncoso-García (10.1016/j.renene.2025.122821_bib37) 2023; 94
Li (10.1016/j.renene.2025.122821_bib54) 2022; 80
Jung (10.1016/j.renene.2025.122821_bib30) 2020; 250
References_xml – volume: 126
  start-page: 855
  year: 2018
  end-page: 864
  ident: bib10
  article-title: Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control
  publication-title: Renew. Energy
– volume: 213
  year: 2022
  ident: bib31
  article-title: A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables
  publication-title: Elec. Power Syst. Res.
– volume: 306
  year: 2022
  ident: bib57
  article-title: Relation between prognostics predictor evaluation metrics and local interpretability SHAP values
  publication-title: Artif. Intell.
– year: 2023
  ident: bib7
  article-title: Renewables 2023
– volume: 212
  year: 2020
  ident: bib29
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Convers. Manag.
– volume: 33
  start-page: 821
  year: 2021
  end-page: 835
  ident: bib26
  article-title: Prediction of energy photovoltaic power generation based on artificial intelligence algorithm
  publication-title: Neural Comput. Appl.
– volume: 119
  year: 2024
  ident: bib53
  article-title: Prediction of rainy-day photovoltaic power generation based on generative adversarial networks and enhanced sparrow search algorithm
  publication-title: Comput. Electr. Eng.
– volume: 377
  year: 2025
  ident: bib18
  article-title: A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm
  publication-title: Appl. Energy
– volume: 827
  year: 2022
  ident: bib46
  article-title: Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: comprehensive review
  publication-title: Sci. Total Environ.
– volume: 121
  start-page: 3711
  year: 2024
  end-page: 3733
  ident: bib41
  article-title: Photovoltaic power generation power prediction under major extreme weather based on VMD-KELM
  publication-title: Energy Eng. J. Assoc. Energy Eng.
– volume: 262
  year: 2025
  ident: bib6
  article-title: Frosting-defrosting performance variations of air source heat pumps with the type of refrigerants: R410A and R32 as an example
  publication-title: Appl. Therm. Eng.
– start-page: 38
  year: 2023
  end-page: 45
  ident: bib55
  article-title: Output characteristics study of large size pv modules under partial shadow occlusion
  publication-title: Sol. Energy
– volume: 198
  year: 2019
  ident: bib14
  article-title: Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system
  publication-title: Energy Convers. Manag.
– volume: 90
  year: 2024
  ident: bib3
  article-title: Experimental investigation on the space heating performance of air source heat pump with vapor injection under frosting condition
  publication-title: J. Build. Eng.
– volume: 136
  start-page: 125
  year: 2016
  end-page: 144
  ident: bib13
  article-title: On recent advances in PV output power forecast
  publication-title: Sol. Energy
– volume: 8
  start-page: 54
  year: 2022
  end-page: 62
  ident: bib49
  article-title: Short-term photovoltaic power forecasting method based on convolutional neural network
  publication-title: Energy Rep.
– volume: 231
  year: 2024
  ident: bib15
  article-title: Experimentally validated thermal modeling for temperature prediction of photovoltaic modules under variable environmental conditions
  publication-title: Renew. Energy
– volume: 9
  start-page: 447
  year: 2023
  end-page: 471
  ident: bib22
  article-title: Trends and gaps in photovoltaic power forecasting with machine learning
  publication-title: Energy Rep.
– volume: 216
  year: 2023
  ident: bib21
  article-title: Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models
  publication-title: Renew. Energy
– volume: 81
  start-page: 912
  year: 2018
  end-page: 928
  ident: bib12
  article-title: Forecasting of photovoltaic power generation and model optimization: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 94
  start-page: 169
  year: 2023
  end-page: 180
  ident: bib37
  article-title: A new approach based on association rules to add explainability to time series forecasting models
  publication-title: Inf. Fusion
– volume: 91
  start-page: 433
  year: 2015
  end-page: 441
  ident: bib23
  article-title: Support vector regression based prediction of global solar radiation on a horizontal surface
  publication-title: Energy Convers. Manag.
– volume: 115
  year: 2019
  ident: bib48
  article-title: A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system
  publication-title: Renew. Sustain. Energy Rev.
– volume: 238
  year: 2025
  ident: bib40
  article-title: Research on stacking ensemble method for day-ahead ultra-short-term prediction of photovoltaic power
  publication-title: Renew. Energy
– volume: 124
  year: 2020
  ident: bib9
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization
  publication-title: Renew. Sustain. Energy Rev.
– volume: 75
  year: 2023
  ident: bib52
  article-title: A physical model with meteorological forecasting for hourly rooftop photovoltaic power prediction
  publication-title: J. Build. Eng.
– volume: 954
  start-page: 111
  year: 2023
  end-page: 121
  ident: bib58
  article-title: Outdoor experimental investigation of the temperature effect on the performance of different PV modules materials
  publication-title: Key Eng. Mater.
– volume: 251
  start-page: 86
  year: 2023
  end-page: 105
  ident: bib5
  article-title: On the value of expert knowledge in estimation and forecasting of solar photovoltaic power generation
  publication-title: Sol. Energy
– volume: 315
  year: 2024
  ident: bib42
  article-title: A novel acceleration approach to shadow calculation based on sunlight channel for urban building energy modeling
  publication-title: Energy Build.
– volume: 187
  year: 2019
  ident: bib51
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
– volume: 370
  year: 2024
  ident: bib4
  article-title: Multi-objective design optimization of multiple energy systems in net/nearly zero energy buildings under uncertainty correlations
  publication-title: Appl. Energy
– year: 2020
  ident: bib24
  article-title: The short-term forecasting of asymmetry photovoltaic power based on the feature extraction of PV power and SVM algorithm
  publication-title: Symmetry
– volume: 10
  year: 2024
  ident: bib56
  article-title: Towards energy efficiency: a comprehensive review of deep learning-based photovoltaic power forecasting strategies
  publication-title: Heliyon
– volume: 8
  start-page: 90
  year: 2014
  end-page: 97
  ident: bib19
  article-title: Photovoltaic power forecasting using statistical methods: impact of weather data
  publication-title: IET Sci. Meas. Technol.
– volume: 277
  year: 2020
  ident: bib25
  article-title: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib28
  article-title: Day-ahead photovoltaic forecasting: a comparison of the most effective techniques
  publication-title: Energies
– volume: 63
  start-page: 579
  year: 2016
  end-page: 592
  ident: bib34
  article-title: A literature review on estimating of PV-array hourly power under cloudy weather conditions
  publication-title: Renew. Sustain. Energy Rev.
– volume: 137
  year: 2022
  ident: bib33
  article-title: Forecasting intra-hour solar photovoltaic energy by assembling wavelet based time-frequency analysis with deep learning neural networks
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: bib35
  article-title: Ensemble methods for wind and solar power forecasting—a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 316
  year: 2025
  ident: bib17
  article-title: Unlocking the flexibilities of data centers for smart grid services: optimal dispatch and design of energy storage systems under progressive loading
  publication-title: Energy
– volume: 40
  start-page: 774
  year: 2016
  end-page: 776
  ident: bib45
  article-title: Experimental study of partial shadow effect on PV system
  publication-title: Chin. J. Power Sources
– volume: 264
  year: 2023
  ident: bib32
  article-title: Processing of global solar irradiance and ground-based infrared sky images for solar nowcasting and intra-hour forecasting applications
  publication-title: Sol. Energy
– volume: 72
  year: 2021
  ident: bib43
  article-title: Sustainability of compact cities: a review of Inter-Building Effect on building energy and solar energy use
  publication-title: Sustain. Cities Soc.
– volume: 168
  year: 2020
  ident: bib44
  article-title: Ten questions on urban building energy modeling
  publication-title: Build. Environ.
– volume: 293
  year: 2024
  ident: bib36
  article-title: Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network
  publication-title: Energy
– volume: 267
  year: 2020
  ident: bib8
  article-title: Forecast modeling and performance assessment of solar PV systems
  publication-title: J. Clean. Prod.
– volume: 47
  year: 2023
  ident: bib27
  article-title: Enhancing photovoltaic system modeling and control under partial and complex shading conditions using a robust hybrid DE-FFNN MPPT strategy
  publication-title: Renewable Energy Focus
– volume: 153
  start-page: 409
  year: 2017
  end-page: 422
  ident: bib16
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers. Manag.
– volume: 380
  year: 2025
  ident: bib1
  article-title: Distributed-regional photovoltaic power generation prediction with limited data: a robust autoregressive transfer learning method
  publication-title: Appl. Energy
– year: 2024
  ident: bib11
  article-title: Mathematical modeling and performance evaluations of a wood drying process using photovoltaic thermal and double-pass solar air collectors
  publication-title: Appl. Therm. Eng.
– volume: 250
  year: 2020
  ident: bib30
  article-title: Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: case study of South Korea
  publication-title: J. Clean. Prod.
– volume: 10
  start-page: 1731
  year: 2022
  end-page: 1744
  ident: bib47
  article-title: Performance enhancement of partial shaded photovoltaic system with the novel screw pattern array configuration scheme
  publication-title: IEEE Access
– volume: 2
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib59
  article-title: Effect of environmental variables on photovoltaic performance-based on experimental studies
  publication-title: International Journal of Civil, Mechanical and Energy Science (IJCMES)
– volume: 7
  start-page: 78063
  year: 2019
  end-page: 78074
  ident: bib50
  article-title: Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
  publication-title: IEEE Access
– volume: 115
  start-page: 354
  year: 2015
  end-page: 368
  ident: bib20
  article-title: PV power forecast using a nonparametric PV model
  publication-title: Sol. Energy
– volume: 237
  year: 2024
  ident: bib39
  article-title: Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints
  publication-title: Renew. Energy
– year: 2024
  ident: bib2
  article-title: A real-time controllable pressure-driven smart window with Cu2+ solution
  publication-title: Energy Build.
– volume: 97
  year: 2023
  ident: bib38
  article-title: Long sequence time-series forecasting with deep learning: a survey
  publication-title: Inf. Fusion
– volume: 80
  year: 2022
  ident: bib54
  article-title: The impact of shadow covering on the rooftop solar photovoltaic system for evaluating self-sufficiency rate in the concept of nearly zero energy building
  publication-title: Sustain. Cities Soc.
– volume: 370
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib4
  article-title: Multi-objective design optimization of multiple energy systems in net/nearly zero energy buildings under uncertainty correlations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123620
– volume: 237
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib39
  article-title: Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.121834
– volume: 47
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib27
  article-title: Enhancing photovoltaic system modeling and control under partial and complex shading conditions using a robust hybrid DE-FFNN MPPT strategy
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2023.100504
– volume: 7
  start-page: 78063
  year: 2019
  ident: 10.1016/j.renene.2025.122821_bib50
  article-title: Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923006
– volume: 75
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib52
  article-title: A physical model with meteorological forecasting for hourly rooftop photovoltaic power prediction
  publication-title: J. Build. Eng.
– volume: 231
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib15
  article-title: Experimentally validated thermal modeling for temperature prediction of photovoltaic modules under variable environmental conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120922
– volume: 380
  year: 2025
  ident: 10.1016/j.renene.2025.122821_bib1
  article-title: Distributed-regional photovoltaic power generation prediction with limited data: a robust autoregressive transfer learning method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.125058
– volume: 80
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib54
  article-title: The impact of shadow covering on the rooftop solar photovoltaic system for evaluating self-sufficiency rate in the concept of nearly zero energy building
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.103821
– volume: 316
  year: 2025
  ident: 10.1016/j.renene.2025.122821_bib17
  article-title: Unlocking the flexibilities of data centers for smart grid services: optimal dispatch and design of energy storage systems under progressive loading
  publication-title: Energy
  doi: 10.1016/j.energy.2025.134511
– volume: 306
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib57
  article-title: Relation between prognostics predictor evaluation metrics and local interpretability SHAP values
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2022.103667
– volume: 2
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.renene.2025.122821_bib59
  article-title: Effect of environmental variables on photovoltaic performance-based on experimental studies
  publication-title: International Journal of Civil, Mechanical and Energy Science (IJCMES)
– volume: 81
  start-page: 912
  year: 2018
  ident: 10.1016/j.renene.2025.122821_bib12
  article-title: Forecasting of photovoltaic power generation and model optimization: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.017
– volume: 63
  start-page: 579
  year: 2016
  ident: 10.1016/j.renene.2025.122821_bib34
  article-title: A literature review on estimating of PV-array hourly power under cloudy weather conditions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.05.027
– volume: 97
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib38
  article-title: Long sequence time-series forecasting with deep learning: a survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101819
– volume: 40
  start-page: 774
  issue: 4
  year: 2016
  ident: 10.1016/j.renene.2025.122821_bib45
  article-title: Experimental study of partial shadow effect on PV system
  publication-title: Chin. J. Power Sources
– volume: 827
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib46
  article-title: Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: comprehensive review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154050
– volume: 377
  year: 2025
  ident: 10.1016/j.renene.2025.122821_bib18
  article-title: A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.124620
– volume: 250
  year: 2020
  ident: 10.1016/j.renene.2025.122821_bib30
  article-title: Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: case study of South Korea
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119476
– volume: 50
  start-page: 82
  year: 2015
  ident: 10.1016/j.renene.2025.122821_bib35
  article-title: Ensemble methods for wind and solar power forecasting—a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.081
– volume: 954
  start-page: 111
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib58
  article-title: Outdoor experimental investigation of the temperature effect on the performance of different PV modules materials
  publication-title: Key Eng. Mater.
  doi: 10.4028/p-nqJi1m
– volume: 213
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib31
  article-title: A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108796
– volume: 94
  start-page: 169
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib37
  article-title: A new approach based on association rules to add explainability to time series forecasting models
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.01.021
– volume: 115
  start-page: 354
  year: 2015
  ident: 10.1016/j.renene.2025.122821_bib20
  article-title: PV power forecast using a nonparametric PV model
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.03.006
– volume: 33
  start-page: 821
  issue: 3
  year: 2021
  ident: 10.1016/j.renene.2025.122821_bib26
  article-title: Prediction of energy photovoltaic power generation based on artificial intelligence algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05249-z
– volume: 315
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib42
  article-title: A novel acceleration approach to shadow calculation based on sunlight channel for urban building energy modeling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114244
– year: 2024
  ident: 10.1016/j.renene.2025.122821_bib2
  article-title: A real-time controllable pressure-driven smart window with Cu2+ solution
  publication-title: Energy Build.
– year: 2024
  ident: 10.1016/j.renene.2025.122821_bib11
  article-title: Mathematical modeling and performance evaluations of a wood drying process using photovoltaic thermal and double-pass solar air collectors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123901
– year: 2019
  ident: 10.1016/j.renene.2025.122821_bib28
  article-title: Day-ahead photovoltaic forecasting: a comparison of the most effective techniques
  publication-title: Energies
  doi: 10.3390/en12091621
– volume: 126
  start-page: 855
  year: 2018
  ident: 10.1016/j.renene.2025.122821_bib10
  article-title: Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.03.070
– volume: 264
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib32
  article-title: Processing of global solar irradiance and ground-based infrared sky images for solar nowcasting and intra-hour forecasting applications
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.111968
– volume: 277
  year: 2020
  ident: 10.1016/j.renene.2025.122821_bib25
  article-title: Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123948
– volume: 10
  issue: 13
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib56
  article-title: Towards energy efficiency: a comprehensive review of deep learning-based photovoltaic power forecasting strategies
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e33419
– volume: 136
  start-page: 125
  year: 2016
  ident: 10.1016/j.renene.2025.122821_bib13
  article-title: On recent advances in PV output power forecast
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.073
– volume: 9
  start-page: 447
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib22
  article-title: Trends and gaps in photovoltaic power forecasting with machine learning
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.11.208
– volume: 216
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib21
  article-title: Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.118997
– volume: 91
  start-page: 433
  year: 2015
  ident: 10.1016/j.renene.2025.122821_bib23
  article-title: Support vector regression based prediction of global solar radiation on a horizontal surface
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.015
– volume: 10
  start-page: 1731
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib47
  article-title: Performance enhancement of partial shaded photovoltaic system with the novel screw pattern array configuration scheme
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3138917
– volume: 187
  year: 2019
  ident: 10.1016/j.renene.2025.122821_bib51
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.168
– volume: 238
  year: 2025
  ident: 10.1016/j.renene.2025.122821_bib40
  article-title: Research on stacking ensemble method for day-ahead ultra-short-term prediction of photovoltaic power
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.121853
– volume: 121
  start-page: 3711
  issue: 12
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib41
  article-title: Photovoltaic power generation power prediction under major extreme weather based on VMD-KELM
  publication-title: Energy Eng. J. Assoc. Energy Eng.
– volume: 267
  year: 2020
  ident: 10.1016/j.renene.2025.122821_bib8
  article-title: Forecast modeling and performance assessment of solar PV systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122167
– volume: 251
  start-page: 86
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib5
  article-title: On the value of expert knowledge in estimation and forecasting of solar photovoltaic power generation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.01.019
– volume: 115
  year: 2019
  ident: 10.1016/j.renene.2025.122821_bib48
  article-title: A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109372
– volume: 8
  start-page: 54
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib49
  article-title: Short-term photovoltaic power forecasting method based on convolutional neural network
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.071
– volume: 262
  year: 2025
  ident: 10.1016/j.renene.2025.122821_bib6
  article-title: Frosting-defrosting performance variations of air source heat pumps with the type of refrigerants: R410A and R32 as an example
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.125189
– volume: 72
  year: 2021
  ident: 10.1016/j.renene.2025.122821_bib43
  article-title: Sustainability of compact cities: a review of Inter-Building Effect on building energy and solar energy use
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.103035
– volume: 212
  year: 2020
  ident: 10.1016/j.renene.2025.122821_bib29
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112766
– volume: 124
  year: 2020
  ident: 10.1016/j.renene.2025.122821_bib9
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109792
– volume: 137
  year: 2022
  ident: 10.1016/j.renene.2025.122821_bib33
  article-title: Forecasting intra-hour solar photovoltaic energy by assembling wavelet based time-frequency analysis with deep learning neural networks
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107777
– volume: 198
  year: 2019
  ident: 10.1016/j.renene.2025.122821_bib14
  article-title: Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111800
– volume: 90
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib3
  article-title: Experimental investigation on the space heating performance of air source heat pump with vapor injection under frosting condition
  publication-title: J. Build. Eng.
– volume: 168
  year: 2020
  ident: 10.1016/j.renene.2025.122821_bib44
  article-title: Ten questions on urban building energy modeling
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106508
– volume: 8
  start-page: 90
  issue: 3
  year: 2014
  ident: 10.1016/j.renene.2025.122821_bib19
  article-title: Photovoltaic power forecasting using statistical methods: impact of weather data
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2013.0135
– year: 2020
  ident: 10.1016/j.renene.2025.122821_bib24
  article-title: The short-term forecasting of asymmetry photovoltaic power based on the feature extraction of PV power and SVM algorithm
  publication-title: Symmetry
  doi: 10.3390/sym12111777
– start-page: 38
  issue: 3
  year: 2023
  ident: 10.1016/j.renene.2025.122821_bib55
  article-title: Output characteristics study of large size pv modules under partial shadow occlusion
  publication-title: Sol. Energy
– volume: 293
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib36
  article-title: Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130621
– volume: 153
  start-page: 409
  year: 2017
  ident: 10.1016/j.renene.2025.122821_bib16
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.008
– volume: 119
  year: 2024
  ident: 10.1016/j.renene.2025.122821_bib53
  article-title: Prediction of rainy-day photovoltaic power generation based on generative adversarial networks and enhanced sparrow search algorithm
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109529
SSID ssj0015874
Score 2.5010424
Snippet The power generation of distributed photovoltaic (PV) systems often suffers interference due to shadows cast by surrounding buildings. To improve the accuracy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122821
SubjectTerms algorithms
ambient temperature
China
Convolutional deep neural networks
Photovoltaic power
power generation
Power prediction
prediction
relative humidity
Shadow effect
SHAP analysis
solar collectors
solar energy
solar radiation
Title An investigation of photovoltaic power forecasting in buildings considering shadow effects: Modeling approach and SHAP analysis
URI https://dx.doi.org/10.1016/j.renene.2025.122821
https://www.proquest.com/docview/3206193535
Volume 245
WOSCitedRecordID wos001447846800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUl4zEDaVax3Ee3CJUVDhUFS1iOVne2NGmqpylSWg58dcZv5JAhQpIXKLIir3RzpeZ8XjmG4ReFglJmEyTSMJ-I0rsJ5WkqwisoQJvQ0kpc9tsIjs4yJfL4tCnDnW2nUCmdX5xUWz-q6hhDIRtSmf_QtzjojAA9yB0uILY4fpHgi9N7uJInuHcwc267VtQRL1oqlcb0xjNpBeqSnS9r2lZ-fbYnclDty08baBhLWR7HpI-TPTA9E6zFeyBjNzlfu6Xh3Dj-E3m_u4HUKXntjpL2SLDES6DhU8jvszgeTRYFfh5-BbsqckUatyYXk-nSD7G_Uk186BFzKbkKhdJC9U0U-qSDUmmiwi2Z2SunWPHNnlJ07ugw8muIf7Uhu80Zrskhg0kmSzbmG94ZJY2K4PDZzj02XW0HWesADW4Xb7bW74fD55Y7oi7w6uEakubEnj5t37nzfxi162zcnwH3fa7DFw6dNxF15S-h27NuCfvo--lxj_hBLc1nuMEW5zgGU7geTziBM9wgh1OsMfJaxxQggNKMKAEG5TggJIH6OPbveM3-5HvxhFVlBZ9lAuSKRmDUapUBZsAEUu2Wihl6Z3qbCFZDnZf5qyWmZS1pLSGra20fD9gRih9iLZ0q9UjhOsihSlFRRKRg64QxsunGUsTQqQQNdlBNPyrvPJU9aZjyikPOYkn3MmCG1lwJ4sdFI2zNo6q5YrnsyAw7t1N50ZywNgVM18E-XLQxuaITWjVDh2nMfjHBWWUPf7n1Z-gm9Mn8xRt9WeDeoZuVF_7pjt77gH7A9-mtgU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+photovoltaic+power+forecasting+in+buildings+considering+shadow+effects%3A+Modeling+approach+and+SHAP+analysis&rft.jtitle=Renewable+energy&rft.au=Fu%2C+Jiaqian&rft.au=Sun%2C+Yuying&rft.au=Li%2C+Yunhe&rft.au=Wang%2C+Wei&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.volume=245&rft_id=info:doi/10.1016%2Fj.renene.2025.122821&rft.externalDocID=S0960148125004835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon