A hybrid optimized model for predicting evapotranspiration in early and late rice based on a categorical regression tree combination of key influencing factors

•The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The SSA-LSSVM model performs best among the optimization models. Crop evapotranspiration (ETC) is an important component of the agricultural hydrolog...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture Vol. 211; p. 108031
Main Authors: Zhao, Long, Qing, Shunhao, Bai, Jiayi, Hao, Haohao, Li, Hui, Shi, Yi, Xing, Xuguang, Yang, Ru
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2023
Subjects:
ISSN:0168-1699, 1872-7107
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The SSA-LSSVM model performs best among the optimization models. Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the hydrological environment of farmlands and guiding crop irrigation. To improve the prediction accuracy of ETC for early and late rice, this study analyzed the importance of the influencing factors based on a categorical regression tree (CART) machine learning algorithm. Based on the importance results of the influencing factors obtained from CART analysis, different combinations of input factors were constructed, and daily ETC prediction models were developed for early and late rice using the least squares support vector machine (LSSVM). A three-element heuristic optimization algorithm, Sine Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), and Sparrow Search Algorithm (SSA), were used to optimize the ETC model to improve the performance of the early and late rice ETC prediction models. The results of this study revealed that the strongest correlation between early and late rice ETC was net solar radiation (Rn), with importance of 0.830 and 0.802, respectively. The next strongest correlations were temperature (T), wind speed (u), soil moisture (SM) and u, leaf area index (LAI), SM (0.092, 0.02, 0.014 and 0.058, 0.049, 0.034), respectively. The accuracy of the model tended to increase as the number of influencing factors in the input combinations constructed based on the importance results increased. The accuracy of the model increased more rapidly when the input factors were one to four and the accuracy of the model increased slightly when the input factors were more than four. The SSA-LSSVM model with four-factor combinations of inputs was the least-factor combination with guaranteed model accuracy of RMSE = 0.514 mm/d, R2 = 0.924, KGE = 0.565, WI = 0.978,and MAE = 0.414 mm/d; RMSE = 0.468 mm/d, R2 = 0.910, KGE = 0.670, WI = 0.985, and MAE = 0.368 mm/d. This study may provide a reference for the prediction of evapotranspiration as a key factor in the study of the agricultural hydrological environment of early and late rice.
AbstractList Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the hydrological environment of farmlands and guiding crop irrigation. To improve the prediction accuracy of ETC for early and late rice, this study analyzed the importance of the influencing factors based on a categorical regression tree (CART) machine learning algorithm. Based on the importance results of the influencing factors obtained from CART analysis, different combinations of input factors were constructed, and daily ETC prediction models were developed for early and late rice using the least squares support vector machine (LSSVM). A three-element heuristic optimization algorithm, Sine Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), and Sparrow Search Algorithm (SSA), were used to optimize the ETC model to improve the performance of the early and late rice ETC prediction models. The results of this study revealed that the strongest correlation between early and late rice ETC was net solar radiation (Rn), with importance of 0.830 and 0.802, respectively. The next strongest correlations were temperature (T), wind speed (u), soil moisture (SM) and u, leaf area index (LAI), SM (0.092, 0.02, 0.014 and 0.058, 0.049, 0.034), respectively. The accuracy of the model tended to increase as the number of influencing factors in the input combinations constructed based on the importance results increased. The accuracy of the model increased more rapidly when the input factors were one to four and the accuracy of the model increased slightly when the input factors were more than four. The SSA-LSSVM model with four-factor combinations of inputs was the least-factor combination with guaranteed model accuracy of RMSE = 0.514 mm/d, R² = 0.924, KGE = 0.565, WI = 0.978,and MAE = 0.414 mm/d; RMSE = 0.468 mm/d, R² = 0.910, KGE = 0.670, WI = 0.985, and MAE = 0.368 mm/d. This study may provide a reference for the prediction of evapotranspiration as a key factor in the study of the agricultural hydrological environment of early and late rice.
•The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The SSA-LSSVM model performs best among the optimization models. Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the hydrological environment of farmlands and guiding crop irrigation. To improve the prediction accuracy of ETC for early and late rice, this study analyzed the importance of the influencing factors based on a categorical regression tree (CART) machine learning algorithm. Based on the importance results of the influencing factors obtained from CART analysis, different combinations of input factors were constructed, and daily ETC prediction models were developed for early and late rice using the least squares support vector machine (LSSVM). A three-element heuristic optimization algorithm, Sine Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), and Sparrow Search Algorithm (SSA), were used to optimize the ETC model to improve the performance of the early and late rice ETC prediction models. The results of this study revealed that the strongest correlation between early and late rice ETC was net solar radiation (Rn), with importance of 0.830 and 0.802, respectively. The next strongest correlations were temperature (T), wind speed (u), soil moisture (SM) and u, leaf area index (LAI), SM (0.092, 0.02, 0.014 and 0.058, 0.049, 0.034), respectively. The accuracy of the model tended to increase as the number of influencing factors in the input combinations constructed based on the importance results increased. The accuracy of the model increased more rapidly when the input factors were one to four and the accuracy of the model increased slightly when the input factors were more than four. The SSA-LSSVM model with four-factor combinations of inputs was the least-factor combination with guaranteed model accuracy of RMSE = 0.514 mm/d, R2 = 0.924, KGE = 0.565, WI = 0.978,and MAE = 0.414 mm/d; RMSE = 0.468 mm/d, R2 = 0.910, KGE = 0.670, WI = 0.985, and MAE = 0.368 mm/d. This study may provide a reference for the prediction of evapotranspiration as a key factor in the study of the agricultural hydrological environment of early and late rice.
ArticleNumber 108031
Author Shi, Yi
Yang, Ru
Li, Hui
Zhao, Long
Bai, Jiayi
Qing, Shunhao
Hao, Haohao
Xing, Xuguang
Author_xml – sequence: 1
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
  organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
– sequence: 2
  givenname: Shunhao
  surname: Qing
  fullname: Qing, Shunhao
  organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
– sequence: 3
  givenname: Jiayi
  surname: Bai
  fullname: Bai, Jiayi
  organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
– sequence: 4
  givenname: Haohao
  surname: Hao
  fullname: Hao, Haohao
  organization: Zhumadian Company, Henan Provincial Tobacco Company, Zhumadian, Henan Province 463000, China
– sequence: 5
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
– sequence: 6
  givenname: Yi
  surname: Shi
  fullname: Shi, Yi
  organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China
– sequence: 7
  givenname: Xuguang
  surname: Xing
  fullname: Xing, Xuguang
  email: xgxing@nwsuaf.edu.cn
  organization: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi Province, China
– sequence: 8
  givenname: Ru
  surname: Yang
  fullname: Yang, Ru
  organization: College of Information and Electrical Engineering, China Agricultural University, Yantai, Shandong Province 264670, China
BookMark eNqFUcuO1DAQtNCuxOzjDzj4yCWDnWQShwPSasUC0kpc2LPVdjqDB8cObc9Kw8_wq3gIJw5wslyuqnZXXbGLEAMy9kqKrRSye3PY2jgvsN_Wom4KpEQjX7CNVH1d9VL0F2xTaKqS3TC8ZFcpHUS5D6rfsJ93_OvJkBt5XLKb3Q8c-RxH9HyKxBfC0dnswp7jMywxE4S0OILsYuAucATyJw5h5B4ycnIWuYFUTMo7cFvAfSwoeE64J0zpLMyEyMuXjQurU5z4NzwVw8kfMdjzvAlsjpRu2OUEPuHtn_OaPT28_3L_sXr8_OHT_d1jZZtmyJXa9dAqoaauLWvVTQ3NuBPDbpIWOyNUPwijpBEdyLY3Yjdga-p-6IQp9NG2zTV7vfouFL8fMWU9u2TRewgYj0nXSikhlKxFobYr1VJMiXDSC7kZ6KSl0Oc-9EGvfehzH3rto8je_iWzLv9ev6Tq_P_E71YxlgyeHZJO1pWkSj2ENusxun8b_AIa861-
CitedBy_id crossref_primary_10_1016_j_ymssp_2024_111270
crossref_primary_10_3389_frwa_2025_1553732
crossref_primary_10_1016_j_foodres_2025_116306
crossref_primary_10_3390_agronomy15081984
crossref_primary_10_3390_agronomy14081780
crossref_primary_10_1016_j_agwat_2024_108807
crossref_primary_10_1016_j_compag_2024_109862
crossref_primary_10_1016_j_triboint_2024_110366
crossref_primary_10_3390_plants14071098
crossref_primary_10_1016_j_agwat_2024_108718
crossref_primary_10_1007_s11269_024_03860_6
crossref_primary_10_1016_j_agrformet_2025_110762
Cites_doi 10.1016/j.jelechem.2008.06.021
10.1016/j.jhydrol.2022.127553
10.3390/agronomy9020108
10.1016/j.knosys.2015.12.022
10.1007/s00477-021-02159-x
10.1007/s00704-020-03154-y
10.1016/j.agwat.2020.106145
10.1016/j.cma.2022.115764
10.1016/j.compag.2023.107836
10.1016/j.jhydrol.2016.09.060
10.1016/j.engappai.2022.105104
10.1002/met.1941
10.1023/A:1018628609742
10.1007/s00271-008-0119-y
10.1002/grl.50450
10.1016/j.eswa.2017.07.043
10.3390/pr9101774
10.1007/s00271-012-0336-2
10.1016/j.agee.2009.03.004
10.1002/eco.1925
10.1080/21642583.2019.1708830
10.1016/j.compag.2016.11.011
10.1016/j.jhydrol.2018.02.060
10.1007/s11269-015-0990-2
10.1016/j.compag.2015.11.001
10.1007/s11442-011-0867-0
10.1016/j.future.2020.03.055
10.1016/j.agwat.2020.106622
10.1016/j.jhydrol.2019.124045
10.1007/s00477-022-02249-4
10.1007/s00477-022-02268-1
10.1016/j.agrformet.2018.08.019
10.1016/j.jhydrol.2016.11.021
10.1007/s11356-020-08792-3
10.1016/j.jhydrol.2022.127822
10.1016/j.jhydrol.2014.01.036
10.1007/s00704-019-02913-w
10.3390/atmos13060922
10.1175/JHM-D-16-0044.1
10.1016/j.eswa.2017.08.038
10.1016/j.agwat.2015.10.009
10.1016/j.agwat.2022.107501
10.1016/j.earscirev.2010.02.004
10.3390/w13233478
10.1061/(ASCE)IR.1943-4774.0001539
10.1016/j.scitotenv.2019.05.288
10.1016/j.agwat.2017.12.017
10.1016/j.jhydrol.2018.09.037
10.1016/j.agwat.2021.106799
10.1007/s00366-019-00780-7
10.1061/(ASCE)0733-9437(2003)129:3(214)
10.1016/j.jhydrol.2022.127977
10.1016/j.jhydrol.2019.06.075
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2023.108031
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2023_108031
S0168169923004192
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-857a4808f64987232a3d5095f1ce6b08790b81b06a147b059e4b27960b987dc43
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001039270100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Thu Oct 02 21:42:30 EDT 2025
Sat Nov 29 07:24:53 EST 2025
Tue Nov 18 22:23:51 EST 2025
Fri Feb 23 02:33:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Least Squares Support Vector Machine
Categorical Regression Tree
Meta-heuristic optimization algorithms
Evapotranspiration
Rice
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-857a4808f64987232a3d5095f1ce6b08790b81b06a147b059e4b27960b987dc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2888008120
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2888008120
crossref_primary_10_1016_j_compag_2023_108031
crossref_citationtrail_10_1016_j_compag_2023_108031
elsevier_sciencedirect_doi_10_1016_j_compag_2023_108031
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ozsoydan, Gölcük (b0175) 2022; 35
Wen (b0245) 2015; 29
Fan, Wu, Zhang, Xiang, Zheng (b0060) 2016; 542
Barzegar, Ghasri, Qi, Quilty, Adamowski (b0035) 2019; 577
Abd Elaziz, Oliva, Xiong (b0005) 2017; 90
Li, Chen, Wang, Heidari, Mirjalili (b0100) 2020; 111
Suykens, Vandewalle (b0215) 1999; 9
Lu (b0120) 2019; 138
Li, Fang, Liu (b0095) 2018; 91
Ahmadi (b0020) 2021; 244
Goyal, Kumar, Sharda (b0065) 2023; 209
Mattar (b0130) 2018; 198
Vapnik (b0230) 1995
Deng, Liu (b0050) 2023; 404
Abrishami, Sepaskhah, Shahrokhnia (b0010) 2018; 135
Mokari, DuBois, Samani, Mohebzadeh, Djaman (b0160) 2021; 147
Zheng, Jia, Abualigah, Liu, Wang (b0310) 2021; 9
Karmouni (b0070) 2022; 114
Zheng, Chen, Han, Zhao, Ma (b0305) 2009; 132
Mehdizadeh, S., Ahmadi, F., Kozekalani Sales, A., 2020. Modelling daily soil temperature at different depths via the classical and hybrid models. Meteorol. Appl., 27, 4. DOI:10.1002/met.1941.
Zheng (b0300) 2021; 249
Rahimi Khoob (b0190) 2008; 27
Singh Kushwah (b0205) 2022; 56
Antonopoulos, Antonopoulos (b0030) 2017; 132
Tikhamarine, Malik, Souag-Gamane, Kisi (b0220) 2020; 27
Zhao (b0295) 2022; 13
Mohammadi, Mehdizadeh (b0155) 2020; 237
Xiao, M., Kong, D., 2021. Improvement in the Estimation of Daily Net Surface Radiation in China. J. Irrigation Drain. Eng. 3, 147.
Zou, Zhong, Ma, Hu, Feng (b0315) 2017; 132
Berretta, Poë, Stovin (b0040) 2014; 511
Xu (b0265) 2022; 608
Liu (b0110) 2021; 13
Mirjalili (b0150) 2016; 96
Sudheer, Gosain, Ramasastri (b0210) 2003; 129
Zhao (b0290) 2022; 610
Qiu, Crow, Nearing (b0185) 2016; 17
Wang (b0235) 2017; 544
Liu (b0105) 2019; 578
Ahmadi, Mehdizadeh, Nourani (b0025) 2022; 36
Niazi, Sharifi, Amjadi (b0165) 2008; 623
Aghelpour, Norooz-Valashedi (b0015) 2022; 36
Kumar (b0090) 2021; 12
Liu (b0115) 2022; 610
Zhang (b0285) 2018; 11
Wang, Wang, Li, Cribb, Sparrow (b0240) 2007; 112
Katebi, Shoaei-parchin, Shariati, Trung, Khorami (b0075) 2019; 36
Seneviratne (b0200) 2010; 99
Xue, Shen (b0270) 2020; 8
Fan (b0055) 2018; 263
Nouri, Homaee (b0170) 2018; 566
Traore, Luo, Fipps (b0225) 2016; 163
Sain (b0195) 1996
Qiu (b0180) 2022; 264
Zhang (b0280) 2011; 21
Yang, Long, Shang (b0275) 2013; 40
Mehdizadeh, Ahmadi, Kouzehkalani Sales (b0140) 2022; 37
Mehdizadeh (b0135) 2018; 559
Xing (b0260) 2016; 120
Kisi (b0085) 2012; 31
Wu, Lin (b0250) 2019; 683
Bian, Dai, Zhang, Yang, Du (b0045) 2020; 140
Kelley, Pardyjak (b0080) 2019; 9
Nouri (10.1016/j.compag.2023.108031_b0170) 2018; 566
Kumar (10.1016/j.compag.2023.108031_b0090) 2021; 12
Zou (10.1016/j.compag.2023.108031_b0315) 2017; 132
Qiu (10.1016/j.compag.2023.108031_b0185) 2016; 17
Mehdizadeh (10.1016/j.compag.2023.108031_b0140) 2022; 37
Abd Elaziz (10.1016/j.compag.2023.108031_b0005) 2017; 90
Zheng (10.1016/j.compag.2023.108031_b0300) 2021; 249
Ahmadi (10.1016/j.compag.2023.108031_b0025) 2022; 36
Kisi (10.1016/j.compag.2023.108031_b0085) 2012; 31
Qiu (10.1016/j.compag.2023.108031_b0180) 2022; 264
Yang (10.1016/j.compag.2023.108031_b0275) 2013; 40
Zhao (10.1016/j.compag.2023.108031_b0290) 2022; 610
Fan (10.1016/j.compag.2023.108031_b0055) 2018; 263
Zhang (10.1016/j.compag.2023.108031_b0285) 2018; 11
Suykens (10.1016/j.compag.2023.108031_b0215) 1999; 9
Zhao (10.1016/j.compag.2023.108031_b0295) 2022; 13
Wu (10.1016/j.compag.2023.108031_b0250) 2019; 683
Zheng (10.1016/j.compag.2023.108031_b0305) 2009; 132
Sudheer (10.1016/j.compag.2023.108031_b0210) 2003; 129
Antonopoulos (10.1016/j.compag.2023.108031_b0030) 2017; 132
Bian (10.1016/j.compag.2023.108031_b0045) 2020; 140
Tikhamarine (10.1016/j.compag.2023.108031_b0220) 2020; 27
Aghelpour (10.1016/j.compag.2023.108031_b0015) 2022; 36
Karmouni (10.1016/j.compag.2023.108031_b0070) 2022; 114
Mohammadi (10.1016/j.compag.2023.108031_b0155) 2020; 237
Xing (10.1016/j.compag.2023.108031_b0260) 2016; 120
Lu (10.1016/j.compag.2023.108031_b0120) 2019; 138
Berretta (10.1016/j.compag.2023.108031_b0040) 2014; 511
Vapnik (10.1016/j.compag.2023.108031_b0230) 1995
Wang (10.1016/j.compag.2023.108031_b0240) 2007; 112
10.1016/j.compag.2023.108031_b0255
Li (10.1016/j.compag.2023.108031_b0095) 2018; 91
Li (10.1016/j.compag.2023.108031_b0100) 2020; 111
Wen (10.1016/j.compag.2023.108031_b0245) 2015; 29
Katebi (10.1016/j.compag.2023.108031_b0075) 2019; 36
Liu (10.1016/j.compag.2023.108031_b0115) 2022; 610
Liu (10.1016/j.compag.2023.108031_b0110) 2021; 13
Xue (10.1016/j.compag.2023.108031_b0270) 2020; 8
Traore (10.1016/j.compag.2023.108031_b0225) 2016; 163
Ozsoydan (10.1016/j.compag.2023.108031_b0175) 2022; 35
Barzegar (10.1016/j.compag.2023.108031_b0035) 2019; 577
Mirjalili (10.1016/j.compag.2023.108031_b0150) 2016; 96
Wang (10.1016/j.compag.2023.108031_b0235) 2017; 544
Abrishami (10.1016/j.compag.2023.108031_b0010) 2018; 135
10.1016/j.compag.2023.108031_b0145
Kelley (10.1016/j.compag.2023.108031_b0080) 2019; 9
Sain (10.1016/j.compag.2023.108031_b0195) 1996
Fan (10.1016/j.compag.2023.108031_b0060) 2016; 542
Seneviratne (10.1016/j.compag.2023.108031_b0200) 2010; 99
Liu (10.1016/j.compag.2023.108031_b0105) 2019; 578
Zheng (10.1016/j.compag.2023.108031_b0310) 2021; 9
Mattar (10.1016/j.compag.2023.108031_b0130) 2018; 198
Goyal (10.1016/j.compag.2023.108031_b0065) 2023; 209
Mokari (10.1016/j.compag.2023.108031_b0160) 2021; 147
Zhang (10.1016/j.compag.2023.108031_b0280) 2011; 21
Ahmadi (10.1016/j.compag.2023.108031_b0020) 2021; 244
Rahimi Khoob (10.1016/j.compag.2023.108031_b0190) 2008; 27
Deng (10.1016/j.compag.2023.108031_b0050) 2023; 404
Xu (10.1016/j.compag.2023.108031_b0265) 2022; 608
Mehdizadeh (10.1016/j.compag.2023.108031_b0135) 2018; 559
Niazi (10.1016/j.compag.2023.108031_b0165) 2008; 623
Singh Kushwah (10.1016/j.compag.2023.108031_b0205) 2022; 56
References_xml – volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: b0005
  article-title: An improved Opposition-Based Sine Cosine Algorithm for global optimization
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 1539
  year: 2019
  end-page: 1558
  ident: b0075
  article-title: Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures
  publication-title: Eng. Comput.
– volume: 27
  start-page: 30001
  year: 2020
  end-page: 30019
  ident: b0220
  article-title: Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration
  publication-title: Environ. Sci. Pollut. Res.
– volume: 147
  start-page: 575
  year: 2021
  end-page: 587
  ident: b0160
  article-title: Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico
  publication-title: Theor. Appl. Climatol.
– volume: 132
  start-page: 1039
  year: 2017
  end-page: 1047
  ident: b0315
  article-title: Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau
  publication-title: Theor. Appl. Climatol.
– volume: 566
  start-page: 705
  year: 2018
  end-page: 718
  ident: b0170
  article-title: On modeling reference crop evapotranspiration under lack of reliable data over Iran
  publication-title: J. Hydrol.
– volume: 27
  start-page: 35
  year: 2008
  end-page: 39
  ident: b0190
  article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
  publication-title: Irrig. Sci.
– volume: 37
  start-page: 507
  year: 2022
  end-page: 526
  ident: b0140
  article-title: Development of wavelet-based hybrid models to enhance daily soil temperature modeling: application of entropy and τ-Kendall pre-processing techniques
  publication-title: Stoch. Env. Res. Risk A.
– volume: 578
  year: 2019
  ident: b0105
  article-title: Diagnosing environmental controls on actual evapotranspiration and evaporative fraction in a water-limited region from northwest China
  publication-title: J. Hydrol.
– volume: 209
  year: 2023
  ident: b0065
  article-title: A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives
  publication-title: Comput. Electron. Agric.
– volume: 120
  start-page: 10
  year: 2016
  end-page: 16
  ident: b0260
  article-title: Determination of dominant weather parameters on reference evapotranspiration by path analysis theory
  publication-title: Comput. Electron. Agric.
– volume: 135
  start-page: 945
  year: 2018
  end-page: 958
  ident: b0010
  article-title: Estimating wheat and maize daily evapotranspiration using artificial neural network
  publication-title: Theor. Appl. Climatol.
– volume: 56
  start-page: 3571
  year: 2022
  end-page: 3576
  ident: b0205
  article-title: Comparative study of regressor and classifier with decision tree using modern tools
  publication-title: Mater. Today:. Proc.
– reference: Mehdizadeh, S., Ahmadi, F., Kozekalani Sales, A., 2020. Modelling daily soil temperature at different depths via the classical and hybrid models. Meteorol. Appl., 27, 4. DOI:10.1002/met.1941.
– volume: 163
  start-page: 363
  year: 2016
  end-page: 379
  ident: b0225
  article-title: Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages
  publication-title: Agric. Water Manag.
– volume: 244
  year: 2021
  ident: b0020
  article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation
  publication-title: Agric. Water Manag.
– volume: 544
  start-page: 97
  year: 2017
  end-page: 108
  ident: b0235
  article-title: Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013
  publication-title: J. Hydrol.
– volume: 91
  start-page: 63
  year: 2018
  end-page: 77
  ident: b0095
  article-title: Parameter optimization of support vector regression based on sine cosine algorithm
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0270
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 36
  start-page: 2753
  year: 2022
  end-page: 2768
  ident: b0025
  article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis
  publication-title: Stoch. Env. Res. Risk A.
– volume: 140
  start-page: 1161
  year: 2020
  end-page: 1169
  ident: b0045
  article-title: Spatial distribution of potential evapotranspiration trends in the Inner Mongolia Autonomous Region (1971–2016)
  publication-title: Theor. Appl. Climatol.
– year: 1996
  ident: b0195
  article-title: The nature of statistical learning theory
– volume: 11
  year: 2018
  ident: b0285
  article-title: Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau
  publication-title: Ecohydrology
– volume: 610
  year: 2022
  ident: b0115
  article-title: Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms
  publication-title: J. Hydrol.
– year: 1995
  ident: b0230
  article-title: The nature of statistical learning
  publication-title: Theory
– volume: 13
  start-page: 922
  year: 2022
  ident: b0295
  article-title: Prediction model for daily reference crop evapotranspiration based on hybrid algorithm in semi-arid regions of China
  publication-title: Atmos.
– volume: 683
  start-page: 808
  year: 2019
  end-page: 821
  ident: b0250
  article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors
  publication-title: Sci. Total Environ.
– volume: 132
  start-page: 86
  year: 2017
  end-page: 96
  ident: b0030
  article-title: Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables
  publication-title: Comput. Electron. Agric.
– volume: 9
  year: 2019
  ident: b0080
  article-title: Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors
  publication-title: Agronomy
– volume: 99
  start-page: 125
  year: 2010
  end-page: 161
  ident: b0200
  article-title: Investigating soil moisture–climate interactions in a changing climate: A review
  publication-title: Earth Sci. Rev.
– volume: 542
  start-page: 923
  year: 2016
  end-page: 937
  ident: b0060
  article-title: Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015
  publication-title: J. Hydrol.
– volume: 21
  start-page: 609
  year: 2011
  end-page: 620
  ident: b0280
  article-title: Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin
  publication-title: J. Geog. Sci.
– volume: 610
  year: 2022
  ident: b0290
  article-title: Prediction of daily reference crop evapotranspiration in different Chinese climate zones: Combined application of key meteorological factors and Elman algorithm
  publication-title: J. Hydrol.
– volume: 29
  start-page: 3195
  year: 2015
  end-page: 3209
  ident: b0245
  article-title: Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions
  publication-title: Water Resour. Manag.
– volume: 40
  start-page: 3026
  year: 2013
  end-page: 3030
  ident: b0275
  article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data
  publication-title: Geophys. Res. Lett.
– volume: 35
  year: 2022
  ident: b0175
  article-title: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 36
  start-page: 4133
  year: 2022
  end-page: 4155
  ident: b0015
  article-title: Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models
  publication-title: Stoch. Env. Res. Risk A.
– volume: 17
  start-page: 2419
  year: 2016
  end-page: 2430
  ident: b0185
  article-title: The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation
  publication-title: J. Hydrometeorol.
– volume: 129
  start-page: 214
  year: 2003
  end-page: 218
  ident: b0210
  article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique
  publication-title: J. Irrig. Drain. Eng.
– volume: 132
  start-page: 98
  year: 2009
  end-page: 105
  ident: b0305
  article-title: Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions
  publication-title: Agr. Ecosyst. Environ.
– volume: 404
  year: 2023
  ident: b0050
  article-title: A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 237
  year: 2020
  ident: b0155
  article-title: Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm
  publication-title: Agric. Water Manag.
– volume: 114
  year: 2022
  ident: b0070
  article-title: Optimization and implementation of a photovoltaic pumping system using the sine–cosine​ algorithm
  publication-title: Eng. Appl. Artif. Intel.
– volume: 264
  year: 2022
  ident: b0180
  article-title: Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system
  publication-title: Agric Water Manag
– volume: 511
  start-page: 374
  year: 2014
  end-page: 386
  ident: b0040
  article-title: Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics
  publication-title: J. Hydrol.
– volume: 9
  year: 2021
  ident: b0310
  article-title: Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization
  publication-title: Processes
– volume: 13
  year: 2021
  ident: b0110
  article-title: Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China
  publication-title: Water
– volume: 12
  year: 2021
  ident: b0090
  article-title: The Superiority of Data-Driven Techniques for Estimation of Daily Pan Evaporation
  publication-title: Atmos.
– reference: Xiao, M., Kong, D., 2021. Improvement in the Estimation of Daily Net Surface Radiation in China. J. Irrigation Drain. Eng. 3, 147.
– volume: 623
  start-page: 86
  year: 2008
  end-page: 92
  ident: b0165
  article-title: Least-squares support vector machines for simultaneous voltammetric determination of lead and tin: A comparison between LS-SVM and PLS in voltammetric data
  publication-title: J. Electroanal. Chem.
– volume: 577
  year: 2019
  ident: b0035
  article-title: Using bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie River Basin in the Northwest Territories, Canada
  publication-title: J. Hydrol.
– volume: 198
  start-page: 28
  year: 2018
  end-page: 38
  ident: b0130
  article-title: Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt
  publication-title: Agric. Water Manag.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0150
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 31
  start-page: 611
  year: 2012
  end-page: 619
  ident: b0085
  article-title: Least squares support vector machine for modeling daily reference evapotranspiration
  publication-title: Irrig. Sci.
– volume: 138
  start-page: 1493
  year: 2019
  end-page: 1510
  ident: b0120
  article-title: Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product
  publication-title: Theor. Appl. Climatol.
– volume: 559
  start-page: 794
  year: 2018
  end-page: 812
  ident: b0135
  article-title: Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling
  publication-title: J. Hydrol.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b0100
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Futur. Gener. Comput. Syst.
– volume: 263
  start-page: 225
  year: 2018
  end-page: 241
  ident: b0055
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
– volume: 112
  year: 2007
  ident: b0240
  article-title: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0215
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 249
  year: 2021
  ident: b0300
  article-title: Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm
  publication-title: Agric. Water Manag.
– volume: 608
  year: 2022
  ident: b0265
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
– volume: 623
  start-page: 86
  issue: 1
  year: 2008
  ident: 10.1016/j.compag.2023.108031_b0165
  article-title: Least-squares support vector machines for simultaneous voltammetric determination of lead and tin: A comparison between LS-SVM and PLS in voltammetric data
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2008.06.021
– volume: 608
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0265
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127553
– volume: 9
  issue: 2
  year: 2019
  ident: 10.1016/j.compag.2023.108031_b0080
  article-title: Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors
  publication-title: Agronomy
  doi: 10.3390/agronomy9020108
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.compag.2023.108031_b0150
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– year: 1995
  ident: 10.1016/j.compag.2023.108031_b0230
  article-title: The nature of statistical learning
  publication-title: Theory
– volume: 36
  start-page: 2753
  issue: 9
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0025
  article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-021-02159-x
– volume: 140
  start-page: 1161
  issue: 3–4
  year: 2020
  ident: 10.1016/j.compag.2023.108031_b0045
  article-title: Spatial distribution of potential evapotranspiration trends in the Inner Mongolia Autonomous Region (1971–2016)
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-020-03154-y
– volume: 237
  year: 2020
  ident: 10.1016/j.compag.2023.108031_b0155
  article-title: Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106145
– volume: 404
  year: 2023
  ident: 10.1016/j.compag.2023.108031_b0050
  article-title: A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115764
– volume: 209
  year: 2023
  ident: 10.1016/j.compag.2023.108031_b0065
  article-title: A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107836
– volume: 542
  start-page: 923
  year: 2016
  ident: 10.1016/j.compag.2023.108031_b0060
  article-title: Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.09.060
– volume: 114
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0070
  article-title: Optimization and implementation of a photovoltaic pumping system using the sine–cosine​ algorithm
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2022.105104
– ident: 10.1016/j.compag.2023.108031_b0145
  doi: 10.1002/met.1941
– volume: 147
  start-page: 575
  issue: 1–2
  year: 2021
  ident: 10.1016/j.compag.2023.108031_b0160
  article-title: Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico
  publication-title: Theor. Appl. Climatol.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.compag.2023.108031_b0215
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– year: 1996
  ident: 10.1016/j.compag.2023.108031_b0195
– volume: 27
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.compag.2023.108031_b0190
  article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-008-0119-y
– volume: 40
  start-page: 3026
  issue: 12
  year: 2013
  ident: 10.1016/j.compag.2023.108031_b0275
  article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50450
– volume: 90
  start-page: 484
  year: 2017
  ident: 10.1016/j.compag.2023.108031_b0005
  article-title: An improved Opposition-Based Sine Cosine Algorithm for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.043
– volume: 9
  issue: 10
  year: 2021
  ident: 10.1016/j.compag.2023.108031_b0310
  article-title: Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization
  publication-title: Processes
  doi: 10.3390/pr9101774
– volume: 31
  start-page: 611
  issue: 4
  year: 2012
  ident: 10.1016/j.compag.2023.108031_b0085
  article-title: Least squares support vector machine for modeling daily reference evapotranspiration
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0336-2
– volume: 132
  start-page: 98
  issue: 1–2
  year: 2009
  ident: 10.1016/j.compag.2023.108031_b0305
  article-title: Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.03.004
– volume: 12
  issue: 6
  year: 2021
  ident: 10.1016/j.compag.2023.108031_b0090
  article-title: The Superiority of Data-Driven Techniques for Estimation of Daily Pan Evaporation
  publication-title: Atmos.
– volume: 11
  issue: 2
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0285
  article-title: Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau
  publication-title: Ecohydrology
  doi: 10.1002/eco.1925
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.compag.2023.108031_b0270
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 132
  start-page: 86
  year: 2017
  ident: 10.1016/j.compag.2023.108031_b0030
  article-title: Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.11.011
– volume: 559
  start-page: 794
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0135
  article-title: Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.060
– volume: 132
  start-page: 1039
  issue: 3–4
  year: 2017
  ident: 10.1016/j.compag.2023.108031_b0315
  article-title: Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau
  publication-title: Theor. Appl. Climatol.
– volume: 29
  start-page: 3195
  issue: 9
  year: 2015
  ident: 10.1016/j.compag.2023.108031_b0245
  article-title: Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0990-2
– volume: 120
  start-page: 10
  year: 2016
  ident: 10.1016/j.compag.2023.108031_b0260
  article-title: Determination of dominant weather parameters on reference evapotranspiration by path analysis theory
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.11.001
– volume: 21
  start-page: 609
  issue: 4
  year: 2011
  ident: 10.1016/j.compag.2023.108031_b0280
  article-title: Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin
  publication-title: J. Geog. Sci.
  doi: 10.1007/s11442-011-0867-0
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.compag.2023.108031_b0100
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 35
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0175
  article-title: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 244
  year: 2021
  ident: 10.1016/j.compag.2023.108031_b0020
  article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106622
– volume: 578
  year: 2019
  ident: 10.1016/j.compag.2023.108031_b0105
  article-title: Diagnosing environmental controls on actual evapotranspiration and evaporative fraction in a water-limited region from northwest China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124045
– volume: 112
  issue: D15
  year: 2007
  ident: 10.1016/j.compag.2023.108031_b0240
  article-title: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: 4133
  issue: 12
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0015
  article-title: Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-022-02249-4
– volume: 37
  start-page: 507
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0140
  article-title: Development of wavelet-based hybrid models to enhance daily soil temperature modeling: application of entropy and τ-Kendall pre-processing techniques
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-022-02268-1
– volume: 263
  start-page: 225
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0055
  article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.08.019
– volume: 544
  start-page: 97
  year: 2017
  ident: 10.1016/j.compag.2023.108031_b0235
  article-title: Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.021
– volume: 135
  start-page: 945
  issue: 3–4
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0010
  article-title: Estimating wheat and maize daily evapotranspiration using artificial neural network
  publication-title: Theor. Appl. Climatol.
– volume: 27
  start-page: 30001
  year: 2020
  ident: 10.1016/j.compag.2023.108031_b0220
  article-title: Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-08792-3
– volume: 610
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0290
  article-title: Prediction of daily reference crop evapotranspiration in different Chinese climate zones: Combined application of key meteorological factors and Elman algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127822
– volume: 511
  start-page: 374
  year: 2014
  ident: 10.1016/j.compag.2023.108031_b0040
  article-title: Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.01.036
– volume: 138
  start-page: 1493
  issue: 3–4
  year: 2019
  ident: 10.1016/j.compag.2023.108031_b0120
  article-title: Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-02913-w
– volume: 13
  start-page: 922
  issue: 6
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0295
  article-title: Prediction model for daily reference crop evapotranspiration based on hybrid algorithm in semi-arid regions of China
  publication-title: Atmos.
  doi: 10.3390/atmos13060922
– volume: 17
  start-page: 2419
  issue: 9
  year: 2016
  ident: 10.1016/j.compag.2023.108031_b0185
  article-title: The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0044.1
– volume: 91
  start-page: 63
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0095
  article-title: Parameter optimization of support vector regression based on sine cosine algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.038
– volume: 163
  start-page: 363
  year: 2016
  ident: 10.1016/j.compag.2023.108031_b0225
  article-title: Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.10.009
– volume: 264
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0180
  article-title: Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.107501
– volume: 99
  start-page: 125
  issue: 3–4
  year: 2010
  ident: 10.1016/j.compag.2023.108031_b0200
  article-title: Investigating soil moisture–climate interactions in a changing climate: A review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2010.02.004
– volume: 13
  issue: 23
  year: 2021
  ident: 10.1016/j.compag.2023.108031_b0110
  article-title: Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China
  publication-title: Water
  doi: 10.3390/w13233478
– ident: 10.1016/j.compag.2023.108031_b0255
  doi: 10.1061/(ASCE)IR.1943-4774.0001539
– volume: 683
  start-page: 808
  year: 2019
  ident: 10.1016/j.compag.2023.108031_b0250
  article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.288
– volume: 198
  start-page: 28
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0130
  article-title: Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2017.12.017
– volume: 566
  start-page: 705
  year: 2018
  ident: 10.1016/j.compag.2023.108031_b0170
  article-title: On modeling reference crop evapotranspiration under lack of reliable data over Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.037
– volume: 249
  year: 2021
  ident: 10.1016/j.compag.2023.108031_b0300
  article-title: Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.106799
– volume: 36
  start-page: 1539
  issue: 4
  year: 2019
  ident: 10.1016/j.compag.2023.108031_b0075
  article-title: Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00780-7
– volume: 129
  start-page: 214
  issue: 3
  year: 2003
  ident: 10.1016/j.compag.2023.108031_b0210
  article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2003)129:3(214)
– volume: 56
  start-page: 3571
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0205
  article-title: Comparative study of regressor and classifier with decision tree using modern tools
  publication-title: Mater. Today:. Proc.
– volume: 610
  year: 2022
  ident: 10.1016/j.compag.2023.108031_b0115
  article-title: Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127977
– volume: 577
  year: 2019
  ident: 10.1016/j.compag.2023.108031_b0035
  article-title: Using bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie River Basin in the Northwest Territories, Canada
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.075
SSID ssj0016987
Score 2.4416132
Snippet •The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The...
Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108031
SubjectTerms agriculture
Categorical Regression Tree
electronics
Evapotranspiration
hybrids
hydrologic cycle
irrigation
leaf area index
Least Squares Support Vector Machine
Meta-heuristic optimization algorithms
prediction
regression analysis
Rice
soil water
solar radiation
support vector machines
temperature
wind speed
Title A hybrid optimized model for predicting evapotranspiration in early and late rice based on a categorical regression tree combination of key influencing factors
URI https://dx.doi.org/10.1016/j.compag.2023.108031
https://www.proquest.com/docview/2888008120
Volume 211
WOSCitedRecordID wos001039270100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1vDRIiIvlyu-1jxFKBVUUkEiliIu1fiWuUtukSdTyZ_gB_Elmdtd2REEtBy5JZK-dyN-X2ZnZb2cYeysKkWeFsE3XFYHppTwzqa6Z6SS-m9ii8OxQNZvgk0k4m0WfB4Of7V6Y7ZJXVXh5GTX_FWo8hmDT1tl_gLu7KR7Azwg6viLs-Hor4IfG4oq2YRk1WoPz8jt6lLLdjRQUNitamJFS53wrmnota5uXmgZUPkQWPKZs-hK9UINKDhk002W0qiAM0k_NdVmRVT5XItqK5Oqkej_HMLtzQdE6kNRLtkCRck3V2WfXG25bSqg60X1HHqnRFfOVrgvSce_rQsjM7rjW8y1lbHVTli-LTYWn-8yslCmclOKq7K2svBrf2oE63eG4ndiuy4AGGPYGqqtSa8IxijUaKZd0bfOPE4PKUZwdSWX__IjurMf3E2G7-D_5FB-fjsfxdDSbvmu-mdSijJbydb-WO2zf4X6Es8D-8ONodtItWgVRqHbn61_Y7tSUcsLrX_w3T-g3n0A6OtOH7IGOUGComPWIDfLqMbs_7NF4wn4MQXEMOo6B5Bggx6DnGFznGJQVSI4BQg7EMSCOgeQY4HkBOxyDnmNAHIMdjkFdAHIMdjgGmmNP2enxaPr-g6k7fZip60ZrM_S58EIrLAIPnyE6-cLN0JP1CzvNg8QKeWQlGF9ZgbA9nmBEkHuJw9GoJDg8Sz33Gdur6io_YJB5nu-5wvITNDSR8Kn4fM5FWHDHKTCUPGRu-9TjVJfBp24sy7jVO57FCquYsIoVVofM7K5qVBmYG8bzFtBYu7LKRY2RkDdc-abFP0ZLT8t3osrrzUXshDjXogfvWM9vMeYFu9f_fV6yvfVqk79id9PturxYvdbU_QXJxtOj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+optimized+model+for+predicting+evapotranspiration+in+early+and+late+rice+based+on+a+categorical+regression+tree+combination+of+key+influencing+factors&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Zhao%2C+Long&rft.au=Qing%2C+Shunhao&rft.au=Bai%2C+Jiayi&rft.au=Hao%2C+Haohao&rft.date=2023-08-01&rft.issn=0168-1699&rft.volume=211+p.108031-&rft_id=info:doi/10.1016%2Fj.compag.2023.108031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon