A hybrid optimized model for predicting evapotranspiration in early and late rice based on a categorical regression tree combination of key influencing factors
•The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The SSA-LSSVM model performs best among the optimization models. Crop evapotranspiration (ETC) is an important component of the agricultural hydrolog...
Gespeichert in:
| Veröffentlicht in: | Computers and electronics in agriculture Jg. 211; S. 108031 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2023
|
| Schlagworte: | |
| ISSN: | 0168-1699, 1872-7107 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The SSA-LSSVM model performs best among the optimization models.
Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the hydrological environment of farmlands and guiding crop irrigation. To improve the prediction accuracy of ETC for early and late rice, this study analyzed the importance of the influencing factors based on a categorical regression tree (CART) machine learning algorithm. Based on the importance results of the influencing factors obtained from CART analysis, different combinations of input factors were constructed, and daily ETC prediction models were developed for early and late rice using the least squares support vector machine (LSSVM). A three-element heuristic optimization algorithm, Sine Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), and Sparrow Search Algorithm (SSA), were used to optimize the ETC model to improve the performance of the early and late rice ETC prediction models. The results of this study revealed that the strongest correlation between early and late rice ETC was net solar radiation (Rn), with importance of 0.830 and 0.802, respectively. The next strongest correlations were temperature (T), wind speed (u), soil moisture (SM) and u, leaf area index (LAI), SM (0.092, 0.02, 0.014 and 0.058, 0.049, 0.034), respectively. The accuracy of the model tended to increase as the number of influencing factors in the input combinations constructed based on the importance results increased. The accuracy of the model increased more rapidly when the input factors were one to four and the accuracy of the model increased slightly when the input factors were more than four. The SSA-LSSVM model with four-factor combinations of inputs was the least-factor combination with guaranteed model accuracy of RMSE = 0.514 mm/d, R2 = 0.924, KGE = 0.565, WI = 0.978,and MAE = 0.414 mm/d; RMSE = 0.468 mm/d, R2 = 0.910, KGE = 0.670, WI = 0.985, and MAE = 0.368 mm/d. This study may provide a reference for the prediction of evapotranspiration as a key factor in the study of the agricultural hydrological environment of early and late rice. |
|---|---|
| AbstractList | Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the hydrological environment of farmlands and guiding crop irrigation. To improve the prediction accuracy of ETC for early and late rice, this study analyzed the importance of the influencing factors based on a categorical regression tree (CART) machine learning algorithm. Based on the importance results of the influencing factors obtained from CART analysis, different combinations of input factors were constructed, and daily ETC prediction models were developed for early and late rice using the least squares support vector machine (LSSVM). A three-element heuristic optimization algorithm, Sine Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), and Sparrow Search Algorithm (SSA), were used to optimize the ETC model to improve the performance of the early and late rice ETC prediction models. The results of this study revealed that the strongest correlation between early and late rice ETC was net solar radiation (Rn), with importance of 0.830 and 0.802, respectively. The next strongest correlations were temperature (T), wind speed (u), soil moisture (SM) and u, leaf area index (LAI), SM (0.092, 0.02, 0.014 and 0.058, 0.049, 0.034), respectively. The accuracy of the model tended to increase as the number of influencing factors in the input combinations constructed based on the importance results increased. The accuracy of the model increased more rapidly when the input factors were one to four and the accuracy of the model increased slightly when the input factors were more than four. The SSA-LSSVM model with four-factor combinations of inputs was the least-factor combination with guaranteed model accuracy of RMSE = 0.514 mm/d, R² = 0.924, KGE = 0.565, WI = 0.978,and MAE = 0.414 mm/d; RMSE = 0.468 mm/d, R² = 0.910, KGE = 0.670, WI = 0.985, and MAE = 0.368 mm/d. This study may provide a reference for the prediction of evapotranspiration as a key factor in the study of the agricultural hydrological environment of early and late rice. •The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The SSA-LSSVM model performs best among the optimization models. Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the hydrological environment of farmlands and guiding crop irrigation. To improve the prediction accuracy of ETC for early and late rice, this study analyzed the importance of the influencing factors based on a categorical regression tree (CART) machine learning algorithm. Based on the importance results of the influencing factors obtained from CART analysis, different combinations of input factors were constructed, and daily ETC prediction models were developed for early and late rice using the least squares support vector machine (LSSVM). A three-element heuristic optimization algorithm, Sine Cosine Algorithm (SCA), Slime Mold Algorithm (SMA), and Sparrow Search Algorithm (SSA), were used to optimize the ETC model to improve the performance of the early and late rice ETC prediction models. The results of this study revealed that the strongest correlation between early and late rice ETC was net solar radiation (Rn), with importance of 0.830 and 0.802, respectively. The next strongest correlations were temperature (T), wind speed (u), soil moisture (SM) and u, leaf area index (LAI), SM (0.092, 0.02, 0.014 and 0.058, 0.049, 0.034), respectively. The accuracy of the model tended to increase as the number of influencing factors in the input combinations constructed based on the importance results increased. The accuracy of the model increased more rapidly when the input factors were one to four and the accuracy of the model increased slightly when the input factors were more than four. The SSA-LSSVM model with four-factor combinations of inputs was the least-factor combination with guaranteed model accuracy of RMSE = 0.514 mm/d, R2 = 0.924, KGE = 0.565, WI = 0.978,and MAE = 0.414 mm/d; RMSE = 0.468 mm/d, R2 = 0.910, KGE = 0.670, WI = 0.985, and MAE = 0.368 mm/d. This study may provide a reference for the prediction of evapotranspiration as a key factor in the study of the agricultural hydrological environment of early and late rice. |
| ArticleNumber | 108031 |
| Author | Shi, Yi Yang, Ru Li, Hui Zhao, Long Bai, Jiayi Qing, Shunhao Hao, Haohao Xing, Xuguang |
| Author_xml | – sequence: 1 givenname: Long surname: Zhao fullname: Zhao, Long organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China – sequence: 2 givenname: Shunhao surname: Qing fullname: Qing, Shunhao organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China – sequence: 3 givenname: Jiayi surname: Bai fullname: Bai, Jiayi organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China – sequence: 4 givenname: Haohao surname: Hao fullname: Hao, Haohao organization: Zhumadian Company, Henan Provincial Tobacco Company, Zhumadian, Henan Province 463000, China – sequence: 5 givenname: Hui surname: Li fullname: Li, Hui organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China – sequence: 6 givenname: Yi surname: Shi fullname: Shi, Yi organization: College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan Province 471000, China – sequence: 7 givenname: Xuguang surname: Xing fullname: Xing, Xuguang email: xgxing@nwsuaf.edu.cn organization: Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi Province, China – sequence: 8 givenname: Ru surname: Yang fullname: Yang, Ru organization: College of Information and Electrical Engineering, China Agricultural University, Yantai, Shandong Province 264670, China |
| BookMark | eNqFUcuO1DAQtNCuxOzjDzj4yCWDnWQShwPSasUC0kpc2LPVdjqDB8cObc9Kw8_wq3gIJw5wslyuqnZXXbGLEAMy9kqKrRSye3PY2jgvsN_Wom4KpEQjX7CNVH1d9VL0F2xTaKqS3TC8ZFcpHUS5D6rfsJ93_OvJkBt5XLKb3Q8c-RxH9HyKxBfC0dnswp7jMywxE4S0OILsYuAucATyJw5h5B4ycnIWuYFUTMo7cFvAfSwoeE64J0zpLMyEyMuXjQurU5z4NzwVw8kfMdjzvAlsjpRu2OUEPuHtn_OaPT28_3L_sXr8_OHT_d1jZZtmyJXa9dAqoaauLWvVTQ3NuBPDbpIWOyNUPwijpBEdyLY3Yjdga-p-6IQp9NG2zTV7vfouFL8fMWU9u2TRewgYj0nXSikhlKxFobYr1VJMiXDSC7kZ6KSl0Oc-9EGvfehzH3rto8je_iWzLv9ev6Tq_P_E71YxlgyeHZJO1pWkSj2ENusxun8b_AIa861- |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2024_111270 crossref_primary_10_3389_frwa_2025_1553732 crossref_primary_10_1016_j_foodres_2025_116306 crossref_primary_10_3390_agronomy15081984 crossref_primary_10_3390_agronomy14081780 crossref_primary_10_1016_j_agwat_2024_108807 crossref_primary_10_1016_j_compag_2024_109862 crossref_primary_10_1016_j_triboint_2024_110366 crossref_primary_10_3390_plants14071098 crossref_primary_10_1016_j_agwat_2024_108718 crossref_primary_10_1007_s11269_024_03860_6 crossref_primary_10_1016_j_agrformet_2025_110762 |
| Cites_doi | 10.1016/j.jelechem.2008.06.021 10.1016/j.jhydrol.2022.127553 10.3390/agronomy9020108 10.1016/j.knosys.2015.12.022 10.1007/s00477-021-02159-x 10.1007/s00704-020-03154-y 10.1016/j.agwat.2020.106145 10.1016/j.cma.2022.115764 10.1016/j.compag.2023.107836 10.1016/j.jhydrol.2016.09.060 10.1016/j.engappai.2022.105104 10.1002/met.1941 10.1023/A:1018628609742 10.1007/s00271-008-0119-y 10.1002/grl.50450 10.1016/j.eswa.2017.07.043 10.3390/pr9101774 10.1007/s00271-012-0336-2 10.1016/j.agee.2009.03.004 10.1002/eco.1925 10.1080/21642583.2019.1708830 10.1016/j.compag.2016.11.011 10.1016/j.jhydrol.2018.02.060 10.1007/s11269-015-0990-2 10.1016/j.compag.2015.11.001 10.1007/s11442-011-0867-0 10.1016/j.future.2020.03.055 10.1016/j.agwat.2020.106622 10.1016/j.jhydrol.2019.124045 10.1007/s00477-022-02249-4 10.1007/s00477-022-02268-1 10.1016/j.agrformet.2018.08.019 10.1016/j.jhydrol.2016.11.021 10.1007/s11356-020-08792-3 10.1016/j.jhydrol.2022.127822 10.1016/j.jhydrol.2014.01.036 10.1007/s00704-019-02913-w 10.3390/atmos13060922 10.1175/JHM-D-16-0044.1 10.1016/j.eswa.2017.08.038 10.1016/j.agwat.2015.10.009 10.1016/j.agwat.2022.107501 10.1016/j.earscirev.2010.02.004 10.3390/w13233478 10.1061/(ASCE)IR.1943-4774.0001539 10.1016/j.scitotenv.2019.05.288 10.1016/j.agwat.2017.12.017 10.1016/j.jhydrol.2018.09.037 10.1016/j.agwat.2021.106799 10.1007/s00366-019-00780-7 10.1061/(ASCE)0733-9437(2003)129:3(214) 10.1016/j.jhydrol.2022.127977 10.1016/j.jhydrol.2019.06.075 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.compag.2023.108031 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| ExternalDocumentID | 10_1016_j_compag_2023_108031 S0168169923004192 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-857a4808f64987232a3d5095f1ce6b08790b81b06a147b059e4b27960b987dc43 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001039270100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1699 |
| IngestDate | Thu Oct 02 21:42:30 EDT 2025 Sat Nov 29 07:24:53 EST 2025 Tue Nov 18 22:23:51 EST 2025 Fri Feb 23 02:33:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Least Squares Support Vector Machine Categorical Regression Tree Meta-heuristic optimization algorithms Evapotranspiration Rice |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-857a4808f64987232a3d5095f1ce6b08790b81b06a147b059e4b27960b987dc43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2888008120 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2888008120 crossref_primary_10_1016_j_compag_2023_108031 crossref_citationtrail_10_1016_j_compag_2023_108031 elsevier_sciencedirect_doi_10_1016_j_compag_2023_108031 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ozsoydan, Gölcük (b0175) 2022; 35 Wen (b0245) 2015; 29 Fan, Wu, Zhang, Xiang, Zheng (b0060) 2016; 542 Barzegar, Ghasri, Qi, Quilty, Adamowski (b0035) 2019; 577 Abd Elaziz, Oliva, Xiong (b0005) 2017; 90 Li, Chen, Wang, Heidari, Mirjalili (b0100) 2020; 111 Suykens, Vandewalle (b0215) 1999; 9 Lu (b0120) 2019; 138 Li, Fang, Liu (b0095) 2018; 91 Ahmadi (b0020) 2021; 244 Goyal, Kumar, Sharda (b0065) 2023; 209 Mattar (b0130) 2018; 198 Vapnik (b0230) 1995 Deng, Liu (b0050) 2023; 404 Abrishami, Sepaskhah, Shahrokhnia (b0010) 2018; 135 Mokari, DuBois, Samani, Mohebzadeh, Djaman (b0160) 2021; 147 Zheng, Jia, Abualigah, Liu, Wang (b0310) 2021; 9 Karmouni (b0070) 2022; 114 Zheng, Chen, Han, Zhao, Ma (b0305) 2009; 132 Mehdizadeh, S., Ahmadi, F., Kozekalani Sales, A., 2020. Modelling daily soil temperature at different depths via the classical and hybrid models. Meteorol. Appl., 27, 4. DOI:10.1002/met.1941. Zheng (b0300) 2021; 249 Rahimi Khoob (b0190) 2008; 27 Singh Kushwah (b0205) 2022; 56 Antonopoulos, Antonopoulos (b0030) 2017; 132 Tikhamarine, Malik, Souag-Gamane, Kisi (b0220) 2020; 27 Zhao (b0295) 2022; 13 Mohammadi, Mehdizadeh (b0155) 2020; 237 Xiao, M., Kong, D., 2021. Improvement in the Estimation of Daily Net Surface Radiation in China. J. Irrigation Drain. Eng. 3, 147. Zou, Zhong, Ma, Hu, Feng (b0315) 2017; 132 Berretta, Poë, Stovin (b0040) 2014; 511 Xu (b0265) 2022; 608 Liu (b0110) 2021; 13 Mirjalili (b0150) 2016; 96 Sudheer, Gosain, Ramasastri (b0210) 2003; 129 Zhao (b0290) 2022; 610 Qiu, Crow, Nearing (b0185) 2016; 17 Wang (b0235) 2017; 544 Liu (b0105) 2019; 578 Ahmadi, Mehdizadeh, Nourani (b0025) 2022; 36 Niazi, Sharifi, Amjadi (b0165) 2008; 623 Aghelpour, Norooz-Valashedi (b0015) 2022; 36 Kumar (b0090) 2021; 12 Liu (b0115) 2022; 610 Zhang (b0285) 2018; 11 Wang, Wang, Li, Cribb, Sparrow (b0240) 2007; 112 Katebi, Shoaei-parchin, Shariati, Trung, Khorami (b0075) 2019; 36 Seneviratne (b0200) 2010; 99 Xue, Shen (b0270) 2020; 8 Fan (b0055) 2018; 263 Nouri, Homaee (b0170) 2018; 566 Traore, Luo, Fipps (b0225) 2016; 163 Sain (b0195) 1996 Qiu (b0180) 2022; 264 Zhang (b0280) 2011; 21 Yang, Long, Shang (b0275) 2013; 40 Mehdizadeh, Ahmadi, Kouzehkalani Sales (b0140) 2022; 37 Mehdizadeh (b0135) 2018; 559 Xing (b0260) 2016; 120 Kisi (b0085) 2012; 31 Wu, Lin (b0250) 2019; 683 Bian, Dai, Zhang, Yang, Du (b0045) 2020; 140 Kelley, Pardyjak (b0080) 2019; 9 Nouri (10.1016/j.compag.2023.108031_b0170) 2018; 566 Kumar (10.1016/j.compag.2023.108031_b0090) 2021; 12 Zou (10.1016/j.compag.2023.108031_b0315) 2017; 132 Qiu (10.1016/j.compag.2023.108031_b0185) 2016; 17 Mehdizadeh (10.1016/j.compag.2023.108031_b0140) 2022; 37 Abd Elaziz (10.1016/j.compag.2023.108031_b0005) 2017; 90 Zheng (10.1016/j.compag.2023.108031_b0300) 2021; 249 Ahmadi (10.1016/j.compag.2023.108031_b0025) 2022; 36 Kisi (10.1016/j.compag.2023.108031_b0085) 2012; 31 Qiu (10.1016/j.compag.2023.108031_b0180) 2022; 264 Yang (10.1016/j.compag.2023.108031_b0275) 2013; 40 Zhao (10.1016/j.compag.2023.108031_b0290) 2022; 610 Fan (10.1016/j.compag.2023.108031_b0055) 2018; 263 Zhang (10.1016/j.compag.2023.108031_b0285) 2018; 11 Suykens (10.1016/j.compag.2023.108031_b0215) 1999; 9 Zhao (10.1016/j.compag.2023.108031_b0295) 2022; 13 Wu (10.1016/j.compag.2023.108031_b0250) 2019; 683 Zheng (10.1016/j.compag.2023.108031_b0305) 2009; 132 Sudheer (10.1016/j.compag.2023.108031_b0210) 2003; 129 Antonopoulos (10.1016/j.compag.2023.108031_b0030) 2017; 132 Bian (10.1016/j.compag.2023.108031_b0045) 2020; 140 Tikhamarine (10.1016/j.compag.2023.108031_b0220) 2020; 27 Aghelpour (10.1016/j.compag.2023.108031_b0015) 2022; 36 Karmouni (10.1016/j.compag.2023.108031_b0070) 2022; 114 Mohammadi (10.1016/j.compag.2023.108031_b0155) 2020; 237 Xing (10.1016/j.compag.2023.108031_b0260) 2016; 120 Lu (10.1016/j.compag.2023.108031_b0120) 2019; 138 Berretta (10.1016/j.compag.2023.108031_b0040) 2014; 511 Vapnik (10.1016/j.compag.2023.108031_b0230) 1995 Wang (10.1016/j.compag.2023.108031_b0240) 2007; 112 10.1016/j.compag.2023.108031_b0255 Li (10.1016/j.compag.2023.108031_b0095) 2018; 91 Li (10.1016/j.compag.2023.108031_b0100) 2020; 111 Wen (10.1016/j.compag.2023.108031_b0245) 2015; 29 Katebi (10.1016/j.compag.2023.108031_b0075) 2019; 36 Liu (10.1016/j.compag.2023.108031_b0115) 2022; 610 Liu (10.1016/j.compag.2023.108031_b0110) 2021; 13 Xue (10.1016/j.compag.2023.108031_b0270) 2020; 8 Traore (10.1016/j.compag.2023.108031_b0225) 2016; 163 Ozsoydan (10.1016/j.compag.2023.108031_b0175) 2022; 35 Barzegar (10.1016/j.compag.2023.108031_b0035) 2019; 577 Mirjalili (10.1016/j.compag.2023.108031_b0150) 2016; 96 Wang (10.1016/j.compag.2023.108031_b0235) 2017; 544 Abrishami (10.1016/j.compag.2023.108031_b0010) 2018; 135 10.1016/j.compag.2023.108031_b0145 Kelley (10.1016/j.compag.2023.108031_b0080) 2019; 9 Sain (10.1016/j.compag.2023.108031_b0195) 1996 Fan (10.1016/j.compag.2023.108031_b0060) 2016; 542 Seneviratne (10.1016/j.compag.2023.108031_b0200) 2010; 99 Liu (10.1016/j.compag.2023.108031_b0105) 2019; 578 Zheng (10.1016/j.compag.2023.108031_b0310) 2021; 9 Mattar (10.1016/j.compag.2023.108031_b0130) 2018; 198 Goyal (10.1016/j.compag.2023.108031_b0065) 2023; 209 Mokari (10.1016/j.compag.2023.108031_b0160) 2021; 147 Zhang (10.1016/j.compag.2023.108031_b0280) 2011; 21 Ahmadi (10.1016/j.compag.2023.108031_b0020) 2021; 244 Rahimi Khoob (10.1016/j.compag.2023.108031_b0190) 2008; 27 Deng (10.1016/j.compag.2023.108031_b0050) 2023; 404 Xu (10.1016/j.compag.2023.108031_b0265) 2022; 608 Mehdizadeh (10.1016/j.compag.2023.108031_b0135) 2018; 559 Niazi (10.1016/j.compag.2023.108031_b0165) 2008; 623 Singh Kushwah (10.1016/j.compag.2023.108031_b0205) 2022; 56 |
| References_xml | – volume: 90 start-page: 484 year: 2017 end-page: 500 ident: b0005 article-title: An improved Opposition-Based Sine Cosine Algorithm for global optimization publication-title: Expert Syst. Appl. – volume: 36 start-page: 1539 year: 2019 end-page: 1558 ident: b0075 article-title: Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures publication-title: Eng. Comput. – volume: 27 start-page: 30001 year: 2020 end-page: 30019 ident: b0220 article-title: Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration publication-title: Environ. Sci. Pollut. Res. – volume: 147 start-page: 575 year: 2021 end-page: 587 ident: b0160 article-title: Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico publication-title: Theor. Appl. Climatol. – volume: 132 start-page: 1039 year: 2017 end-page: 1047 ident: b0315 article-title: Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau publication-title: Theor. Appl. Climatol. – volume: 566 start-page: 705 year: 2018 end-page: 718 ident: b0170 article-title: On modeling reference crop evapotranspiration under lack of reliable data over Iran publication-title: J. Hydrol. – volume: 27 start-page: 35 year: 2008 end-page: 39 ident: b0190 article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment publication-title: Irrig. Sci. – volume: 37 start-page: 507 year: 2022 end-page: 526 ident: b0140 article-title: Development of wavelet-based hybrid models to enhance daily soil temperature modeling: application of entropy and τ-Kendall pre-processing techniques publication-title: Stoch. Env. Res. Risk A. – volume: 578 year: 2019 ident: b0105 article-title: Diagnosing environmental controls on actual evapotranspiration and evaporative fraction in a water-limited region from northwest China publication-title: J. Hydrol. – volume: 209 year: 2023 ident: b0065 article-title: A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives publication-title: Comput. Electron. Agric. – volume: 120 start-page: 10 year: 2016 end-page: 16 ident: b0260 article-title: Determination of dominant weather parameters on reference evapotranspiration by path analysis theory publication-title: Comput. Electron. Agric. – volume: 135 start-page: 945 year: 2018 end-page: 958 ident: b0010 article-title: Estimating wheat and maize daily evapotranspiration using artificial neural network publication-title: Theor. Appl. Climatol. – volume: 56 start-page: 3571 year: 2022 end-page: 3576 ident: b0205 article-title: Comparative study of regressor and classifier with decision tree using modern tools publication-title: Mater. Today:. Proc. – reference: Mehdizadeh, S., Ahmadi, F., Kozekalani Sales, A., 2020. Modelling daily soil temperature at different depths via the classical and hybrid models. Meteorol. Appl., 27, 4. DOI:10.1002/met.1941. – volume: 163 start-page: 363 year: 2016 end-page: 379 ident: b0225 article-title: Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages publication-title: Agric. Water Manag. – volume: 244 year: 2021 ident: b0020 article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation publication-title: Agric. Water Manag. – volume: 544 start-page: 97 year: 2017 end-page: 108 ident: b0235 article-title: Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013 publication-title: J. Hydrol. – volume: 91 start-page: 63 year: 2018 end-page: 77 ident: b0095 article-title: Parameter optimization of support vector regression based on sine cosine algorithm publication-title: Expert Syst. Appl. – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: b0270 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. – volume: 36 start-page: 2753 year: 2022 end-page: 2768 ident: b0025 article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis publication-title: Stoch. Env. Res. Risk A. – volume: 140 start-page: 1161 year: 2020 end-page: 1169 ident: b0045 article-title: Spatial distribution of potential evapotranspiration trends in the Inner Mongolia Autonomous Region (1971–2016) publication-title: Theor. Appl. Climatol. – year: 1996 ident: b0195 article-title: The nature of statistical learning theory – volume: 11 year: 2018 ident: b0285 article-title: Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau publication-title: Ecohydrology – volume: 610 year: 2022 ident: b0115 article-title: Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms publication-title: J. Hydrol. – year: 1995 ident: b0230 article-title: The nature of statistical learning publication-title: Theory – volume: 13 start-page: 922 year: 2022 ident: b0295 article-title: Prediction model for daily reference crop evapotranspiration based on hybrid algorithm in semi-arid regions of China publication-title: Atmos. – volume: 683 start-page: 808 year: 2019 end-page: 821 ident: b0250 article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors publication-title: Sci. Total Environ. – volume: 132 start-page: 86 year: 2017 end-page: 96 ident: b0030 article-title: Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables publication-title: Comput. Electron. Agric. – volume: 9 year: 2019 ident: b0080 article-title: Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors publication-title: Agronomy – volume: 99 start-page: 125 year: 2010 end-page: 161 ident: b0200 article-title: Investigating soil moisture–climate interactions in a changing climate: A review publication-title: Earth Sci. Rev. – volume: 542 start-page: 923 year: 2016 end-page: 937 ident: b0060 article-title: Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015 publication-title: J. Hydrol. – volume: 21 start-page: 609 year: 2011 end-page: 620 ident: b0280 article-title: Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin publication-title: J. Geog. Sci. – volume: 610 year: 2022 ident: b0290 article-title: Prediction of daily reference crop evapotranspiration in different Chinese climate zones: Combined application of key meteorological factors and Elman algorithm publication-title: J. Hydrol. – volume: 29 start-page: 3195 year: 2015 end-page: 3209 ident: b0245 article-title: Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions publication-title: Water Resour. Manag. – volume: 40 start-page: 3026 year: 2013 end-page: 3030 ident: b0275 article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data publication-title: Geophys. Res. Lett. – volume: 35 year: 2022 ident: b0175 article-title: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks publication-title: Eng. Sci. Technol., Int. J. – volume: 36 start-page: 4133 year: 2022 end-page: 4155 ident: b0015 article-title: Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models publication-title: Stoch. Env. Res. Risk A. – volume: 17 start-page: 2419 year: 2016 end-page: 2430 ident: b0185 article-title: The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation publication-title: J. Hydrometeorol. – volume: 129 start-page: 214 year: 2003 end-page: 218 ident: b0210 article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique publication-title: J. Irrig. Drain. Eng. – volume: 132 start-page: 98 year: 2009 end-page: 105 ident: b0305 article-title: Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions publication-title: Agr. Ecosyst. Environ. – volume: 404 year: 2023 ident: b0050 article-title: A multi-strategy improved slime mould algorithm for global optimization and engineering design problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 237 year: 2020 ident: b0155 article-title: Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm publication-title: Agric. Water Manag. – volume: 114 year: 2022 ident: b0070 article-title: Optimization and implementation of a photovoltaic pumping system using the sine–cosine algorithm publication-title: Eng. Appl. Artif. Intel. – volume: 264 year: 2022 ident: b0180 article-title: Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system publication-title: Agric Water Manag – volume: 511 start-page: 374 year: 2014 end-page: 386 ident: b0040 article-title: Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics publication-title: J. Hydrol. – volume: 9 year: 2021 ident: b0310 article-title: Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization publication-title: Processes – volume: 13 year: 2021 ident: b0110 article-title: Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China publication-title: Water – volume: 12 year: 2021 ident: b0090 article-title: The Superiority of Data-Driven Techniques for Estimation of Daily Pan Evaporation publication-title: Atmos. – reference: Xiao, M., Kong, D., 2021. Improvement in the Estimation of Daily Net Surface Radiation in China. J. Irrigation Drain. Eng. 3, 147. – volume: 623 start-page: 86 year: 2008 end-page: 92 ident: b0165 article-title: Least-squares support vector machines for simultaneous voltammetric determination of lead and tin: A comparison between LS-SVM and PLS in voltammetric data publication-title: J. Electroanal. Chem. – volume: 577 year: 2019 ident: b0035 article-title: Using bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie River Basin in the Northwest Territories, Canada publication-title: J. Hydrol. – volume: 198 start-page: 28 year: 2018 end-page: 38 ident: b0130 article-title: Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt publication-title: Agric. Water Manag. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b0150 article-title: SCA: A Sine Cosine Algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 31 start-page: 611 year: 2012 end-page: 619 ident: b0085 article-title: Least squares support vector machine for modeling daily reference evapotranspiration publication-title: Irrig. Sci. – volume: 138 start-page: 1493 year: 2019 end-page: 1510 ident: b0120 article-title: Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product publication-title: Theor. Appl. Climatol. – volume: 559 start-page: 794 year: 2018 end-page: 812 ident: b0135 article-title: Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling publication-title: J. Hydrol. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b0100 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Futur. Gener. Comput. Syst. – volume: 263 start-page: 225 year: 2018 end-page: 241 ident: b0055 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. – volume: 112 year: 2007 ident: b0240 article-title: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature publication-title: J. Geophys. Res. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b0215 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 249 year: 2021 ident: b0300 article-title: Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm publication-title: Agric. Water Manag. – volume: 608 year: 2022 ident: b0265 article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation publication-title: J. Hydrol. – volume: 623 start-page: 86 issue: 1 year: 2008 ident: 10.1016/j.compag.2023.108031_b0165 article-title: Least-squares support vector machines for simultaneous voltammetric determination of lead and tin: A comparison between LS-SVM and PLS in voltammetric data publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2008.06.021 – volume: 608 year: 2022 ident: 10.1016/j.compag.2023.108031_b0265 article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127553 – volume: 9 issue: 2 year: 2019 ident: 10.1016/j.compag.2023.108031_b0080 article-title: Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors publication-title: Agronomy doi: 10.3390/agronomy9020108 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.compag.2023.108031_b0150 article-title: SCA: A Sine Cosine Algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – year: 1995 ident: 10.1016/j.compag.2023.108031_b0230 article-title: The nature of statistical learning publication-title: Theory – volume: 36 start-page: 2753 issue: 9 year: 2022 ident: 10.1016/j.compag.2023.108031_b0025 article-title: Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-021-02159-x – volume: 140 start-page: 1161 issue: 3–4 year: 2020 ident: 10.1016/j.compag.2023.108031_b0045 article-title: Spatial distribution of potential evapotranspiration trends in the Inner Mongolia Autonomous Region (1971–2016) publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-020-03154-y – volume: 237 year: 2020 ident: 10.1016/j.compag.2023.108031_b0155 article-title: Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106145 – volume: 404 year: 2023 ident: 10.1016/j.compag.2023.108031_b0050 article-title: A multi-strategy improved slime mould algorithm for global optimization and engineering design problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115764 – volume: 209 year: 2023 ident: 10.1016/j.compag.2023.108031_b0065 article-title: A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107836 – volume: 542 start-page: 923 year: 2016 ident: 10.1016/j.compag.2023.108031_b0060 article-title: Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.09.060 – volume: 114 year: 2022 ident: 10.1016/j.compag.2023.108031_b0070 article-title: Optimization and implementation of a photovoltaic pumping system using the sine–cosine algorithm publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2022.105104 – ident: 10.1016/j.compag.2023.108031_b0145 doi: 10.1002/met.1941 – volume: 147 start-page: 575 issue: 1–2 year: 2021 ident: 10.1016/j.compag.2023.108031_b0160 article-title: Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico publication-title: Theor. Appl. Climatol. – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.compag.2023.108031_b0215 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – year: 1996 ident: 10.1016/j.compag.2023.108031_b0195 – volume: 27 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.compag.2023.108031_b0190 article-title: Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment publication-title: Irrig. Sci. doi: 10.1007/s00271-008-0119-y – volume: 40 start-page: 3026 issue: 12 year: 2013 ident: 10.1016/j.compag.2023.108031_b0275 article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50450 – volume: 90 start-page: 484 year: 2017 ident: 10.1016/j.compag.2023.108031_b0005 article-title: An improved Opposition-Based Sine Cosine Algorithm for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.043 – volume: 9 issue: 10 year: 2021 ident: 10.1016/j.compag.2023.108031_b0310 article-title: Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global Optimization publication-title: Processes doi: 10.3390/pr9101774 – volume: 31 start-page: 611 issue: 4 year: 2012 ident: 10.1016/j.compag.2023.108031_b0085 article-title: Least squares support vector machine for modeling daily reference evapotranspiration publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0336-2 – volume: 132 start-page: 98 issue: 1–2 year: 2009 ident: 10.1016/j.compag.2023.108031_b0305 article-title: Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2009.03.004 – volume: 12 issue: 6 year: 2021 ident: 10.1016/j.compag.2023.108031_b0090 article-title: The Superiority of Data-Driven Techniques for Estimation of Daily Pan Evaporation publication-title: Atmos. – volume: 11 issue: 2 year: 2018 ident: 10.1016/j.compag.2023.108031_b0285 article-title: Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau publication-title: Ecohydrology doi: 10.1002/eco.1925 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.compag.2023.108031_b0270 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 132 start-page: 86 year: 2017 ident: 10.1016/j.compag.2023.108031_b0030 article-title: Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.11.011 – volume: 559 start-page: 794 year: 2018 ident: 10.1016/j.compag.2023.108031_b0135 article-title: Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.060 – volume: 132 start-page: 1039 issue: 3–4 year: 2017 ident: 10.1016/j.compag.2023.108031_b0315 article-title: Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau publication-title: Theor. Appl. Climatol. – volume: 29 start-page: 3195 issue: 9 year: 2015 ident: 10.1016/j.compag.2023.108031_b0245 article-title: Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0990-2 – volume: 120 start-page: 10 year: 2016 ident: 10.1016/j.compag.2023.108031_b0260 article-title: Determination of dominant weather parameters on reference evapotranspiration by path analysis theory publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.11.001 – volume: 21 start-page: 609 issue: 4 year: 2011 ident: 10.1016/j.compag.2023.108031_b0280 article-title: Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin publication-title: J. Geog. Sci. doi: 10.1007/s11442-011-0867-0 – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.compag.2023.108031_b0100 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 35 year: 2022 ident: 10.1016/j.compag.2023.108031_b0175 article-title: A hyper-heuristic based reinforcement-learning algorithm to train feedforward neural networks publication-title: Eng. Sci. Technol., Int. J. – volume: 244 year: 2021 ident: 10.1016/j.compag.2023.108031_b0020 article-title: Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106622 – volume: 578 year: 2019 ident: 10.1016/j.compag.2023.108031_b0105 article-title: Diagnosing environmental controls on actual evapotranspiration and evaporative fraction in a water-limited region from northwest China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124045 – volume: 112 issue: D15 year: 2007 ident: 10.1016/j.compag.2023.108031_b0240 article-title: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature publication-title: J. Geophys. Res. – volume: 36 start-page: 4133 issue: 12 year: 2022 ident: 10.1016/j.compag.2023.108031_b0015 article-title: Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-022-02249-4 – volume: 37 start-page: 507 issue: 2 year: 2022 ident: 10.1016/j.compag.2023.108031_b0140 article-title: Development of wavelet-based hybrid models to enhance daily soil temperature modeling: application of entropy and τ-Kendall pre-processing techniques publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-022-02268-1 – volume: 263 start-page: 225 year: 2018 ident: 10.1016/j.compag.2023.108031_b0055 article-title: Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.08.019 – volume: 544 start-page: 97 year: 2017 ident: 10.1016/j.compag.2023.108031_b0235 article-title: Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.021 – volume: 135 start-page: 945 issue: 3–4 year: 2018 ident: 10.1016/j.compag.2023.108031_b0010 article-title: Estimating wheat and maize daily evapotranspiration using artificial neural network publication-title: Theor. Appl. Climatol. – volume: 27 start-page: 30001 year: 2020 ident: 10.1016/j.compag.2023.108031_b0220 article-title: Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-08792-3 – volume: 610 year: 2022 ident: 10.1016/j.compag.2023.108031_b0290 article-title: Prediction of daily reference crop evapotranspiration in different Chinese climate zones: Combined application of key meteorological factors and Elman algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127822 – volume: 511 start-page: 374 year: 2014 ident: 10.1016/j.compag.2023.108031_b0040 article-title: Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.01.036 – volume: 138 start-page: 1493 issue: 3–4 year: 2019 ident: 10.1016/j.compag.2023.108031_b0120 article-title: Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-019-02913-w – volume: 13 start-page: 922 issue: 6 year: 2022 ident: 10.1016/j.compag.2023.108031_b0295 article-title: Prediction model for daily reference crop evapotranspiration based on hybrid algorithm in semi-arid regions of China publication-title: Atmos. doi: 10.3390/atmos13060922 – volume: 17 start-page: 2419 issue: 9 year: 2016 ident: 10.1016/j.compag.2023.108031_b0185 article-title: The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0044.1 – volume: 91 start-page: 63 year: 2018 ident: 10.1016/j.compag.2023.108031_b0095 article-title: Parameter optimization of support vector regression based on sine cosine algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.038 – volume: 163 start-page: 363 year: 2016 ident: 10.1016/j.compag.2023.108031_b0225 article-title: Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.10.009 – volume: 264 year: 2022 ident: 10.1016/j.compag.2023.108031_b0180 article-title: Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.107501 – volume: 99 start-page: 125 issue: 3–4 year: 2010 ident: 10.1016/j.compag.2023.108031_b0200 article-title: Investigating soil moisture–climate interactions in a changing climate: A review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2010.02.004 – volume: 13 issue: 23 year: 2021 ident: 10.1016/j.compag.2023.108031_b0110 article-title: Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China publication-title: Water doi: 10.3390/w13233478 – ident: 10.1016/j.compag.2023.108031_b0255 doi: 10.1061/(ASCE)IR.1943-4774.0001539 – volume: 683 start-page: 808 year: 2019 ident: 10.1016/j.compag.2023.108031_b0250 article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.288 – volume: 198 start-page: 28 year: 2018 ident: 10.1016/j.compag.2023.108031_b0130 article-title: Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2017.12.017 – volume: 566 start-page: 705 year: 2018 ident: 10.1016/j.compag.2023.108031_b0170 article-title: On modeling reference crop evapotranspiration under lack of reliable data over Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.037 – volume: 249 year: 2021 ident: 10.1016/j.compag.2023.108031_b0300 article-title: Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.106799 – volume: 36 start-page: 1539 issue: 4 year: 2019 ident: 10.1016/j.compag.2023.108031_b0075 article-title: Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures publication-title: Eng. Comput. doi: 10.1007/s00366-019-00780-7 – volume: 129 start-page: 214 issue: 3 year: 2003 ident: 10.1016/j.compag.2023.108031_b0210 article-title: Estimating actual evapotranspiration from limited climatic data using neural computing technique publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2003)129:3(214) – volume: 56 start-page: 3571 year: 2022 ident: 10.1016/j.compag.2023.108031_b0205 article-title: Comparative study of regressor and classifier with decision tree using modern tools publication-title: Mater. Today:. Proc. – volume: 610 year: 2022 ident: 10.1016/j.compag.2023.108031_b0115 article-title: Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127977 – volume: 577 year: 2019 ident: 10.1016/j.compag.2023.108031_b0035 article-title: Using bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie River Basin in the Northwest Territories, Canada publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.075 |
| SSID | ssj0016987 |
| Score | 2.4416132 |
| Snippet | •The ETC model based on key factors is proposed for early and late rice.•Rn shows the highest correlation with early and late rice evapotranspiration.•The... Crop evapotranspiration (ETC) is an important component of the agricultural hydrological cycle, and its accurate estimation is important for assessing the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108031 |
| SubjectTerms | agriculture Categorical Regression Tree electronics Evapotranspiration hybrids hydrologic cycle irrigation leaf area index Least Squares Support Vector Machine Meta-heuristic optimization algorithms prediction regression analysis Rice soil water solar radiation support vector machines temperature wind speed |
| Title | A hybrid optimized model for predicting evapotranspiration in early and late rice based on a categorical regression tree combination of key influencing factors |
| URI | https://dx.doi.org/10.1016/j.compag.2023.108031 https://www.proquest.com/docview/2888008120 |
| Volume | 211 |
| WOSCitedRecordID | wos001039270100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5i3HSQeItSJU6aOI8VGoJpmpAYUsVL5CROm6lLqq6tNv4MP4e_xTm2k5RVMPbAS1oltmvlfPW5-PM5jL3Lw1Gggsh3BZfooERZ5Mqs8F2elFyJsvCyQqfMP45PTsRkknweDH62Z2E287iuxeVlsvivosZ7KGw6OnsLcXeD4g38jkLHK4odr_8k-LEzu6JjWE6Dq8F59R0tSl3uRhMKF0vamNFUZ7WRi2alc5tXFgaUPkQnPKZo-hytUIdSDjmk6QraVZAO8aemNq3IUk0NibYmujqx3s_Rze5MUFwdiOqlS6Bouqap7LNtDbclJUye6L4ij-boyunS5gXpsPdtJnVk97ix-pYitrYoy5fZusbHfWRW0xSOKnlV9aus7o0fbUMb7uBBR7brIqARur2RqarULuHcLthmESbapFEtO_rBhCrOhprgPx3SDwz75r-n476mJjvyYsuLO0vNKCmNkppR7rB9Ho8S1BD740-Hk6NuQytKhDm5b2ffnuLUVMPd2fzJSrpmL2gj6PQhe2C9Fxgb1D1iA1U_ZvfHvaSesB9jMPiDDn-g8QeIP-jxB7v4g6oGjT9AOADhDwh_oPEH-FzCFv6gxx8Q_mALf9CUgPiDLfyBxd9T9vXD4en7j66tAuLmQZCsXDGKZSg8UUYhvkN0AGRQoJU7Kv1cRZkn4sTL0PfyIumHcYbeggozHqNjnmHzIg-DZ2yvbmr1nEEs8iAqeVII9MNR10lf8TiTXi7CQqmQH7CgfetpblPkU6WWefo3mR8wt-u1MClibmgftwJNrZlrzNcUUXpDz7et_FPUArS1J2vVrC9SLlAPo3XPvRe3nM1Ldq__m71ie6vlWr1md_PNqrpYvrEw_gXCjN5_ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+optimized+model+for+predicting+evapotranspiration+in+early+and+late+rice+based+on+a+categorical+regression+tree+combination+of+key+influencing+factors&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Zhao%2C+Long&rft.au=Qing%2C+Shunhao&rft.au=Bai%2C+Jiayi&rft.au=Hao%2C+Haohao&rft.date=2023-08-01&rft.issn=0168-1699&rft.volume=211&rft.spage=108031&rft_id=info:doi/10.1016%2Fj.compag.2023.108031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2023_108031 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |