Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game
An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the...
Uložené v:
| Vydané v: | Renewable energy Ročník 222; s. 119946 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2024
|
| Predmet: | |
| ISSN: | 0960-1481, 1879-0682 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %. |
|---|---|
| AbstractList | An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %. An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %. |
| ArticleNumber | 119946 |
| Author | Lim, Ming K. Sethanan, Kanchana Tseng, Ming-Lang Miao, Yan Li, Ling-Ling |
| Author_xml | – sequence: 1 givenname: Ling-Ling surname: Li fullname: Li, Ling-Ling email: lilinglinglaoshi@126.com organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China – sequence: 2 givenname: Yan orcidid: 0009-0004-0291-9392 surname: Miao fullname: Miao, Yan email: 202121401069@stu.hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China – sequence: 3 givenname: Ming K. orcidid: 0000-0003-0809-9431 surname: Lim fullname: Lim, Ming K. email: Ming.Lim@glasgow.ac.uk organization: Adam Smith Business School, University of Glasgow, Glasgow, United Kingdom – sequence: 4 givenname: Kanchana orcidid: 0000-0002-3340-2538 surname: Sethanan fullname: Sethanan, Kanchana email: skanch@kku.ac.th organization: Research Unit on System Modeling for Industry, Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand – sequence: 5 givenname: Ming-Lang orcidid: 0000-0002-2702-3590 surname: Tseng fullname: Tseng, Ming-Lang email: tsengminglang@gmail.com organization: Institute of Innovation and Circular Economy, Asia University, Taiwan |
| BookMark | eNqFkE1rXCEUhqVMoDNJ_kEXLru5Ux3vh2ZRKEPTBgaSRbIWrx4Hh6tO1aRM6I-Pye2qixQXB-V9H47PCi1CDIDQJ0rWlND-y2GdINSz3pBNu6ZUiLb_gJaUD6IhPd8s0JKInjS05fQjWuV8IIR2fGiX6M9NKLBPqoDBlZD2J5xPuYDHNiY8xd-NVmmMAYOOIXqncTxCjbv6FI_Feff8drnCdypBiVhHf0w1mAHXWcneu7DHKhjsVQWnJk_qCfBeebhAZ1ZNGS7_znP0cP39fvuz2d3-uNl-2zWaMVGaQTOuBYxacDZypaww3WCtEt04WLHp-AiWglFCjNZSwwThZgBtTKd6ADGyc_R55taNfj1CLrLup2GaVID4mCWjHespI4LW6NUc1SnmnMBK7crbD0tSbpKUyFfl8iBn5fJVuZyV13L7T_mYnFfp9L_a17kG1cGTgySzdhA0GJdAF2miex_wAoKipKY |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_07_261 crossref_primary_10_1016_j_rser_2025_115931 crossref_primary_10_1063_5_0217570 crossref_primary_10_1016_j_egyr_2024_12_016 crossref_primary_10_1016_j_egyai_2025_100619 crossref_primary_10_1016_j_est_2025_116672 crossref_primary_10_1016_j_energy_2024_130953 crossref_primary_10_1016_j_est_2024_113327 crossref_primary_10_2516_stet_2024066 crossref_primary_10_3390_su17010119 crossref_primary_10_1016_j_ijhydene_2024_11_289 crossref_primary_10_1016_j_scs_2025_106291 crossref_primary_10_1016_j_renene_2024_120681 crossref_primary_10_1016_j_segan_2024_101605 crossref_primary_10_1016_j_scs_2024_105791 crossref_primary_10_1016_j_renene_2024_121722 crossref_primary_10_1088_1742_6596_3000_1_012022 crossref_primary_10_1016_j_cie_2025_111112 crossref_primary_10_1007_s10614_025_11019_7 crossref_primary_10_1016_j_renene_2024_121712 crossref_primary_10_1016_j_ijhydene_2025_03_027 |
| Cites_doi | 10.1016/j.ijhydene.2023.06.170 10.1109/TSG.2017.2663380 10.1016/j.apenergy.2020.114879 10.1016/j.jclepro.2022.132758 10.1016/j.apenergy.2020.115941 10.1016/j.renene.2021.05.164 10.1109/TSG.2019.2935736 10.1016/j.apenergy.2016.07.077 10.3390/en12214129 10.3390/en12050817 10.1016/j.renene.2017.12.037 10.1016/j.energy.2023.126893 10.1016/j.energy.2021.122795 10.1016/j.apenergy.2018.04.119 10.17775/CSEEJPES.2018.00260 10.1016/j.energy.2019.03.154 10.1016/j.apenergy.2021.116972 10.1016/j.energy.2021.120272 10.1016/j.energy.2020.119387 10.1109/TSTE.2018.2865562 10.1016/j.apenergy.2021.118171 10.1016/j.egyr.2022.08.199 10.1016/j.ijepes.2022.108503 10.1016/j.jclepro.2020.124333 10.1016/j.energy.2021.120048 10.1016/j.energy.2021.119777 10.1016/j.energy.2021.120256 10.1016/j.energy.2021.121392 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2024.119946 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| ExternalDocumentID | 10_1016_j_renene_2024_119946 S0960148124000119 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-7c38c9ebc983b8aaf9d57ffa95b7f9258bef1eda99bff1d3908d7ecdd5a6ee9b3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153670300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 |
| IngestDate | Wed Oct 01 15:05:36 EDT 2025 Tue Nov 18 21:46:30 EST 2025 Sat Nov 29 07:05:04 EST 2025 Sat Mar 23 16:30:15 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Integrated energy system Compromise programming method CHP-CCS-P2G joint operation Master-slave game Integrative demand response |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-7c38c9ebc983b8aaf9d57ffa95b7f9258bef1eda99bff1d3908d7ecdd5a6ee9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0004-0291-9392 0000-0003-0809-9431 0000-0002-3340-2538 0000-0002-2702-3590 |
| PQID | 3153613091 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153613091 crossref_citationtrail_10_1016_j_renene_2024_119946 crossref_primary_10_1016_j_renene_2024_119946 elsevier_sciencedirect_doi_10_1016_j_renene_2024_119946 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Fan, Wu, Sethanan, Tseng (bib5) 2024 Wang, Zhang, Li, Liu, Li, Wang (bib29) 2021; 295 Zhang, Wang, Chen, Li, Niu (bib24) 2022; 240 Chen, Qi, Rong, Peng, Zhao, Zhang (bib15) 2021; 217 Wang, Yang, Qu, Xu (bib40) 2022; 8 Li, Li, Liu, Wang, Li, Huang, Huang, Guo, Xiong (bib26) 2023 Wen, Qu, Li, Liu, Ye (bib13) 2018; 9 Chen, Chen, Zhou, Bai, Li, Guo (bib7) 2023 Wang, Qin, Ma, Wang, Li (bib10) 2023 Li, Zhang, Li, Wang (bib16) 2021; 223 Li, Wang, Wang, Yang, Guo, Yin (bib8) 2021; 225 Li, Ren, Tseng, Wu, Lim (bib43) 2022; vol. 258 Lu, Liu, He, Nan, Hu (bib12) 2021; 178 Xing, Xie, Meng, Guo, Yue, Guerrero (bib14) 2020; 6 Xiao, Yang, Cui, Liu (bib31) 2022; 307 Yin, Tao (bib6) 2023; vol. 329 Zhou, Hu, Min, Dai (bib18) 2019; 10 Li, Ji, Lim, Tseng (bib4) 2023 Li, Zhang, Jiang, Chen, Bai, Li (bib11) 2017; 194 Li, Li, Wang, Dong, Li, Cui, Ge, Yang, Okoye (bib22) 2019; 12 Xing, Lin, Song, Zhou, Mu, Hu (bib25) 2018; 4 Jiang, Yuan, Li (bib32) 2021; 225 Wang, Zhang, Li, Ma (bib33) 2021; 221 Lyu, Gong, Yang, Xu, Zhang, Wang (bib17) 2019; 12 He, Wu, Yong, Tan, Liu (bib27) 2022 He, Lu, Zhang, Geng, Zhao, Li (bib23) 2018; 224 Wang, Xie, Sun, Bie (bib45) 2021; 36 Zheng (bib21) 2018 Zhang, Chan, Wang, Hu, Zhou, Zhang, Qiu (bib34) 2019; 176 Miao, Yue, Niu, Alizadeh, Jermsittiparsert (bib44) 2021; 281 Lorestani, Ardehali (bib19) 2018; 119 Ge, Li, He, Liu (bib30) 2021; vol. 297 Chen, Park, Kou, Hu, Dong, Li, Amasyali, Olama (bib35) 2020; 280 Lyu, Zhang, Cheng, Han, Yuan, Song, Fang (bib1) 2021; 41 Wang, Lin, Dong, Wang, Zeng (bib9) 2023; 270 Wang, Yang, Chen, Li, Liang, Ma, Dong, Ji, Feng (bib20) 2020; 267 Chen, Hu, Chen, Chen, Chen, Gao, Lin, Du (bib41) 2021; 41 Li, Wu, Li, Liu, Wang, Zhou (bib36) 2021; 41 Alipour, Gharehpetian, Ahmadiahangar, Rosin, Kilter (bib39) 2022; vol. 213 Zhang, Zhang, Xie, Zhang (bib37) 2022; 365 Ma, Wang, Hong, Yang, Chen, Cui, Feng (bib38) 2021; 236 Cheng, Zhang, Zhang, Kang, Xi, Feng (bib42) 2020; 11 Alizad, Rastegar, Hasanzad (bib28) 2022; 143 He (10.1016/j.renene.2024.119946_bib23) 2018; 224 Zhang (10.1016/j.renene.2024.119946_bib24) 2022; 240 Wang (10.1016/j.renene.2024.119946_bib40) 2022; 8 Wang (10.1016/j.renene.2024.119946_bib10) 2023 Li (10.1016/j.renene.2024.119946_bib5) 2024 Yin (10.1016/j.renene.2024.119946_bib6) 2023; vol. 329 Lorestani (10.1016/j.renene.2024.119946_bib19) 2018; 119 Alipour (10.1016/j.renene.2024.119946_bib39) 2022; vol. 213 Lyu (10.1016/j.renene.2024.119946_bib1) 2021; 41 Li (10.1016/j.renene.2024.119946_bib11) 2017; 194 Chen (10.1016/j.renene.2024.119946_bib15) 2021; 217 Xing (10.1016/j.renene.2024.119946_bib25) 2018; 4 Li (10.1016/j.renene.2024.119946_bib8) 2021; 225 Li (10.1016/j.renene.2024.119946_bib26) 2023 Chen (10.1016/j.renene.2024.119946_bib7) 2023 Lyu (10.1016/j.renene.2024.119946_bib17) 2019; 12 Jiang (10.1016/j.renene.2024.119946_bib32) 2021; 225 Zheng (10.1016/j.renene.2024.119946_bib21) 2018 Li (10.1016/j.renene.2024.119946_bib43) 2022; vol. 258 Zhou (10.1016/j.renene.2024.119946_bib18) 2019; 10 He (10.1016/j.renene.2024.119946_bib27) 2022 Miao (10.1016/j.renene.2024.119946_bib44) 2021; 281 Wang (10.1016/j.renene.2024.119946_bib9) 2023; 270 Wang (10.1016/j.renene.2024.119946_bib45) 2021; 36 Xiao (10.1016/j.renene.2024.119946_bib31) 2022; 307 Li (10.1016/j.renene.2024.119946_bib36) 2021; 41 Chen (10.1016/j.renene.2024.119946_bib41) 2021; 41 Chen (10.1016/j.renene.2024.119946_bib35) 2020; 280 Wen (10.1016/j.renene.2024.119946_bib13) 2018; 9 Cheng (10.1016/j.renene.2024.119946_bib42) 2020; 11 Li (10.1016/j.renene.2024.119946_bib4) 2023 Alizad (10.1016/j.renene.2024.119946_bib28) 2022; 143 Li (10.1016/j.renene.2024.119946_bib16) 2021; 223 Ge (10.1016/j.renene.2024.119946_bib30) 2021; vol. 297 Zhang (10.1016/j.renene.2024.119946_bib37) 2022; 365 Lu (10.1016/j.renene.2024.119946_bib12) 2021; 178 Zhang (10.1016/j.renene.2024.119946_bib34) 2019; 176 Li (10.1016/j.renene.2024.119946_bib22) 2019; 12 Wang (10.1016/j.renene.2024.119946_bib33) 2021; 221 Wang (10.1016/j.renene.2024.119946_bib29) 2021; 295 Xing (10.1016/j.renene.2024.119946_bib14) 2020; 6 Wang (10.1016/j.renene.2024.119946_bib20) 2020; 267 Ma (10.1016/j.renene.2024.119946_bib38) 2021; 236 |
| References_xml | – volume: 217 start-page: 16 year: 2021 ident: bib15 article-title: Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement publication-title: Energy – start-page: 237 year: 2024 ident: bib5 article-title: Multi-objective distributed generation hierarchical optimal planning in distribution network: improved beluga whale optimization algorithm publication-title: Expert Syst. Appl. – volume: 12 start-page: 18 year: 2019 ident: bib22 article-title: Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response publication-title: Energies – volume: 36 start-page: 1926 year: 2021 end-page: 1934 ident: bib45 article-title: Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response publication-title: Trans. China Electrotech. Soc. – year: 2018 ident: bib21 article-title: Optimization under Uncertainty of a Biomass-Integrated Renewable Energy Microgrid with Energy Storage – volume: 178 start-page: 466 year: 2021 end-page: 482 ident: bib12 article-title: Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy publication-title: Renew. Energy – volume: 176 start-page: 249 year: 2019 end-page: 264 ident: bib34 article-title: Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations publication-title: Energy – start-page: 391 year: 2023 ident: bib26 article-title: Operation optimization for integrated energy system based on hybrid CSP-CHP considering power-to-gas technology and carbon capture system publication-title: J. Clean. Prod. – volume: vol. 297 year: 2021 ident: bib30 publication-title: Joint Energy Market Design for Local Integrated Energy System Service Procurement Considering Demand Flexibility – volume: vol. 213 year: 2022 ident: bib39 publication-title: Energy Storage Facilities Impact on Flexibility of Active Distribution Networks: Stochastic Approach – start-page: 229 year: 2023 ident: bib7 article-title: A Bi-level Gaming Programming for Regional Integrated Energy System Considering the Users? Reliability Incentive – volume: 236 year: 2021 ident: bib38 article-title: Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system publication-title: Energy – volume: 41 start-page: 1307 year: 2021 end-page: 1321 ident: bib36 article-title: Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and Stackelberg game publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 270 year: 2023 ident: bib9 article-title: Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system publication-title: Energy – volume: 4 start-page: 168 year: 2018 end-page: 178 ident: bib25 article-title: Modeling and operation of the power-to-gas system for renewables integration: a review publication-title: Csee Journal of Power and Energy Systems – volume: 307 year: 2022 ident: bib31 article-title: A new energy storage sharing framework with regard to both storage capacity and power capacity publication-title: Appl. Energy – year: 2023 ident: bib10 article-title: Operation optimisation of integrated energy systems based on cooperative game with hydrogen energy storage systems publication-title: Int. J. Hydrogen Energy 48(95), 37335-37354 – volume: 223 year: 2021 ident: bib16 article-title: An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties publication-title: Energy – volume: 280 year: 2020 ident: bib35 article-title: A comparison study on trading behavior and profit distribution in local energy transaction games publication-title: Appl. Energy – volume: 9 start-page: 4555 year: 2018 end-page: 4565 ident: bib13 article-title: Synergistic operation of electricity and natural gas networks via ADMM publication-title: IEEE Trans. Smart Grid – volume: 224 start-page: 357 year: 2018 end-page: 370 ident: bib23 article-title: Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas publication-title: Appl. Energy – volume: 240 start-page: 13 year: 2022 ident: bib24 article-title: Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation publication-title: Energy – volume: 225 year: 2021 ident: bib8 article-title: Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response publication-title: Energy – volume: 10 start-page: 1300 year: 2019 end-page: 1310 ident: bib18 article-title: Integrated power and heat dispatch considering available reserve of combined heat and power units publication-title: IEEE Trans. Sustain. Energy – volume: 365 year: 2022 ident: bib37 article-title: Energy scheduling optimization of the integrated energy system with ground source heat pumps publication-title: J. Clean. Prod. – volume: 281 year: 2021 ident: bib44 article-title: Optimal emission management of photovoltaic and wind generation based energy hub system using compromise programming publication-title: J. Clean. Prod. – volume: 221 year: 2021 ident: bib33 article-title: Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage publication-title: Energy – volume: 267 year: 2020 ident: bib20 article-title: Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks publication-title: Appl. Energy – volume: vol. 258 year: 2022 ident: bib43 publication-title: Performance Evaluation of Solar Hybrid Combined Cooling, Heating and Power Systems: A Multi-Objective Arithmetic Optimization Algorithm – volume: 194 start-page: 696 year: 2017 end-page: 704 ident: bib11 article-title: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process publication-title: Appl. Energy – volume: 143 year: 2022 ident: bib28 article-title: Dynamic planning of Power-to-Gas integrated energy hub considering demand response programs and future market conditions publication-title: Int. J. Electr. Power Energy Syst. – volume: 295 year: 2021 ident: bib29 article-title: Distributed coordinative transaction of a community integrated energy system based on a tri-level game model publication-title: Appl. Energy – volume: vol. 329 year: 2023 ident: bib6 publication-title: Balanced Broad Learning Prediction Model for Carbon Emissions of Integrated Energy Systems Considering Distributed Ground Source Heat Pump Heat Storage Systems and Carbon Capture & Storage – volume: 41 start-page: 4001 year: 2021 end-page: 4020 ident: bib1 article-title: Review on district-level integrated energy system planning considering interconnection and interaction publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 6 start-page: 111 year: 2020 end-page: 121 ident: bib14 article-title: Energy management strategy considering multi-time-scale operational modes of batteries for the grid-connected microgrids community publication-title: Csee Journal of Power and Energy Systems – start-page: 274 year: 2022 ident: bib27 article-title: Bi-level Optimization of a Near-Zero-Emission Integrated Energy System Considering Electricity-Hydrogen-Gas Nexus: A Two-Stage Framework Aiming at Economic and Environmental Benefits – volume: 12 year: 2019 ident: bib17 article-title: An evaluation method of wind power integration in power systems with flexible combined heat and power plant publication-title: Energies – year: 2023 ident: bib4 article-title: Active distribution network operational optimization problem: a multi-objective tuna swarm optimization model publication-title: Appl. Soft Comput. – volume: 119 start-page: 490 year: 2018 end-page: 503 ident: bib19 article-title: Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm publication-title: Renew. Energy – volume: 41 start-page: 48 year: 2021 end-page: 55 ident: bib41 article-title: Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production publication-title: Electric Power Automation Equipment – volume: 8 start-page: 11885 year: 2022 end-page: 11898 ident: bib40 article-title: Stackelberg game-based optimal scheduling of integrated energy systems considering differences in heat demand across multi-functional areas publication-title: Energy Rep. – volume: 11 start-page: 1307 year: 2020 end-page: 1318 ident: bib42 article-title: Low-carbon operation of multiple energy systems based on energy-carbon integrated prices publication-title: IEEE Trans. Smart Grid – volume: 225 year: 2021 ident: bib32 article-title: Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory publication-title: Energy – year: 2023 ident: 10.1016/j.renene.2024.119946_bib10 article-title: Operation optimisation of integrated energy systems based on cooperative game with hydrogen energy storage systems publication-title: Int. J. Hydrogen Energy 48(95), 37335-37354 doi: 10.1016/j.ijhydene.2023.06.170 – volume: 9 start-page: 4555 issue: 5 year: 2018 ident: 10.1016/j.renene.2024.119946_bib13 article-title: Synergistic operation of electricity and natural gas networks via ADMM publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2663380 – volume: 267 year: 2020 ident: 10.1016/j.renene.2024.119946_bib20 article-title: Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114879 – year: 2023 ident: 10.1016/j.renene.2024.119946_bib4 article-title: Active distribution network operational optimization problem: a multi-objective tuna swarm optimization model publication-title: Appl. Soft Comput. – year: 2018 ident: 10.1016/j.renene.2024.119946_bib21 – volume: 41 start-page: 48 issue: 9 year: 2021 ident: 10.1016/j.renene.2024.119946_bib41 article-title: Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production publication-title: Electric Power Automation Equipment – start-page: 274 year: 2022 ident: 10.1016/j.renene.2024.119946_bib27 – volume: vol. 329 year: 2023 ident: 10.1016/j.renene.2024.119946_bib6 – volume: vol. 213 year: 2022 ident: 10.1016/j.renene.2024.119946_bib39 – start-page: 237 year: 2024 ident: 10.1016/j.renene.2024.119946_bib5 article-title: Multi-objective distributed generation hierarchical optimal planning in distribution network: improved beluga whale optimization algorithm publication-title: Expert Syst. Appl. – start-page: 229 year: 2023 ident: 10.1016/j.renene.2024.119946_bib7 – start-page: 391 year: 2023 ident: 10.1016/j.renene.2024.119946_bib26 article-title: Operation optimization for integrated energy system based on hybrid CSP-CHP considering power-to-gas technology and carbon capture system publication-title: J. Clean. Prod. – volume: 365 year: 2022 ident: 10.1016/j.renene.2024.119946_bib37 article-title: Energy scheduling optimization of the integrated energy system with ground source heat pumps publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.132758 – volume: 280 year: 2020 ident: 10.1016/j.renene.2024.119946_bib35 article-title: A comparison study on trading behavior and profit distribution in local energy transaction games publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115941 – volume: vol. 258 year: 2022 ident: 10.1016/j.renene.2024.119946_bib43 – volume: 178 start-page: 466 year: 2021 ident: 10.1016/j.renene.2024.119946_bib12 article-title: Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy publication-title: Renew. Energy doi: 10.1016/j.renene.2021.05.164 – volume: vol. 297 year: 2021 ident: 10.1016/j.renene.2024.119946_bib30 – volume: 11 start-page: 1307 issue: 2 year: 2020 ident: 10.1016/j.renene.2024.119946_bib42 article-title: Low-carbon operation of multiple energy systems based on energy-carbon integrated prices publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2019.2935736 – volume: 194 start-page: 696 year: 2017 ident: 10.1016/j.renene.2024.119946_bib11 article-title: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.077 – volume: 12 issue: 21 year: 2019 ident: 10.1016/j.renene.2024.119946_bib17 article-title: An evaluation method of wind power integration in power systems with flexible combined heat and power plant publication-title: Energies doi: 10.3390/en12214129 – volume: 12 start-page: 18 issue: 5 year: 2019 ident: 10.1016/j.renene.2024.119946_bib22 article-title: Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response publication-title: Energies doi: 10.3390/en12050817 – volume: 119 start-page: 490 year: 2018 ident: 10.1016/j.renene.2024.119946_bib19 article-title: Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.037 – volume: 270 year: 2023 ident: 10.1016/j.renene.2024.119946_bib9 article-title: Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system publication-title: Energy doi: 10.1016/j.energy.2023.126893 – volume: 240 start-page: 13 year: 2022 ident: 10.1016/j.renene.2024.119946_bib24 article-title: Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation publication-title: Energy doi: 10.1016/j.energy.2021.122795 – volume: 224 start-page: 357 year: 2018 ident: 10.1016/j.renene.2024.119946_bib23 article-title: Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.119 – volume: 4 start-page: 168 issue: 2 year: 2018 ident: 10.1016/j.renene.2024.119946_bib25 article-title: Modeling and operation of the power-to-gas system for renewables integration: a review publication-title: Csee Journal of Power and Energy Systems doi: 10.17775/CSEEJPES.2018.00260 – volume: 176 start-page: 249 year: 2019 ident: 10.1016/j.renene.2024.119946_bib34 article-title: Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations publication-title: Energy doi: 10.1016/j.energy.2019.03.154 – volume: 295 year: 2021 ident: 10.1016/j.renene.2024.119946_bib29 article-title: Distributed coordinative transaction of a community integrated energy system based on a tri-level game model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116972 – volume: 41 start-page: 1307 issue: 4 year: 2021 ident: 10.1016/j.renene.2024.119946_bib36 article-title: Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and Stackelberg game publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 225 year: 2021 ident: 10.1016/j.renene.2024.119946_bib32 article-title: Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory publication-title: Energy doi: 10.1016/j.energy.2021.120272 – volume: 41 start-page: 4001 issue: 12 year: 2021 ident: 10.1016/j.renene.2024.119946_bib1 article-title: Review on district-level integrated energy system planning considering interconnection and interaction publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 217 start-page: 16 year: 2021 ident: 10.1016/j.renene.2024.119946_bib15 article-title: Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement publication-title: Energy doi: 10.1016/j.energy.2020.119387 – volume: 10 start-page: 1300 issue: 3 year: 2019 ident: 10.1016/j.renene.2024.119946_bib18 article-title: Integrated power and heat dispatch considering available reserve of combined heat and power units publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2865562 – volume: 36 start-page: 1926 issue: 9 year: 2021 ident: 10.1016/j.renene.2024.119946_bib45 article-title: Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response publication-title: Trans. China Electrotech. Soc. – volume: 307 year: 2022 ident: 10.1016/j.renene.2024.119946_bib31 article-title: A new energy storage sharing framework with regard to both storage capacity and power capacity publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118171 – volume: 8 start-page: 11885 year: 2022 ident: 10.1016/j.renene.2024.119946_bib40 article-title: Stackelberg game-based optimal scheduling of integrated energy systems considering differences in heat demand across multi-functional areas publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.08.199 – volume: 143 year: 2022 ident: 10.1016/j.renene.2024.119946_bib28 article-title: Dynamic planning of Power-to-Gas integrated energy hub considering demand response programs and future market conditions publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108503 – volume: 281 year: 2021 ident: 10.1016/j.renene.2024.119946_bib44 article-title: Optimal emission management of photovoltaic and wind generation based energy hub system using compromise programming publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124333 – volume: 223 year: 2021 ident: 10.1016/j.renene.2024.119946_bib16 article-title: An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties publication-title: Energy doi: 10.1016/j.energy.2021.120048 – volume: 221 year: 2021 ident: 10.1016/j.renene.2024.119946_bib33 article-title: Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2021.119777 – volume: 225 year: 2021 ident: 10.1016/j.renene.2024.119946_bib8 article-title: Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response publication-title: Energy doi: 10.1016/j.energy.2021.120256 – volume: 6 start-page: 111 issue: 1 year: 2020 ident: 10.1016/j.renene.2024.119946_bib14 article-title: Energy management strategy considering multi-time-scale operational modes of batteries for the grid-connected microgrids community publication-title: Csee Journal of Power and Energy Systems – volume: 236 year: 2021 ident: 10.1016/j.renene.2024.119946_bib38 article-title: Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system publication-title: Energy doi: 10.1016/j.energy.2021.121392 |
| SSID | ssj0015874 |
| Score | 2.539494 |
| Snippet | An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119946 |
| SubjectTerms | carbon CHP-CCS-P2G joint operation Compromise programming method energy environmental performance heat income Integrated energy system Integrative demand response Master-slave game renewable energy sources system optimization |
| Title | Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game |
| URI | https://dx.doi.org/10.1016/j.renene.2024.119946 https://www.proquest.com/docview/3153613091 |
| Volume | 222 |
| WOSCitedRecordID | wos001153670300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVap4f2UHRF0g0sUPRiMLAWWmJvQeGgaQw3KBzAN4GbAhu2pHpJcujHdyiSkroh6aEXQRYoU9B7IofDmTcIvdNJqlVIBVGCMhKHUhGuhCShGigepULGea2uP04mk3Q2Y2fOp7upywkkRZFeX7Pqv0IN1wBskzr7D3A3fwoX4BxAhyPADsdbAX_iBSBUX9vEPqvWXAcULssrIvlaAObapST3y0o7GpQwfqxcYqZxFZyZErhlHXa-hqYb7cO5Vj61ccWN0AIBXl3q_gX_WfngK_R_Vadm2Qdpgn_mzhtwsfQTpxl3eLGY79o21ldrOjo9bPxA2nj6rc_2FPhqfnT9FmHsQ51bB-RwQGAxFnTHYrBW-hUM44zFQ_LHEd46GxaHRvCzMDqnYezatzOa38WffMmOz8fjbDqaTd9X34ipNWb25F3hlbtoL0woS3to7-hkNPvc7D7R1Kp3-yf0KZd1XODvHf_NpPllcq8tlukj9NAtNfCRpchjdEcXT9CDjgDlU_S9JQu2GGFLFgxkwS1ZsCcLbsiCu2T5gC1VcEsV3KEKBqrgLlWwocozdH48mn78RFw9DiKjiG1JIqNUMi0kSyORcp4zRZM854yKJGchTYXOA604YyLPAxWxQaoSLZWifKg1E9Fz1CvKQu8jHFEFdmMgFA3ymHHFYdU6jEwVJD6glMsDFPlXmkknVm9qpiwzH5W4yCwQmQEis0AcINLcVVmxlhvaJx6tzBmc1pDMgG033PnWg5vBOzWbbLzQ5W6TRWBCmDU5C17cos1LdL_9Nl6h3na906_RPXm5nW_WbxwvfwBCZbZD |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+energy+system+for+low-carbon+economic+operation+optimization%3A+Pareto+compromise+programming+and+master-slave+game&rft.jtitle=Renewable+energy&rft.au=Li%2C+Lingling&rft.au=Yanjiu&rft.au=Lim%2C+Ming+K.&rft.au=Sethanan%2C+Kanchana&rft.date=2024-02-01&rft.issn=0960-1481&rft.volume=222+p.119946-&rft_id=info:doi/10.1016%2Fj.renene.2024.119946&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |