Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game

An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy Vol. 222; p. 119946
Main Authors: Li, Ling-Ling, Miao, Yan, Lim, Ming K., Sethanan, Kanchana, Tseng, Ming-Lang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2024
Subjects:
ISSN:0960-1481, 1879-0682
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %.
AbstractList An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %.
An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development. Aiming at the low-carbon economy problem of IESs with combined heat and power (CHP), carbon capture systems (CCSs) and power-to-gas (P2G), the joint operation mode of CHP-CCS-P2G is proposed, and the output characteristics and carbon emissions of CHP units under this mode are analysed. On the supply side, a multi-objective optimization method based on compromise programming is proposed to solve the contradiction between economic and environmental objectives in the IES, and the energy operator balances economic and environmental performance to obtain the optimal configuration scheme and operation strategy. On the load side, a master-slave game energy trading strategy considering integrative demand response (IDR) is adopted to balance the interests of the energy operator and users centrally managed by the load aggregator to ensure the fairness of transactions between the two parties. The results show that the overall revenue of the energy operator decreases by 7.99 % after considering IDR. However, the carbon emissions decreased by 933.82 kg, the carbon trading revenue increased by 45.18 %, and the energy purchase cost of users decreased by 9.34 %.
ArticleNumber 119946
Author Lim, Ming K.
Sethanan, Kanchana
Tseng, Ming-Lang
Miao, Yan
Li, Ling-Ling
Author_xml – sequence: 1
  givenname: Ling-Ling
  surname: Li
  fullname: Li, Ling-Ling
  email: lilinglinglaoshi@126.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
– sequence: 2
  givenname: Yan
  orcidid: 0009-0004-0291-9392
  surname: Miao
  fullname: Miao, Yan
  email: 202121401069@stu.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
– sequence: 3
  givenname: Ming K.
  orcidid: 0000-0003-0809-9431
  surname: Lim
  fullname: Lim, Ming K.
  email: Ming.Lim@glasgow.ac.uk
  organization: Adam Smith Business School, University of Glasgow, Glasgow, United Kingdom
– sequence: 4
  givenname: Kanchana
  orcidid: 0000-0002-3340-2538
  surname: Sethanan
  fullname: Sethanan, Kanchana
  email: skanch@kku.ac.th
  organization: Research Unit on System Modeling for Industry, Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
– sequence: 5
  givenname: Ming-Lang
  orcidid: 0000-0002-2702-3590
  surname: Tseng
  fullname: Tseng, Ming-Lang
  email: tsengminglang@gmail.com
  organization: Institute of Innovation and Circular Economy, Asia University, Taiwan
BookMark eNqFkE1rXCEUhqVMoDNJ_kEXLru5Ux3vh2ZRKEPTBgaSRbIWrx4Hh6tO1aRM6I-Pye2qixQXB-V9H47PCi1CDIDQJ0rWlND-y2GdINSz3pBNu6ZUiLb_gJaUD6IhPd8s0JKInjS05fQjWuV8IIR2fGiX6M9NKLBPqoDBlZD2J5xPuYDHNiY8xd-NVmmMAYOOIXqncTxCjbv6FI_Feff8drnCdypBiVhHf0w1mAHXWcneu7DHKhjsVQWnJk_qCfBeebhAZ1ZNGS7_znP0cP39fvuz2d3-uNl-2zWaMVGaQTOuBYxacDZypaww3WCtEt04WLHp-AiWglFCjNZSwwThZgBtTKd6ADGyc_R55taNfj1CLrLup2GaVID4mCWjHespI4LW6NUc1SnmnMBK7crbD0tSbpKUyFfl8iBn5fJVuZyV13L7T_mYnFfp9L_a17kG1cGTgySzdhA0GJdAF2miex_wAoKipKY
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_07_261
crossref_primary_10_1016_j_rser_2025_115931
crossref_primary_10_1063_5_0217570
crossref_primary_10_1016_j_egyr_2024_12_016
crossref_primary_10_1016_j_egyai_2025_100619
crossref_primary_10_1016_j_est_2025_116672
crossref_primary_10_1016_j_energy_2024_130953
crossref_primary_10_1016_j_est_2024_113327
crossref_primary_10_2516_stet_2024066
crossref_primary_10_3390_su17010119
crossref_primary_10_1016_j_ijhydene_2024_11_289
crossref_primary_10_1016_j_scs_2025_106291
crossref_primary_10_1016_j_renene_2024_120681
crossref_primary_10_1016_j_segan_2024_101605
crossref_primary_10_1016_j_scs_2024_105791
crossref_primary_10_1016_j_renene_2024_121722
crossref_primary_10_1088_1742_6596_3000_1_012022
crossref_primary_10_1016_j_cie_2025_111112
crossref_primary_10_1007_s10614_025_11019_7
crossref_primary_10_1016_j_renene_2024_121712
crossref_primary_10_1016_j_ijhydene_2025_03_027
Cites_doi 10.1016/j.ijhydene.2023.06.170
10.1109/TSG.2017.2663380
10.1016/j.apenergy.2020.114879
10.1016/j.jclepro.2022.132758
10.1016/j.apenergy.2020.115941
10.1016/j.renene.2021.05.164
10.1109/TSG.2019.2935736
10.1016/j.apenergy.2016.07.077
10.3390/en12214129
10.3390/en12050817
10.1016/j.renene.2017.12.037
10.1016/j.energy.2023.126893
10.1016/j.energy.2021.122795
10.1016/j.apenergy.2018.04.119
10.17775/CSEEJPES.2018.00260
10.1016/j.energy.2019.03.154
10.1016/j.apenergy.2021.116972
10.1016/j.energy.2021.120272
10.1016/j.energy.2020.119387
10.1109/TSTE.2018.2865562
10.1016/j.apenergy.2021.118171
10.1016/j.egyr.2022.08.199
10.1016/j.ijepes.2022.108503
10.1016/j.jclepro.2020.124333
10.1016/j.energy.2021.120048
10.1016/j.energy.2021.119777
10.1016/j.energy.2021.120256
10.1016/j.energy.2021.121392
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2024.119946
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
ExternalDocumentID 10_1016_j_renene_2024_119946
S0960148124000119
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-7c38c9ebc983b8aaf9d57ffa95b7f9258bef1eda99bff1d3908d7ecdd5a6ee9b3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153670300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Wed Oct 01 15:05:36 EDT 2025
Tue Nov 18 21:46:30 EST 2025
Sat Nov 29 07:05:04 EST 2025
Sat Mar 23 16:30:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Integrated energy system
Compromise programming method
CHP-CCS-P2G joint operation
Master-slave game
Integrative demand response
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-7c38c9ebc983b8aaf9d57ffa95b7f9258bef1eda99bff1d3908d7ecdd5a6ee9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0004-0291-9392
0000-0003-0809-9431
0000-0002-3340-2538
0000-0002-2702-3590
PQID 3153613091
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153613091
crossref_citationtrail_10_1016_j_renene_2024_119946
crossref_primary_10_1016_j_renene_2024_119946
elsevier_sciencedirect_doi_10_1016_j_renene_2024_119946
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Fan, Wu, Sethanan, Tseng (bib5) 2024
Wang, Zhang, Li, Liu, Li, Wang (bib29) 2021; 295
Zhang, Wang, Chen, Li, Niu (bib24) 2022; 240
Chen, Qi, Rong, Peng, Zhao, Zhang (bib15) 2021; 217
Wang, Yang, Qu, Xu (bib40) 2022; 8
Li, Li, Liu, Wang, Li, Huang, Huang, Guo, Xiong (bib26) 2023
Wen, Qu, Li, Liu, Ye (bib13) 2018; 9
Chen, Chen, Zhou, Bai, Li, Guo (bib7) 2023
Wang, Qin, Ma, Wang, Li (bib10) 2023
Li, Zhang, Li, Wang (bib16) 2021; 223
Li, Wang, Wang, Yang, Guo, Yin (bib8) 2021; 225
Li, Ren, Tseng, Wu, Lim (bib43) 2022; vol. 258
Lu, Liu, He, Nan, Hu (bib12) 2021; 178
Xing, Xie, Meng, Guo, Yue, Guerrero (bib14) 2020; 6
Xiao, Yang, Cui, Liu (bib31) 2022; 307
Yin, Tao (bib6) 2023; vol. 329
Zhou, Hu, Min, Dai (bib18) 2019; 10
Li, Ji, Lim, Tseng (bib4) 2023
Li, Zhang, Jiang, Chen, Bai, Li (bib11) 2017; 194
Li, Li, Wang, Dong, Li, Cui, Ge, Yang, Okoye (bib22) 2019; 12
Xing, Lin, Song, Zhou, Mu, Hu (bib25) 2018; 4
Jiang, Yuan, Li (bib32) 2021; 225
Wang, Zhang, Li, Ma (bib33) 2021; 221
Lyu, Gong, Yang, Xu, Zhang, Wang (bib17) 2019; 12
He, Wu, Yong, Tan, Liu (bib27) 2022
He, Lu, Zhang, Geng, Zhao, Li (bib23) 2018; 224
Wang, Xie, Sun, Bie (bib45) 2021; 36
Zheng (bib21) 2018
Zhang, Chan, Wang, Hu, Zhou, Zhang, Qiu (bib34) 2019; 176
Miao, Yue, Niu, Alizadeh, Jermsittiparsert (bib44) 2021; 281
Lorestani, Ardehali (bib19) 2018; 119
Ge, Li, He, Liu (bib30) 2021; vol. 297
Chen, Park, Kou, Hu, Dong, Li, Amasyali, Olama (bib35) 2020; 280
Lyu, Zhang, Cheng, Han, Yuan, Song, Fang (bib1) 2021; 41
Wang, Lin, Dong, Wang, Zeng (bib9) 2023; 270
Wang, Yang, Chen, Li, Liang, Ma, Dong, Ji, Feng (bib20) 2020; 267
Chen, Hu, Chen, Chen, Chen, Gao, Lin, Du (bib41) 2021; 41
Li, Wu, Li, Liu, Wang, Zhou (bib36) 2021; 41
Alipour, Gharehpetian, Ahmadiahangar, Rosin, Kilter (bib39) 2022; vol. 213
Zhang, Zhang, Xie, Zhang (bib37) 2022; 365
Ma, Wang, Hong, Yang, Chen, Cui, Feng (bib38) 2021; 236
Cheng, Zhang, Zhang, Kang, Xi, Feng (bib42) 2020; 11
Alizad, Rastegar, Hasanzad (bib28) 2022; 143
He (10.1016/j.renene.2024.119946_bib23) 2018; 224
Zhang (10.1016/j.renene.2024.119946_bib24) 2022; 240
Wang (10.1016/j.renene.2024.119946_bib40) 2022; 8
Wang (10.1016/j.renene.2024.119946_bib10) 2023
Li (10.1016/j.renene.2024.119946_bib5) 2024
Yin (10.1016/j.renene.2024.119946_bib6) 2023; vol. 329
Lorestani (10.1016/j.renene.2024.119946_bib19) 2018; 119
Alipour (10.1016/j.renene.2024.119946_bib39) 2022; vol. 213
Lyu (10.1016/j.renene.2024.119946_bib1) 2021; 41
Li (10.1016/j.renene.2024.119946_bib11) 2017; 194
Chen (10.1016/j.renene.2024.119946_bib15) 2021; 217
Xing (10.1016/j.renene.2024.119946_bib25) 2018; 4
Li (10.1016/j.renene.2024.119946_bib8) 2021; 225
Li (10.1016/j.renene.2024.119946_bib26) 2023
Chen (10.1016/j.renene.2024.119946_bib7) 2023
Lyu (10.1016/j.renene.2024.119946_bib17) 2019; 12
Jiang (10.1016/j.renene.2024.119946_bib32) 2021; 225
Zheng (10.1016/j.renene.2024.119946_bib21) 2018
Li (10.1016/j.renene.2024.119946_bib43) 2022; vol. 258
Zhou (10.1016/j.renene.2024.119946_bib18) 2019; 10
He (10.1016/j.renene.2024.119946_bib27) 2022
Miao (10.1016/j.renene.2024.119946_bib44) 2021; 281
Wang (10.1016/j.renene.2024.119946_bib9) 2023; 270
Wang (10.1016/j.renene.2024.119946_bib45) 2021; 36
Xiao (10.1016/j.renene.2024.119946_bib31) 2022; 307
Li (10.1016/j.renene.2024.119946_bib36) 2021; 41
Chen (10.1016/j.renene.2024.119946_bib41) 2021; 41
Chen (10.1016/j.renene.2024.119946_bib35) 2020; 280
Wen (10.1016/j.renene.2024.119946_bib13) 2018; 9
Cheng (10.1016/j.renene.2024.119946_bib42) 2020; 11
Li (10.1016/j.renene.2024.119946_bib4) 2023
Alizad (10.1016/j.renene.2024.119946_bib28) 2022; 143
Li (10.1016/j.renene.2024.119946_bib16) 2021; 223
Ge (10.1016/j.renene.2024.119946_bib30) 2021; vol. 297
Zhang (10.1016/j.renene.2024.119946_bib37) 2022; 365
Lu (10.1016/j.renene.2024.119946_bib12) 2021; 178
Zhang (10.1016/j.renene.2024.119946_bib34) 2019; 176
Li (10.1016/j.renene.2024.119946_bib22) 2019; 12
Wang (10.1016/j.renene.2024.119946_bib33) 2021; 221
Wang (10.1016/j.renene.2024.119946_bib29) 2021; 295
Xing (10.1016/j.renene.2024.119946_bib14) 2020; 6
Wang (10.1016/j.renene.2024.119946_bib20) 2020; 267
Ma (10.1016/j.renene.2024.119946_bib38) 2021; 236
References_xml – volume: 217
  start-page: 16
  year: 2021
  ident: bib15
  article-title: Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement
  publication-title: Energy
– start-page: 237
  year: 2024
  ident: bib5
  article-title: Multi-objective distributed generation hierarchical optimal planning in distribution network: improved beluga whale optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 18
  year: 2019
  ident: bib22
  article-title: Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response
  publication-title: Energies
– volume: 36
  start-page: 1926
  year: 2021
  end-page: 1934
  ident: bib45
  article-title: Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response
  publication-title: Trans. China Electrotech. Soc.
– year: 2018
  ident: bib21
  article-title: Optimization under Uncertainty of a Biomass-Integrated Renewable Energy Microgrid with Energy Storage
– volume: 178
  start-page: 466
  year: 2021
  end-page: 482
  ident: bib12
  article-title: Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy
  publication-title: Renew. Energy
– volume: 176
  start-page: 249
  year: 2019
  end-page: 264
  ident: bib34
  article-title: Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations
  publication-title: Energy
– start-page: 391
  year: 2023
  ident: bib26
  article-title: Operation optimization for integrated energy system based on hybrid CSP-CHP considering power-to-gas technology and carbon capture system
  publication-title: J. Clean. Prod.
– volume: vol. 297
  year: 2021
  ident: bib30
  publication-title: Joint Energy Market Design for Local Integrated Energy System Service Procurement Considering Demand Flexibility
– volume: vol. 213
  year: 2022
  ident: bib39
  publication-title: Energy Storage Facilities Impact on Flexibility of Active Distribution Networks: Stochastic Approach
– start-page: 229
  year: 2023
  ident: bib7
  article-title: A Bi-level Gaming Programming for Regional Integrated Energy System Considering the Users? Reliability Incentive
– volume: 236
  year: 2021
  ident: bib38
  article-title: Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system
  publication-title: Energy
– volume: 41
  start-page: 1307
  year: 2021
  end-page: 1321
  ident: bib36
  article-title: Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and Stackelberg game
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 270
  year: 2023
  ident: bib9
  article-title: Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system
  publication-title: Energy
– volume: 4
  start-page: 168
  year: 2018
  end-page: 178
  ident: bib25
  article-title: Modeling and operation of the power-to-gas system for renewables integration: a review
  publication-title: Csee Journal of Power and Energy Systems
– volume: 307
  year: 2022
  ident: bib31
  article-title: A new energy storage sharing framework with regard to both storage capacity and power capacity
  publication-title: Appl. Energy
– year: 2023
  ident: bib10
  article-title: Operation optimisation of integrated energy systems based on cooperative game with hydrogen energy storage systems
  publication-title: Int. J. Hydrogen Energy 48(95), 37335-37354
– volume: 223
  year: 2021
  ident: bib16
  article-title: An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties
  publication-title: Energy
– volume: 280
  year: 2020
  ident: bib35
  article-title: A comparison study on trading behavior and profit distribution in local energy transaction games
  publication-title: Appl. Energy
– volume: 9
  start-page: 4555
  year: 2018
  end-page: 4565
  ident: bib13
  article-title: Synergistic operation of electricity and natural gas networks via ADMM
  publication-title: IEEE Trans. Smart Grid
– volume: 224
  start-page: 357
  year: 2018
  end-page: 370
  ident: bib23
  article-title: Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas
  publication-title: Appl. Energy
– volume: 240
  start-page: 13
  year: 2022
  ident: bib24
  article-title: Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation
  publication-title: Energy
– volume: 225
  year: 2021
  ident: bib8
  article-title: Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response
  publication-title: Energy
– volume: 10
  start-page: 1300
  year: 2019
  end-page: 1310
  ident: bib18
  article-title: Integrated power and heat dispatch considering available reserve of combined heat and power units
  publication-title: IEEE Trans. Sustain. Energy
– volume: 365
  year: 2022
  ident: bib37
  article-title: Energy scheduling optimization of the integrated energy system with ground source heat pumps
  publication-title: J. Clean. Prod.
– volume: 281
  year: 2021
  ident: bib44
  article-title: Optimal emission management of photovoltaic and wind generation based energy hub system using compromise programming
  publication-title: J. Clean. Prod.
– volume: 221
  year: 2021
  ident: bib33
  article-title: Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage
  publication-title: Energy
– volume: 267
  year: 2020
  ident: bib20
  article-title: Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks
  publication-title: Appl. Energy
– volume: vol. 258
  year: 2022
  ident: bib43
  publication-title: Performance Evaluation of Solar Hybrid Combined Cooling, Heating and Power Systems: A Multi-Objective Arithmetic Optimization Algorithm
– volume: 194
  start-page: 696
  year: 2017
  end-page: 704
  ident: bib11
  article-title: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process
  publication-title: Appl. Energy
– volume: 143
  year: 2022
  ident: bib28
  article-title: Dynamic planning of Power-to-Gas integrated energy hub considering demand response programs and future market conditions
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 295
  year: 2021
  ident: bib29
  article-title: Distributed coordinative transaction of a community integrated energy system based on a tri-level game model
  publication-title: Appl. Energy
– volume: vol. 329
  year: 2023
  ident: bib6
  publication-title: Balanced Broad Learning Prediction Model for Carbon Emissions of Integrated Energy Systems Considering Distributed Ground Source Heat Pump Heat Storage Systems and Carbon Capture & Storage
– volume: 41
  start-page: 4001
  year: 2021
  end-page: 4020
  ident: bib1
  article-title: Review on district-level integrated energy system planning considering interconnection and interaction
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 6
  start-page: 111
  year: 2020
  end-page: 121
  ident: bib14
  article-title: Energy management strategy considering multi-time-scale operational modes of batteries for the grid-connected microgrids community
  publication-title: Csee Journal of Power and Energy Systems
– start-page: 274
  year: 2022
  ident: bib27
  article-title: Bi-level Optimization of a Near-Zero-Emission Integrated Energy System Considering Electricity-Hydrogen-Gas Nexus: A Two-Stage Framework Aiming at Economic and Environmental Benefits
– volume: 12
  year: 2019
  ident: bib17
  article-title: An evaluation method of wind power integration in power systems with flexible combined heat and power plant
  publication-title: Energies
– year: 2023
  ident: bib4
  article-title: Active distribution network operational optimization problem: a multi-objective tuna swarm optimization model
  publication-title: Appl. Soft Comput.
– volume: 119
  start-page: 490
  year: 2018
  end-page: 503
  ident: bib19
  article-title: Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm
  publication-title: Renew. Energy
– volume: 41
  start-page: 48
  year: 2021
  end-page: 55
  ident: bib41
  article-title: Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production
  publication-title: Electric Power Automation Equipment
– volume: 8
  start-page: 11885
  year: 2022
  end-page: 11898
  ident: bib40
  article-title: Stackelberg game-based optimal scheduling of integrated energy systems considering differences in heat demand across multi-functional areas
  publication-title: Energy Rep.
– volume: 11
  start-page: 1307
  year: 2020
  end-page: 1318
  ident: bib42
  article-title: Low-carbon operation of multiple energy systems based on energy-carbon integrated prices
  publication-title: IEEE Trans. Smart Grid
– volume: 225
  year: 2021
  ident: bib32
  article-title: Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory
  publication-title: Energy
– year: 2023
  ident: 10.1016/j.renene.2024.119946_bib10
  article-title: Operation optimisation of integrated energy systems based on cooperative game with hydrogen energy storage systems
  publication-title: Int. J. Hydrogen Energy 48(95), 37335-37354
  doi: 10.1016/j.ijhydene.2023.06.170
– volume: 9
  start-page: 4555
  issue: 5
  year: 2018
  ident: 10.1016/j.renene.2024.119946_bib13
  article-title: Synergistic operation of electricity and natural gas networks via ADMM
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2663380
– volume: 267
  year: 2020
  ident: 10.1016/j.renene.2024.119946_bib20
  article-title: Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114879
– year: 2023
  ident: 10.1016/j.renene.2024.119946_bib4
  article-title: Active distribution network operational optimization problem: a multi-objective tuna swarm optimization model
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: 10.1016/j.renene.2024.119946_bib21
– volume: 41
  start-page: 48
  issue: 9
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib41
  article-title: Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production
  publication-title: Electric Power Automation Equipment
– start-page: 274
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib27
– volume: vol. 329
  year: 2023
  ident: 10.1016/j.renene.2024.119946_bib6
– volume: vol. 213
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib39
– start-page: 237
  year: 2024
  ident: 10.1016/j.renene.2024.119946_bib5
  article-title: Multi-objective distributed generation hierarchical optimal planning in distribution network: improved beluga whale optimization algorithm
  publication-title: Expert Syst. Appl.
– start-page: 229
  year: 2023
  ident: 10.1016/j.renene.2024.119946_bib7
– start-page: 391
  year: 2023
  ident: 10.1016/j.renene.2024.119946_bib26
  article-title: Operation optimization for integrated energy system based on hybrid CSP-CHP considering power-to-gas technology and carbon capture system
  publication-title: J. Clean. Prod.
– volume: 365
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib37
  article-title: Energy scheduling optimization of the integrated energy system with ground source heat pumps
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.132758
– volume: 280
  year: 2020
  ident: 10.1016/j.renene.2024.119946_bib35
  article-title: A comparison study on trading behavior and profit distribution in local energy transaction games
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115941
– volume: vol. 258
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib43
– volume: 178
  start-page: 466
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib12
  article-title: Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.05.164
– volume: vol. 297
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib30
– volume: 11
  start-page: 1307
  issue: 2
  year: 2020
  ident: 10.1016/j.renene.2024.119946_bib42
  article-title: Low-carbon operation of multiple energy systems based on energy-carbon integrated prices
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2935736
– volume: 194
  start-page: 696
  year: 2017
  ident: 10.1016/j.renene.2024.119946_bib11
  article-title: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.077
– volume: 12
  issue: 21
  year: 2019
  ident: 10.1016/j.renene.2024.119946_bib17
  article-title: An evaluation method of wind power integration in power systems with flexible combined heat and power plant
  publication-title: Energies
  doi: 10.3390/en12214129
– volume: 12
  start-page: 18
  issue: 5
  year: 2019
  ident: 10.1016/j.renene.2024.119946_bib22
  article-title: Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response
  publication-title: Energies
  doi: 10.3390/en12050817
– volume: 119
  start-page: 490
  year: 2018
  ident: 10.1016/j.renene.2024.119946_bib19
  article-title: Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.12.037
– volume: 270
  year: 2023
  ident: 10.1016/j.renene.2024.119946_bib9
  article-title: Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126893
– volume: 240
  start-page: 13
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib24
  article-title: Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122795
– volume: 224
  start-page: 357
  year: 2018
  ident: 10.1016/j.renene.2024.119946_bib23
  article-title: Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.119
– volume: 4
  start-page: 168
  issue: 2
  year: 2018
  ident: 10.1016/j.renene.2024.119946_bib25
  article-title: Modeling and operation of the power-to-gas system for renewables integration: a review
  publication-title: Csee Journal of Power and Energy Systems
  doi: 10.17775/CSEEJPES.2018.00260
– volume: 176
  start-page: 249
  year: 2019
  ident: 10.1016/j.renene.2024.119946_bib34
  article-title: Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.154
– volume: 295
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib29
  article-title: Distributed coordinative transaction of a community integrated energy system based on a tri-level game model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116972
– volume: 41
  start-page: 1307
  issue: 4
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib36
  article-title: Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and Stackelberg game
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 225
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib32
  article-title: Energy management for a community-level integrated energy system with photovoltaic prosumers based on bargaining theory
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120272
– volume: 41
  start-page: 4001
  issue: 12
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib1
  article-title: Review on district-level integrated energy system planning considering interconnection and interaction
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 217
  start-page: 16
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib15
  article-title: Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119387
– volume: 10
  start-page: 1300
  issue: 3
  year: 2019
  ident: 10.1016/j.renene.2024.119946_bib18
  article-title: Integrated power and heat dispatch considering available reserve of combined heat and power units
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2865562
– volume: 36
  start-page: 1926
  issue: 9
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib45
  article-title: Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response
  publication-title: Trans. China Electrotech. Soc.
– volume: 307
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib31
  article-title: A new energy storage sharing framework with regard to both storage capacity and power capacity
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118171
– volume: 8
  start-page: 11885
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib40
  article-title: Stackelberg game-based optimal scheduling of integrated energy systems considering differences in heat demand across multi-functional areas
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.08.199
– volume: 143
  year: 2022
  ident: 10.1016/j.renene.2024.119946_bib28
  article-title: Dynamic planning of Power-to-Gas integrated energy hub considering demand response programs and future market conditions
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108503
– volume: 281
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib44
  article-title: Optimal emission management of photovoltaic and wind generation based energy hub system using compromise programming
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124333
– volume: 223
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib16
  article-title: An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120048
– volume: 221
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib33
  article-title: Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119777
– volume: 225
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib8
  article-title: Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120256
– volume: 6
  start-page: 111
  issue: 1
  year: 2020
  ident: 10.1016/j.renene.2024.119946_bib14
  article-title: Energy management strategy considering multi-time-scale operational modes of batteries for the grid-connected microgrids community
  publication-title: Csee Journal of Power and Energy Systems
– volume: 236
  year: 2021
  ident: 10.1016/j.renene.2024.119946_bib38
  article-title: Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121392
SSID ssj0015874
Score 2.5395613
Snippet An integrated energy system (IES) can effectively solve the energy crisis, realize multi-energy complementarity, and promote fine-grained energy development....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119946
SubjectTerms carbon
CHP-CCS-P2G joint operation
Compromise programming method
energy
environmental performance
heat
income
Integrated energy system
Integrative demand response
Master-slave game
renewable energy sources
system optimization
Title Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game
URI https://dx.doi.org/10.1016/j.renene.2024.119946
https://www.proquest.com/docview/3153613091
Volume 222
WOSCitedRecordID wos001153670300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbuoftYexKuxsajL0EldiKY2lvZaSsa8jKSCFvQpLlkpDYWS5tH_bjd2RJtnej3cNeTGKOLePv89HR0bkg9I5ypROZxYTzvoEFiuI2CECTnMcDFekolqxKFB6l4zGbTvmZ9-luqnYCaVGw62u--q9QwzkA26bO_gPc9U3hBPwG0OEIsMPxVsCfhAIQWde4xD5XrbkKKFyUV0TLtQLMjU9J7pYr42lQgv5Y-sRM6yo4sy1wyyrsfA2iGxPCuZYhtXEpbaEFAry6NN0L-XPlg68w_lWVmuUepA7-mXlvwMUiTJxW78hiPts1Ms5Xawc6Paz9QMZ6-p3P9hT4av-0_RZxP4Q6Nw7IQY_AYixq62KwVrorUOPAnAH5o4Z3zob5oS34Wdg6p3HfyzczWtjFH38Rx-ejkZgMp5P3q2_E9hqze_K-8cpdtBenCWcdtHd0Mpx-rnefEuaqd4cnDCmXVVzg7wP_zaT5ZXKvLJbJI_TQLzXwkaPIY3THFE_Qg1YByqfoe0MW7DDCjiwYyIIbsuBAFlyTBbfJ8gE7quCGKrhFFQxUwW2qYEuVZ-j8eDj5-In4fhxEU8q3JNWUaW6U5owqJmXOsyTNc8kTlcK3nTBl8shkknOV51FGeY9lqdFZlsiBMVzR56hTlIXZR1gr63qh_V5OWT-OQCFEqYwTmiWxhhvSA0TDKxXaF6u3PVMWIkQlzoUDQlgghAPiAJH6qpUr1nKDfBrQEt7gdIakALbdcOXbAK6Ad2o32WRhyt1GUDAh7JqcRy9uIfMS3W--jVeos13vzGt0T19uZ5v1G8_LH4VWtT4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+energy+system+for+low-carbon+economic+operation+optimization%3A+Pareto+compromise+programming+and+master-slave+game&rft.jtitle=Renewable+energy&rft.au=Li%2C+Lingling&rft.au=Yanjiu&rft.au=Lim%2C+Ming+K.&rft.au=Sethanan%2C+Kanchana&rft.date=2024-02-01&rft.issn=0960-1481&rft.volume=222+p.119946-&rft_id=info:doi/10.1016%2Fj.renene.2024.119946&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon