A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem

•A novel fruit fly optimization algorithm is proposed for SFTSP.•Novel encoding and decoding methods are designed.•Effective smell-based, vision-based and cooperative searches are proposed.•Semiconductor final testing scheduling problem is solved effectively. In this paper, a novel fruit fly optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 57; S. 95 - 103
Hauptverfasser: Zheng, Xiao-long, Wang, Ling, Wang, Sheng-yao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2014
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel fruit fly optimization algorithm is proposed for SFTSP.•Novel encoding and decoding methods are designed.•Effective smell-based, vision-based and cooperative searches are proposed.•Semiconductor final testing scheduling problem is solved effectively. In this paper, a novel fruit fly optimization algorithm (nFOA) is proposed to solve the semiconductor final testing scheduling problem (SFTSP). First, a new encoding scheme is presented to represent solutions reasonably, and a new decoding scheme is presented to map solutions to feasible schedules. Second, it uses multiple fruit fly groups during the evolution process to enhance the parallel search ability of the FOA. According to the characteristics of the SFTSP, a smell-based search operator and a vision-based search operator are well designed for the groups to stress exploitation. Third, to simulate the information communication behavior among fruit flies, a cooperative search process is developed to stress exploration. The cooperative search process includes a modified improved precedence operation crossover (IPOX) and a modified multipoint preservative crossover (MPX) based on two popular structures of the flexible job shop scheduling. Moreover, the influence of the parameter setting is investigated by using Taguchi method of design-of-experiment (DOE), and suitable values are determined for key parameters. Finally, computational tests results with some benchmark instances and the comparisons to some existing algorithms are provided, which demonstrate the effectiveness and the efficiency of the nFOA in solving the SFTSP.
AbstractList •A novel fruit fly optimization algorithm is proposed for SFTSP.•Novel encoding and decoding methods are designed.•Effective smell-based, vision-based and cooperative searches are proposed.•Semiconductor final testing scheduling problem is solved effectively. In this paper, a novel fruit fly optimization algorithm (nFOA) is proposed to solve the semiconductor final testing scheduling problem (SFTSP). First, a new encoding scheme is presented to represent solutions reasonably, and a new decoding scheme is presented to map solutions to feasible schedules. Second, it uses multiple fruit fly groups during the evolution process to enhance the parallel search ability of the FOA. According to the characteristics of the SFTSP, a smell-based search operator and a vision-based search operator are well designed for the groups to stress exploitation. Third, to simulate the information communication behavior among fruit flies, a cooperative search process is developed to stress exploration. The cooperative search process includes a modified improved precedence operation crossover (IPOX) and a modified multipoint preservative crossover (MPX) based on two popular structures of the flexible job shop scheduling. Moreover, the influence of the parameter setting is investigated by using Taguchi method of design-of-experiment (DOE), and suitable values are determined for key parameters. Finally, computational tests results with some benchmark instances and the comparisons to some existing algorithms are provided, which demonstrate the effectiveness and the efficiency of the nFOA in solving the SFTSP.
In this paper, a novel fruit fly optimization algorithm (nFOA) is proposed to solve the semiconductor final testing scheduling problem (SFTSP). First, a new encoding scheme is presented to represent solutions reasonably, and a new decoding scheme is presented to map solutions to feasible schedules. Second, it uses multiple fruit fly groups during the evolution process to enhance the parallel search ability of the FOA. According to the characteristics of the SFTSP, a smell-based search operator and a vision-based search operator are well designed for the groups to stress exploitation. Third, to simulate the information communication behavior among fruit flies, a cooperative search process is developed to stress exploration. The cooperative search process includes a modified improved precedence operation crossover (IPOX) and a modified multipoint preservative crossover (MPX) based on two popular structures of the flexible job shop scheduling. Moreover, the influence of the parameter setting is investigated by using Taguchi method of design-of-experiment (DOE), and suitable values are determined for key parameters. Finally, computational tests results with some benchmark instances and the comparisons to some existing algorithms are provided, which demonstrate the effectiveness and the efficiency of the nFOA in solving the SFTSP.
Author Wang, Sheng-yao
Zheng, Xiao-long
Wang, Ling
Author_xml – sequence: 1
  givenname: Xiao-long
  surname: Zheng
  fullname: Zheng, Xiao-long
– sequence: 2
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
– sequence: 3
  givenname: Sheng-yao
  surname: Wang
  fullname: Wang, Sheng-yao
BookMark eNqFkEFP4zAQha0VSLTAP-Dg416a9ThpnOwBqapgQULisnu2HGdC3XXsYjuVur8el3LiwJ5mNJr35s03J2fOOyTkBlgBDOof2-Kv8_EQC86gLIAXDOAbmUEj-EJUrD0jM9Yu2UKwJVyQeYxbxhjn0MyIXFHn92jpECaT6GAP1O-SGc0_lYx3VNkXH0zajHTwgaYN0oij0d71k055MhinLE0Yk3EvNOoN9pM9trvgO4vjFTkflI14_VEvyZ_7u9_rh8XT86_H9eppocuyTTllVXadwBxTKNHXrBXlUA-i7xTv-korxgGW2KJqVJX_qsuGIwihelYBlKK8JN9Pvvnu65TjyNFEjdYqh36KEpa1yOYVb_JqdVrVwccYcJC7YEYVDhKYPPKUW3niKY88JXCZeWbZz08ybdI7pBSUsf8T357EmBnsDQYZtUGnsTcBdZK9N18bvAEDhJeY
CitedBy_id crossref_primary_10_1007_s13042_017_0669_5
crossref_primary_10_1108_BIJ_05_2018_0120
crossref_primary_10_1142_S0218001417540155
crossref_primary_10_1016_j_knosys_2017_09_038
crossref_primary_10_1016_j_knosys_2015_09_032
crossref_primary_10_1016_j_swevo_2017_06_001
crossref_primary_10_1007_s13369_015_1905_5
crossref_primary_10_1016_j_eswa_2020_113486
crossref_primary_10_1016_j_knosys_2020_106437
crossref_primary_10_1109_ACCESS_2019_2917502
crossref_primary_10_1007_s11424_018_7250_5
crossref_primary_10_1016_j_jclepro_2018_03_149
crossref_primary_10_1080_0305215X_2021_1949007
crossref_primary_10_1016_j_knosys_2016_01_006
crossref_primary_10_1155_2014_314797
crossref_primary_10_1016_j_knosys_2015_07_027
crossref_primary_10_1007_s00521_020_05657_1
crossref_primary_10_1016_j_eswa_2016_08_039
crossref_primary_10_1016_j_knosys_2016_01_002
crossref_primary_10_1016_j_knosys_2020_106704
crossref_primary_10_1155_2020_6315675
crossref_primary_10_1007_s00158_020_02589_1
crossref_primary_10_1016_j_amc_2017_01_004
crossref_primary_10_1016_j_swevo_2017_05_007
crossref_primary_10_1007_s40031_022_00725_7
crossref_primary_10_1007_s00366_020_01174_w
crossref_primary_10_3390_app6100294
crossref_primary_10_1088_1742_6596_1175_1_012042
crossref_primary_10_1007_s00500_015_1641_5
crossref_primary_10_1016_j_ins_2016_08_046
crossref_primary_10_3390_app6100299
crossref_primary_10_1007_s00500_017_2733_1
crossref_primary_10_1007_s10462_021_10105_0
crossref_primary_10_1371_journal_pone_0165804
crossref_primary_10_1016_j_eswa_2024_125424
crossref_primary_10_1080_00207543_2022_2075292
crossref_primary_10_1016_j_cie_2020_106280
crossref_primary_10_1080_00207543_2016_1170226
crossref_primary_10_1109_TSMC_2016_2616347
crossref_primary_10_1007_s00500_020_05141_x
crossref_primary_10_1016_j_eswa_2021_115978
crossref_primary_10_1109_ACCESS_2018_2867728
crossref_primary_10_1016_j_cie_2022_108603
crossref_primary_10_1016_j_eswa_2021_115214
crossref_primary_10_1109_ACCESS_2018_2872110
crossref_primary_10_1155_2020_9676279
crossref_primary_10_1016_j_sasc_2025_200275
crossref_primary_10_1007_s11042_016_4233_1
crossref_primary_10_4018_JGIM_351156
crossref_primary_10_1016_j_energy_2021_120153
crossref_primary_10_3390_a11120210
crossref_primary_10_1515_jag_2019_0025
crossref_primary_10_1016_j_eswa_2015_01_048
crossref_primary_10_1016_j_cie_2023_109423
crossref_primary_10_3390_s20185026
crossref_primary_10_1016_j_cie_2024_110259
crossref_primary_10_1016_j_engappai_2023_106864
crossref_primary_10_1016_j_swevo_2019_01_002
crossref_primary_10_1080_0305215X_2019_1624738
crossref_primary_10_1016_j_eswa_2020_113502
crossref_primary_10_1007_s10586_023_04127_2
crossref_primary_10_1016_j_jclepro_2017_09_037
crossref_primary_10_3390_en12173260
crossref_primary_10_1016_j_knosys_2015_03_024
crossref_primary_10_3390_app9142879
crossref_primary_10_1016_j_knosys_2015_08_010
crossref_primary_10_1016_j_tre_2024_103727
crossref_primary_10_1016_j_jmsy_2022_01_014
crossref_primary_10_1049_iet_gtd_2015_0284
crossref_primary_10_1016_j_cie_2020_106781
crossref_primary_10_1016_j_asoc_2022_109235
crossref_primary_10_1016_j_cie_2015_05_022
crossref_primary_10_1109_ACCESS_2019_2940104
crossref_primary_10_1155_2021_8571524
crossref_primary_10_1007_s10845_016_1215_0
crossref_primary_10_1016_j_cor_2021_105619
crossref_primary_10_1016_j_knosys_2016_09_027
crossref_primary_10_1007_s11047_016_9604_z
crossref_primary_10_1007_s00500_015_1890_3
crossref_primary_10_1016_j_asoc_2018_05_030
crossref_primary_10_1155_2015_862185
crossref_primary_10_1108_IJPCC_08_2020_0101
crossref_primary_10_1016_j_asoc_2016_11_023
crossref_primary_10_1016_j_knosys_2019_03_028
crossref_primary_10_3390_su11041119
crossref_primary_10_1109_TAP_2018_2800695
crossref_primary_10_3390_a7030363
crossref_primary_10_4018_IJISSCM_2019040103
crossref_primary_10_1016_j_knosys_2014_08_022
crossref_primary_10_1080_23249935_2015_1099576
crossref_primary_10_1049_cim2_12005
crossref_primary_10_1016_j_jenvman_2024_122361
crossref_primary_10_1080_00207543_2016_1177671
crossref_primary_10_1016_j_isatra_2015_03_013
crossref_primary_10_1016_j_jestch_2024_101765
crossref_primary_10_1109_TASE_2018_2862380
Cites_doi 10.1080/09540091.2013.854735
10.1109/4235.585892
10.1016/j.eswa.2007.07.026
10.1007/s00521-011-0769-1
10.1109/66.705373
10.1109/66.806130
10.1007/s10845-011-0570-0
10.4156/jcit.vol7.issue16.9
10.1016/j.ejor.2011.05.052
10.1080/0020754032000123588
10.1007/s10845-013-0746-x
10.1016/S0925-5273(03)00186-5
10.1007/BF00170018
10.1016/j.knosys.2011.07.001
10.1007/s11071-013-0814-y
10.1109/66.97809
10.1016/j.cie.2011.12.014
10.1007/s00170-011-3610-1
10.1007/978-3-642-04944-6_14
10.1080/00207543.2012.752588
10.1007/s00170-010-2642-2
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2013.12.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 103
ExternalDocumentID 10_1016_j_knosys_2013_12_011
S0950705113003912
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-7443bb7e0957a7d60973f6f7dba2bd4ca02115e9ea8a41876382e177ad0411373
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331781300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Thu Oct 02 10:03:49 EDT 2025
Tue Nov 18 21:22:41 EST 2025
Sat Nov 29 06:41:25 EST 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vision-based search
Smell-based search
Semiconductor final testing scheduling problem
Fruit fly optimization algorithm
Cooperative search
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-7443bb7e0957a7d60973f6f7dba2bd4ca02115e9ea8a41876382e177ad0411373
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1567095428
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1567095428
crossref_primary_10_1016_j_knosys_2013_12_011
crossref_citationtrail_10_1016_j_knosys_2013_12_011
elsevier_sciencedirect_doi_10_1016_j_knosys_2013_12_011
PublicationCentury 2000
PublicationDate February 2014
2014-02-00
20140201
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References T.R. Chen, T.C. Hsia, Job shop scheduling with multiple resources and an application to a semiconductor testing facility, in: IEEE Proceedings of the 33rd Conference on Decision and Control, 1994, pp. 1564–1570.
Wang, Wang, Xu, Zhou, Liu (b0080) 2012; 62
Wu, Hao, Chien, Gen (b0050) 2012; 23
Uzso, Martin-Vega, Lee, Leonard (b0020) 1991; 4
Li, Xu, Li, Hu (b0070) 2012; 7
Sheng, Bao (b0075) 2013; 73
Wang, Zhou, Xu, Wang, Liu (b0090) 2012; 60
Pan (b0055) 2012; 26
Zhang, Zheng, Hou, Li (b0010) 2011; 215
Xiong, Zhou (b0035) 1998; 11
Wang, Gao, Zhang, Shao (b0110) 2010; 51
Hao, Wu, Chien, Gen (b0015) 2013
Pearn, Chun, Chen, Yang (b0095) 2004; 88
Dorigo, Gambardella (b0100) 1997; 1
Freed, Leachman (b0040) 1999; 12
Pan (b0065) 2013; 25
Wang, Wang, Liu (b0085) 2013; 51
Montgomery (b0115) 2005
X.S. Yang, Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, vol. 5792, 2009, pp. 169–178.
Ovacik, Uzsoy (b0030) 1996; 8
Wu, Chien (b0005) 2008; 35
Lin, Wang, Lee (b0045) 2004; 42
Lin (b0060) 2013; 22
Uzso (10.1016/j.knosys.2013.12.011_b0020) 1991; 4
10.1016/j.knosys.2013.12.011_b0105
10.1016/j.knosys.2013.12.011_b0025
Lin (10.1016/j.knosys.2013.12.011_b0045) 2004; 42
Sheng (10.1016/j.knosys.2013.12.011_b0075) 2013; 73
Dorigo (10.1016/j.knosys.2013.12.011_b0100) 1997; 1
Zhang (10.1016/j.knosys.2013.12.011_b0010) 2011; 215
Ovacik (10.1016/j.knosys.2013.12.011_b0030) 1996; 8
Xiong (10.1016/j.knosys.2013.12.011_b0035) 1998; 11
Wu (10.1016/j.knosys.2013.12.011_b0050) 2012; 23
Wang (10.1016/j.knosys.2013.12.011_b0080) 2012; 62
Montgomery (10.1016/j.knosys.2013.12.011_b0115) 2005
Wang (10.1016/j.knosys.2013.12.011_b0085) 2013; 51
Pearn (10.1016/j.knosys.2013.12.011_b0095) 2004; 88
Hao (10.1016/j.knosys.2013.12.011_b0015) 2013
Freed (10.1016/j.knosys.2013.12.011_b0040) 1999; 12
Li (10.1016/j.knosys.2013.12.011_b0070) 2012; 7
Wang (10.1016/j.knosys.2013.12.011_b0110) 2010; 51
Lin (10.1016/j.knosys.2013.12.011_b0060) 2013; 22
Wu (10.1016/j.knosys.2013.12.011_b0005) 2008; 35
Pan (10.1016/j.knosys.2013.12.011_b0065) 2013; 25
Pan (10.1016/j.knosys.2013.12.011_b0055) 2012; 26
Wang (10.1016/j.knosys.2013.12.011_b0090) 2012; 60
References_xml – volume: 62
  start-page: 917
  year: 2012
  end-page: 926
  ident: b0080
  article-title: A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem
  publication-title: Comput. Indust. Eng.
– volume: 8
  start-page: 357
  year: 1996
  end-page: 388
  ident: b0030
  article-title: Decomposition methods for scheduling semiconductor testing facilities
  publication-title: Int. J. Flex. Manuf. Syst.
– volume: 42
  start-page: 79
  year: 2004
  end-page: 99
  ident: b0045
  article-title: Capacity-constrained scheduling for a logic IC final test facility
  publication-title: Int. J. Product. Res.
– volume: 12
  start-page: 523
  year: 1999
  end-page: 530
  ident: b0040
  article-title: Scheduling semiconductor device test operations on multihead testers
  publication-title: IEEE Trans. Semiconduct. Manuf.
– volume: 11
  start-page: 384
  year: 1998
  end-page: 393
  ident: b0035
  article-title: Scheduling of semiconductor test facility via Petri nets and hybrid heuristic search
  publication-title: IEEE Trans. Semiconduct. Manuf.
– volume: 215
  start-page: 446
  year: 2011
  end-page: 458
  ident: b0010
  article-title: Semiconductor final test scheduling with Sarsa(λ, k) algorithm
  publication-title: Euro. J. Operat. Res.
– reference: T.R. Chen, T.C. Hsia, Job shop scheduling with multiple resources and an application to a semiconductor testing facility, in: IEEE Proceedings of the 33rd Conference on Decision and Control, 1994, pp. 1564–1570.
– volume: 51
  start-page: 757
  year: 2010
  end-page: 767
  ident: b0110
  article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem
  publication-title: Int. J. Advan. Manuf. Technol.
– volume: 51
  start-page: 3574
  year: 2013
  end-page: 3592
  ident: b0085
  article-title: A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem
  publication-title: Int. J. Product. Res.
– year: 2013
  ident: b0015
  article-title: The cooperative estimation of distribution algorithm: a novel approach for semiconductor final test scheduling problems
  publication-title: J. Intell. Manuf.
– volume: 22
  start-page: 783
  year: 2013
  end-page: 791
  ident: b0060
  article-title: Analysis of service satisfaction in web auction logistics service using a combination of fruit fly optimization algorithm and general regression neural network
  publication-title: Neural Comput. Appl.
– volume: 25
  start-page: 151
  year: 2013
  end-page: 160
  ident: b0065
  article-title: Using modified fruit fly optimisation algorithm to perform the function test and case studies
  publication-title: Connect. Sci.
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: b0055
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
– volume: 35
  start-page: 485
  year: 2008
  end-page: 496
  ident: b0005
  article-title: Modeling semiconductor testing job scheduling and dynamic testing machine configuration
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 53
  year: 1997
  end-page: 66
  ident: b0100
  article-title: LM, Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evolution. Comput.
– year: 2005
  ident: b0115
  article-title: Design and Analysis of Experiments
– volume: 23
  start-page: 2255
  year: 2012
  end-page: 2270
  ident: b0050
  article-title: A novel bi-vector encoding genetic algorithm for the simultaneous multiple resources scheduling problem
  publication-title: J. Intell. Manuf.
– volume: 60
  start-page: 303
  year: 2012
  end-page: 315
  ident: b0090
  article-title: An effective artificial bee colony algorithm for the flexible job-shop scheduling problem
  publication-title: Int. J. Advan. Manuf. Technol.
– reference: X.S. Yang, Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, vol. 5792, 2009, pp. 169–178.
– volume: 73
  start-page: 611
  year: 2013
  end-page: 619
  ident: b0075
  article-title: Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle
  publication-title: Nonlin. Dynam.
– volume: 88
  start-page: 257
  year: 2004
  end-page: 267
  ident: b0095
  article-title: A case study on the multistage IC final testing scheduling problem with reentry
  publication-title: Int. J. Product. Econ.
– volume: 4
  start-page: 270
  year: 1991
  end-page: 280
  ident: b0020
  article-title: Production scheduling algorithms for a semiconductor test facility
  publication-title: IEEE Trans. Semiconduct. Manuf.
– volume: 7
  start-page: 69
  year: 2012
  end-page: 77
  ident: b0070
  article-title: A novel modified fly optimization algorithm for designing the self-tuning proportional integral derivative controller
  publication-title: J. Converge. Inform. Technol.
– volume: 25
  start-page: 151
  issue: 2–3
  year: 2013
  ident: 10.1016/j.knosys.2013.12.011_b0065
  article-title: Using modified fruit fly optimisation algorithm to perform the function test and case studies
  publication-title: Connect. Sci.
  doi: 10.1080/09540091.2013.854735
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 10.1016/j.knosys.2013.12.011_b0100
  article-title: LM, Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans. Evolution. Comput.
  doi: 10.1109/4235.585892
– volume: 35
  start-page: 485
  issue: 1–2
  year: 2008
  ident: 10.1016/j.knosys.2013.12.011_b0005
  article-title: Modeling semiconductor testing job scheduling and dynamic testing machine configuration
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.07.026
– volume: 22
  start-page: 783
  year: 2013
  ident: 10.1016/j.knosys.2013.12.011_b0060
  article-title: Analysis of service satisfaction in web auction logistics service using a combination of fruit fly optimization algorithm and general regression neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0769-1
– volume: 11
  start-page: 384
  issue: 3
  year: 1998
  ident: 10.1016/j.knosys.2013.12.011_b0035
  article-title: Scheduling of semiconductor test facility via Petri nets and hybrid heuristic search
  publication-title: IEEE Trans. Semiconduct. Manuf.
  doi: 10.1109/66.705373
– ident: 10.1016/j.knosys.2013.12.011_b0025
– volume: 12
  start-page: 523
  issue: 4
  year: 1999
  ident: 10.1016/j.knosys.2013.12.011_b0040
  article-title: Scheduling semiconductor device test operations on multihead testers
  publication-title: IEEE Trans. Semiconduct. Manuf.
  doi: 10.1109/66.806130
– volume: 23
  start-page: 2255
  issue: 6
  year: 2012
  ident: 10.1016/j.knosys.2013.12.011_b0050
  article-title: A novel bi-vector encoding genetic algorithm for the simultaneous multiple resources scheduling problem
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-011-0570-0
– volume: 7
  start-page: 69
  year: 2012
  ident: 10.1016/j.knosys.2013.12.011_b0070
  article-title: A novel modified fly optimization algorithm for designing the self-tuning proportional integral derivative controller
  publication-title: J. Converge. Inform. Technol.
  doi: 10.4156/jcit.vol7.issue16.9
– volume: 215
  start-page: 446
  issue: 2
  year: 2011
  ident: 10.1016/j.knosys.2013.12.011_b0010
  article-title: Semiconductor final test scheduling with Sarsa(λ, k) algorithm
  publication-title: Euro. J. Operat. Res.
  doi: 10.1016/j.ejor.2011.05.052
– volume: 42
  start-page: 79
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2013.12.011_b0045
  article-title: Capacity-constrained scheduling for a logic IC final test facility
  publication-title: Int. J. Product. Res.
  doi: 10.1080/0020754032000123588
– year: 2013
  ident: 10.1016/j.knosys.2013.12.011_b0015
  article-title: The cooperative estimation of distribution algorithm: a novel approach for semiconductor final test scheduling problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0746-x
– volume: 88
  start-page: 257
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2013.12.011_b0095
  article-title: A case study on the multistage IC final testing scheduling problem with reentry
  publication-title: Int. J. Product. Econ.
  doi: 10.1016/S0925-5273(03)00186-5
– volume: 8
  start-page: 357
  issue: 4
  year: 1996
  ident: 10.1016/j.knosys.2013.12.011_b0030
  article-title: Decomposition methods for scheduling semiconductor testing facilities
  publication-title: Int. J. Flex. Manuf. Syst.
  doi: 10.1007/BF00170018
– volume: 26
  start-page: 69
  year: 2012
  ident: 10.1016/j.knosys.2013.12.011_b0055
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 73
  start-page: 611
  issue: 1–2
  year: 2013
  ident: 10.1016/j.knosys.2013.12.011_b0075
  article-title: Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle
  publication-title: Nonlin. Dynam.
  doi: 10.1007/s11071-013-0814-y
– volume: 4
  start-page: 270
  issue: 4
  year: 1991
  ident: 10.1016/j.knosys.2013.12.011_b0020
  article-title: Production scheduling algorithms for a semiconductor test facility
  publication-title: IEEE Trans. Semiconduct. Manuf.
  doi: 10.1109/66.97809
– volume: 62
  start-page: 917
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2013.12.011_b0080
  article-title: A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem
  publication-title: Comput. Indust. Eng.
  doi: 10.1016/j.cie.2011.12.014
– volume: 60
  start-page: 303
  issue: 1–4
  year: 2012
  ident: 10.1016/j.knosys.2013.12.011_b0090
  article-title: An effective artificial bee colony algorithm for the flexible job-shop scheduling problem
  publication-title: Int. J. Advan. Manuf. Technol.
  doi: 10.1007/s00170-011-3610-1
– year: 2005
  ident: 10.1016/j.knosys.2013.12.011_b0115
– ident: 10.1016/j.knosys.2013.12.011_b0105
  doi: 10.1007/978-3-642-04944-6_14
– volume: 51
  start-page: 3574
  issue: 12
  year: 2013
  ident: 10.1016/j.knosys.2013.12.011_b0085
  article-title: A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem
  publication-title: Int. J. Product. Res.
  doi: 10.1080/00207543.2012.752588
– volume: 51
  start-page: 757
  issue: 5–8
  year: 2010
  ident: 10.1016/j.knosys.2013.12.011_b0110
  article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem
  publication-title: Int. J. Advan. Manuf. Technol.
  doi: 10.1007/s00170-010-2642-2
SSID ssj0002218
Score 2.4227664
Snippet •A novel fruit fly optimization algorithm is proposed for SFTSP.•Novel encoding and decoding methods are designed.•Effective smell-based, vision-based and...
In this paper, a novel fruit fly optimization algorithm (nFOA) is proposed to solve the semiconductor final testing scheduling problem (SFTSP). First, a new...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Algorithms
Cooperative search
Crossovers
Fruit fly optimization algorithm
Fruits
Mathematical models
Operators
Search process
Searching
Semiconductor final testing scheduling problem
Semiconductors
Smell-based search
Vision-based search
Title A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem
URI https://dx.doi.org/10.1016/j.knosys.2013.12.011
https://www.proquest.com/docview/1567095428
Volume 57
WOSCitedRecordID wos000331781300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQy4ELb0R5yUjcoqDYceL4uEJFPKoKiYJWXCwnsWlKGle72ar994wdJ912BaUHLlHkjS1758vMZDz-BqE3ulB1zpMqro3bZsxLE4sKlKGhwiRZyarMl2T5vsf394v5XHwJ2wVLX06Ad11xdiZO_quooQ2E7Y7O3kDc06DQAPcgdLiC2OH6T4KfRZ091W1kFqumj0x7HllQC8fhvGWk2p920fSHx1OC4dLlx9vOEb9Ci_FlsnpHvuEiDSDTehWOrPvSM-ve7OcxIBc7Y1gHWujJS_9xqAdNMm-UjVsbjKQP3w8_7DWbbV9dr_hc2fWABGFjDvNaZDGJeRJ4ZIOSHViog5YcymoGe0s8x8GmKh-iCkdvf3UWZu-S8FIfuA26-RJz9hWLNuUZjilsR3IYRbpRJKEyccfBtynPBCjz7dnH3fmnyX5T6qPC0zLGA5c-K3BzNn9yaK6Ydu-vHNxHd8OHBp4NAHmAbunuIbo3FvHAQac_QnKGPV6wxwsGvOB1vOAJLxjwggEv-BJesMcLDnjBF3jBAS-P0bf3uwfvPsSh6kZcpanoY85YWpZcw_q54nXu-JxMbnhdKlrWrFLgFZJMC60KxYgjNCyoJpyrOmGEpDx9grY62-mnCFMBzipVIi9Kw-C1V6QqUkK14IIWNWM7KB3_OlkFSnpXGaWVfxPcDoqnXicDJcs1z_NRKjK4lYO7KAFq1_R8PQpRgtZ1W2mq03a1lCRzvIewuOLZDWfzHN25eGleoK1-sdIv0e3qtG-Wi1cBi78BMF2rWg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fruit+fly+optimization+algorithm+for+the+semiconductor+final+testing+scheduling+problem&rft.jtitle=Knowledge-based+systems&rft.au=Zheng%2C+Xiao-long&rft.au=Wang%2C+Ling&rft.au=Wang%2C+Sheng-yao&rft.date=2014-02-01&rft.issn=0950-7051&rft.volume=57&rft.spage=95&rft.epage=103&rft_id=info:doi/10.1016%2Fj.knosys.2013.12.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2013_12_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon