A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism

Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management. Therefore, a hybrid prediction model of an improved bidirectional long short-term memory (BiLSTM) network based on principal component analysis netw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 292; s. 130388
Hlavní autoři: Yan, Xiuying, Ji, Xingxing, Meng, Qinglong, Sun, Hang, Lei, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2024
Témata:
ISSN:0360-5442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management. Therefore, a hybrid prediction model of an improved bidirectional long short-term memory (BiLSTM) network based on principal component analysis network (PCANet) and attention mechanism (CNN-IBiLSTM-Attention) is proposed to predict the cooling load of large commercial buildings. First of all, the PCANet algorithm is used to analyze the sensitivity of the influencing factors. Then, the hybrid strategy improved whale optimization algorithm (HSIWOA) is used to optimize the hyperparameter of BiLSTM. At last, the performance of the proposed algorithm is verified by using the actual data of two commercial buildings in Xi'an. The results show that using the PCANet algorithm for sensitivity analysis avoids feature redundancy. HSIWOA is suitable for hyperparameter optimization of BiLSTM. Compared with the other three prediction models, CNN-IBiLSTM-Attention reduced the mean absolute percentage error (MAPE) of Building 1 and 2 test sets by 31.55 %, 55.59 %, and 60.58 % and 56.49 %, 60.3 %, and 67.37 %, respectively. The proposed prediction model has superior hyperparameter optimization ability, better model complexity, and stronger generalization ability. Therefore, the proposed prediction model becomes a reliable tool for predicting the cooling load of large commercial buildings. •Comprehensive classification of factors affecting commercial building cooling load.•Feature extraction method based on the PCANet algorithm.•Combining PCANet, BiLSTM, and attention mechanism for cooling load forecasting.•Using the HSIWOA to optimize the hyperparameters of BiLSTM.•Verifying the validity of the CNN-IBiLSTM-Attention model using actual data.
AbstractList Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management. Therefore, a hybrid prediction model of an improved bidirectional long short-term memory (BiLSTM) network based on principal component analysis network (PCANet) and attention mechanism (CNN-IBiLSTM-Attention) is proposed to predict the cooling load of large commercial buildings. First of all, the PCANet algorithm is used to analyze the sensitivity of the influencing factors. Then, the hybrid strategy improved whale optimization algorithm (HSIWOA) is used to optimize the hyperparameter of BiLSTM. At last, the performance of the proposed algorithm is verified by using the actual data of two commercial buildings in Xi'an. The results show that using the PCANet algorithm for sensitivity analysis avoids feature redundancy. HSIWOA is suitable for hyperparameter optimization of BiLSTM. Compared with the other three prediction models, CNN-IBiLSTM-Attention reduced the mean absolute percentage error (MAPE) of Building 1 and 2 test sets by 31.55 %, 55.59 %, and 60.58 % and 56.49 %, 60.3 %, and 67.37 %, respectively. The proposed prediction model has superior hyperparameter optimization ability, better model complexity, and stronger generalization ability. Therefore, the proposed prediction model becomes a reliable tool for predicting the cooling load of large commercial buildings.
Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management. Therefore, a hybrid prediction model of an improved bidirectional long short-term memory (BiLSTM) network based on principal component analysis network (PCANet) and attention mechanism (CNN-IBiLSTM-Attention) is proposed to predict the cooling load of large commercial buildings. First of all, the PCANet algorithm is used to analyze the sensitivity of the influencing factors. Then, the hybrid strategy improved whale optimization algorithm (HSIWOA) is used to optimize the hyperparameter of BiLSTM. At last, the performance of the proposed algorithm is verified by using the actual data of two commercial buildings in Xi'an. The results show that using the PCANet algorithm for sensitivity analysis avoids feature redundancy. HSIWOA is suitable for hyperparameter optimization of BiLSTM. Compared with the other three prediction models, CNN-IBiLSTM-Attention reduced the mean absolute percentage error (MAPE) of Building 1 and 2 test sets by 31.55 %, 55.59 %, and 60.58 % and 56.49 %, 60.3 %, and 67.37 %, respectively. The proposed prediction model has superior hyperparameter optimization ability, better model complexity, and stronger generalization ability. Therefore, the proposed prediction model becomes a reliable tool for predicting the cooling load of large commercial buildings. •Comprehensive classification of factors affecting commercial building cooling load.•Feature extraction method based on the PCANet algorithm.•Combining PCANet, BiLSTM, and attention mechanism for cooling load forecasting.•Using the HSIWOA to optimize the hyperparameters of BiLSTM.•Verifying the validity of the CNN-IBiLSTM-Attention model using actual data.
ArticleNumber 130388
Author Sun, Hang
Meng, Qinglong
Ji, Xingxing
Yan, Xiuying
Lei, Yu
Author_xml – sequence: 1
  givenname: Xiuying
  surname: Yan
  fullname: Yan, Xiuying
  organization: School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
– sequence: 2
  givenname: Xingxing
  surname: Ji
  fullname: Ji, Xingxing
  organization: School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
– sequence: 3
  givenname: Qinglong
  surname: Meng
  fullname: Meng, Qinglong
  email: mengqinglong@chd.edu.cn
  organization: School of Civil Engineering, Chang'an University, Xi'an, 710061, China
– sequence: 4
  givenname: Hang
  surname: Sun
  fullname: Sun, Hang
  organization: China Construction Third Engineering Bureau Installation Engineering Co. Ltd, Wuhan, 430040, China
– sequence: 5
  givenname: Yu
  surname: Lei
  fullname: Lei, Yu
  organization: China Construction Third Engineering Bureau Installation Engineering Co. Ltd, Wuhan, 430040, China
BookMark eNqFkb1OwzAURj0UiRZ4AwaPLCl27aQJA1JV8SdVwACz5Tg3rYtjF9st6jPw0riEiQHkwYO_813d4xEaWGcBoXNKxpTQ4nI9Bgt-uR9PyISPKSOsLAdoSFhBspzzyTEahbAmhORlVQ3R5wyv9rXXDd54aLSK2lncuQYMdi3W3ca7HTS41o328P0qDTbOLnFYOR-zCL7DHXTO77GF-OH8G26dx8o5o1PKOJloGVJHKn6ezx4hYmkbLGME208DtZJWh-4UHbXSBDj7uU_Q6-3Ny_w-WzzdPcxni0wxVsWsqIHLKdQlkbIsWkJpS6li01oWFbBasZKSuiCVLA4KWspUOmWjOCkZAM_ZCbroe9Ny71sIUXQ6KDBGWnDbIBjNWZ5POeMpyvuo8i4ED63YeN1JvxeUiINvsRa9b3EYJnrfCbv6hSkd5WHb6KU2_8HXPQzJwU6DF0FpsAr6LxCN038XfAFkj6UO
CitedBy_id crossref_primary_10_1016_j_ress_2025_111377
crossref_primary_10_1007_s12145_024_01524_y
crossref_primary_10_1016_j_ijrefrig_2025_05_011
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1016_j_rineng_2025_105800
crossref_primary_10_1016_j_ijdrr_2024_105003
crossref_primary_10_1016_j_jobe_2025_113777
crossref_primary_10_1080_10589759_2025_2470340
crossref_primary_10_3390_su16062522
crossref_primary_10_1016_j_renene_2025_122629
crossref_primary_10_1109_ACCESS_2025_3525479
crossref_primary_10_3390_s24237492
crossref_primary_10_1016_j_applthermaleng_2024_124953
crossref_primary_10_1016_j_enbuild_2025_115580
crossref_primary_10_1016_j_energy_2025_137146
crossref_primary_10_1016_j_energy_2024_134197
Cites_doi 10.1016/j.enbuild.2021.111574
10.1016/j.ijrefrig.2022.07.020
10.1016/j.jclepro.2020.120082
10.1016/j.energy.2023.128569
10.1016/j.apenergy.2021.117238
10.1016/j.jclepro.2019.05.085
10.1016/j.rser.2017.02.023
10.1007/s13369-022-06655-2
10.1016/j.energy.2023.126660
10.1016/j.apenergy.2022.120144
10.1016/j.enbuild.2020.110372
10.1016/j.energy.2021.121084
10.1016/j.enbuild.2015.08.041
10.1016/j.energy.2021.121134
10.1016/j.chemosphere.2022.136525
10.1016/j.applthermaleng.2017.09.007
10.1016/j.enbuild.2019.05.043
10.1016/j.energy.2021.122073
10.1016/j.scs.2023.104679
10.1016/j.apenergy.2017.03.064
10.1016/j.energy.2022.126419
10.1016/j.enbuild.2022.112337
10.1016/j.enbuild.2017.08.077
10.1016/j.energy.2021.121127
10.1016/j.enconman.2018.08.053
10.1016/j.energy.2023.127865
10.1016/j.enbuild.2022.112478
10.1016/j.epsr.2023.109149
10.1016/j.rser.2017.09.108
10.1016/j.rser.2017.04.095
10.1016/j.energy.2021.122692
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.130388
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_130388
S0360544224001592
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABMYL
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-6be4a7eb80aa86f011f11c37ba69e3bc3810b609a62024f13c3c38dc4083ee453
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171923500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Nov 09 10:26:20 EST 2025
Tue Nov 18 22:12:19 EST 2025
Sat Nov 29 07:20:15 EST 2025
Sat Mar 23 16:41:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Improved whale optimization algorithm
Prediction accuracy
Cooling load forecasting
Bidirectional long short-term memory
Large commercial building
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-6be4a7eb80aa86f011f11c37ba69e3bc3810b609a62024f13c3c38dc4083ee453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153557434
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153557434
crossref_primary_10_1016_j_energy_2024_130388
crossref_citationtrail_10_1016_j_energy_2024_130388
elsevier_sciencedirect_doi_10_1016_j_energy_2024_130388
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Yun, Meng, He, Ye, Zhao (bib35) 2023
Zhou, Moayedi, Bahiraei, Lyu (bib21) 2020; 254
Han, Li, Dong, Li (bib37) 2021; 233
Qiang, Zhe, Yan, Neng (bib17) 2015; 107
Zhao, Zhang, Zhang, Yang, Zhang (bib2) 2022; 144
Zhang, Tian, Ding, Lu, Niu (bib19) 2019; 230
Dong, Yu, Quan, Xiang, Li, Sun (bib3) 2022; 272
Wei, Zhang, Shi, Xia, Pan, Wu (bib10) 2018; 82
Fan, Liao, Zhou, Zhou, Ding (bib6) 2020; 226
Wang, Bai, Yang, Li (bib41) 2021
Wang, Han, Zhang, Wang, Zhang (bib27) 2023; 283
Fan, Xiao, Zhao (bib11) 2017; 195
Abdou, El Mghouchi, Jraida, Hamdaoui, Hajou, Mouqallid (bib18) 2022; 61
Ding, Zhang, Yuan, Yang (bib8) 2018; 128
Bian, Wang, Song, Zhou (bib24) 2023; 217
Yildiz, Bilbao, Sproul (bib12) 2017; 73
Lu, Gu, Lu (bib22) 2023; 96
Wan, Chang, Al-Bukhaiti, He (bib20) 2023
Xiong, Zhang, Shi, He (bib33) 2018; 174
Chen, Zhou, Zhou, Fan, Ding, Chen (bib5) 2022; 254
Fan, Ding (bib7) 2019; 197
Xiong, Peng, Tao, Zhang, Song, Nazir (bib31) 2023; 266
Sekhar, Dahiya (bib32) 2023; 268
Lu, Li, Reddy Penaka, Olofsson (bib15) 2023
Ding, Zhang, Yuan (bib13) 2017; 154
Li, Ding, Yin, Li, Zhao, Zhang (bib34) 2021
Singla, Duhan, Saroha (bib40) 2022; 44
Zhang, Sun, Gao, Zou, Fu, Ma (bib4) 2022; 327
Kang, Wang, An, Yan (bib1) 2022; 275
Li, Xiao, Zhang, Fan (bib14) 2021; 299
Li, Qu, Wang (bib28) 2023; vol. 124
Amasyali, El-Gohary (bib38) 2018; 81
Zhang, Wang (bib23) 2023; 278
Geng, Wang, Gao (bib30) 2023
Zhou, Wang, Liu, Yan, Ma (bib29) 2021; 233
Kavitha, Thiagarajan, Priya, Anand, Al-Ammar, Santhamoorthy (bib26) 2022; 309
Tian, Song, Lu, Lin, Niu (bib16) 2023
Gao, Yu, Zhao, Hu, Yang (bib9) 2022; 238
Xu, Li, Asgari (bib25) 2022; 240
Xiong, Hu, Guo (bib36) 2021; 234
Singla, Duhan, Saroha (bib39) 2022; 47
Zhao (10.1016/j.energy.2024.130388_bib2) 2022; 144
Fan (10.1016/j.energy.2024.130388_bib11) 2017; 195
Sekhar (10.1016/j.energy.2024.130388_bib32) 2023; 268
Fan (10.1016/j.energy.2024.130388_bib6) 2020; 226
Gao (10.1016/j.energy.2024.130388_bib9) 2022; 238
Zhang (10.1016/j.energy.2024.130388_bib19) 2019; 230
Zhou (10.1016/j.energy.2024.130388_bib21) 2020; 254
Wang (10.1016/j.energy.2024.130388_bib27) 2023; 283
Li (10.1016/j.energy.2024.130388_bib34) 2021
Wei (10.1016/j.energy.2024.130388_bib10) 2018; 82
Wang (10.1016/j.energy.2024.130388_bib41) 2021
Dong (10.1016/j.energy.2024.130388_bib3) 2022; 272
Lu (10.1016/j.energy.2024.130388_bib15) 2023
Tian (10.1016/j.energy.2024.130388_bib16) 2023
Chen (10.1016/j.energy.2024.130388_bib5) 2022; 254
Qiang (10.1016/j.energy.2024.130388_bib17) 2015; 107
Zhang (10.1016/j.energy.2024.130388_bib23) 2023; 278
Li (10.1016/j.energy.2024.130388_bib14) 2021; 299
Kang (10.1016/j.energy.2024.130388_bib1) 2022; 275
Wan (10.1016/j.energy.2024.130388_bib20) 2023
Kavitha (10.1016/j.energy.2024.130388_bib26) 2022; 309
Xu (10.1016/j.energy.2024.130388_bib25) 2022; 240
Fan (10.1016/j.energy.2024.130388_bib7) 2019; 197
Xiong (10.1016/j.energy.2024.130388_bib33) 2018; 174
Zhou (10.1016/j.energy.2024.130388_bib29) 2021; 233
Singla (10.1016/j.energy.2024.130388_bib40) 2022; 44
Abdou (10.1016/j.energy.2024.130388_bib18) 2022; 61
Geng (10.1016/j.energy.2024.130388_bib30) 2023
Amasyali (10.1016/j.energy.2024.130388_bib38) 2018; 81
Ding (10.1016/j.energy.2024.130388_bib8) 2018; 128
Bian (10.1016/j.energy.2024.130388_bib24) 2023; 217
Guo (10.1016/j.energy.2024.130388_bib35) 2023
Lu (10.1016/j.energy.2024.130388_bib22) 2023; 96
Li (10.1016/j.energy.2024.130388_bib28) 2023; vol. 124
Han (10.1016/j.energy.2024.130388_bib37) 2021; 233
Ding (10.1016/j.energy.2024.130388_bib13) 2017; 154
Singla (10.1016/j.energy.2024.130388_bib39) 2022; 47
Yildiz (10.1016/j.energy.2024.130388_bib12) 2017; 73
Xiong (10.1016/j.energy.2024.130388_bib31) 2023; 266
Xiong (10.1016/j.energy.2024.130388_bib36) 2021; 234
Zhang (10.1016/j.energy.2024.130388_bib4) 2022; 327
References_xml – volume: 299
  year: 2021
  ident: bib14
  article-title: Attention-based interpretable neural network for building cooling load prediction
  publication-title: Appl Energy
– volume: 144
  start-page: 211
  year: 2022
  end-page: 221
  ident: bib2
  article-title: Prediction of functional zones cooling load for shopping mall using dual attention based LSTM: a case study
  publication-title: Int J Refrig
– volume: 195
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib11
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
– volume: 268
  year: 2023
  ident: bib32
  article-title: Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand
  publication-title: Energy
– volume: 107
  start-page: 445
  year: 2015
  end-page: 455
  ident: bib17
  article-title: An improved office building cooling load prediction model based on multivariable linear regression
  publication-title: Energy Build
– volume: 44
  start-page: 1583
  year: 2022
  end-page: 1607
  ident: bib40
  article-title: A dual decomposition with error correction strategy based improved hybrid deep learning model to forecast solar irradiance
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– start-page: 168
  year: 2021
  ident: bib34
  article-title: Optimized neural network combined model based on the induced ordered weighted averaging operator for vegetable price forecasting
  publication-title: Expert Syst Appl
– volume: 47
  start-page: 14185
  year: 2022
  end-page: 14211
  ident: bib39
  article-title: A hybrid solar irradiance forecasting using full wavelet packet decomposition and Bi-directional long short-term memory (BiLSTM)
  publication-title: Arabian J Sci Eng
– volume: 230
  start-page: 622
  year: 2019
  end-page: 633
  ident: bib19
  article-title: Development and evaluation of cooling load prediction models for a factory workshop
  publication-title: J Clean Prod
– volume: 272
  year: 2022
  ident: bib3
  article-title: Short-term building cooling load prediction model based on DwdAdam-ILSTM algorithm: a case study of a commercial building
  publication-title: Energy Build
– volume: 327
  year: 2022
  ident: bib4
  article-title: Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information
  publication-title: Appl Energy
– volume: 233
  year: 2021
  ident: bib37
  article-title: Determination of HVAC meteorological parameters for floating nuclear power stations (FNPSs) in the area of China sea and its vicinity
  publication-title: Energy
– volume: 283
  year: 2023
  ident: bib27
  article-title: Electrical load forecasting based on variable T-distribution and dual attention mechanism
  publication-title: Energy
– start-page: 274
  year: 2023
  ident: bib15
  article-title: Automated machine learning-based framework of heating and cooling load prediction for quick residential building design
  publication-title: Energy
– volume: 278
  year: 2023
  ident: bib23
  article-title: Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting
  publication-title: Energy
– volume: 266
  year: 2023
  ident: bib31
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy
– volume: 73
  start-page: 1104
  year: 2017
  end-page: 1122
  ident: bib12
  article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting
  publication-title: Renew Sustain Energy Rev
– volume: vol. 124
  year: 2023
  ident: bib28
  publication-title: A method of knowledge distillation based on feature fusion and attention mechanism for complex traffic scenes
– volume: 309
  year: 2022
  ident: bib26
  article-title: Improved harris hawks optimization with hybrid deep learning based heating and cooling load prediction on residential buildings
  publication-title: Chemosphere
– volume: 275
  year: 2022
  ident: bib1
  article-title: A novel approach of day-ahead cooling load prediction and optimal control for ice-based thermal energy storage (TES) system in commercial buildings
  publication-title: Energy Build
– start-page: 291
  year: 2023
  ident: bib30
  article-title: A hybrid photovoltaic/wind power prediction model based on Time2Vec, WDCNN and BiLSTM
– volume: 81
  start-page: 1192
  year: 2018
  end-page: 1205
  ident: bib38
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
– volume: 226
  year: 2020
  ident: bib6
  article-title: Improving cooling load prediction reliability for HVAC system using Monte-Carlo simulation to deal with uncertainties in input variables
  publication-title: Energy Build
– volume: 217
  year: 2023
  ident: bib24
  article-title: Feature extraction and classification of time-varying power load characteristics based on PCANet and CNN+Bi-LSTM algorithms
  publication-title: Elec Power Syst Res
– volume: 128
  start-page: 225
  year: 2018
  end-page: 234
  ident: bib8
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl Therm Eng
– start-page: 282
  year: 2023
  ident: bib20
  article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
  publication-title: Energy
– volume: 234
  year: 2021
  ident: bib36
  article-title: A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption
  publication-title: Energy
– volume: 240
  year: 2022
  ident: bib25
  article-title: Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms
  publication-title: Energy
– start-page: 244
  year: 2021
  ident: bib41
  article-title: Short time air temperature prediction using pattern approximate matching
  publication-title: Energy Build
– volume: 96
  year: 2023
  ident: bib22
  article-title: An improved attention-based deep learning approach for robust cooling load prediction: public building cases under diverse occupancy schedules
  publication-title: Sustain Cities Soc
– volume: 174
  start-page: 388
  year: 2018
  end-page: 405
  ident: bib33
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers Manag
– start-page: 236
  year: 2023
  ident: bib35
  article-title: Prediction of heating and cooling loads based on light gradient boosting machine algorithms
  publication-title: Build Environ
– volume: 197
  start-page: 7
  year: 2019
  end-page: 17
  ident: bib7
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energy Build
– volume: 233
  year: 2021
  ident: bib29
  article-title: Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system
  publication-title: Energy
– volume: 238
  year: 2022
  ident: bib9
  article-title: A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine
  publication-title: Energy
– volume: 254
  year: 2022
  ident: bib5
  article-title: An online physical-based multiple linear regression model for building's hourly cooling load prediction
  publication-title: Energy Build
– start-page: 296
  year: 2023
  ident: bib16
  article-title: Load extraction from actual operation data for data-driven ultra-short-term room air-conditioning load prediction
  publication-title: Energy Build
– volume: 61
  year: 2022
  ident: bib18
  article-title: Prediction and optimization of heating and cooling loads for low energy buildings in Morocco: an application of hybrid machine learning methods
  publication-title: J Build Eng
– volume: 154
  start-page: 254
  year: 2017
  end-page: 267
  ident: bib13
  article-title: Research on short-term and ultra-short-term cooling load prediction models for office buildings
  publication-title: Energy Build
– volume: 254
  year: 2020
  ident: bib21
  article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings
  publication-title: J Clean Prod
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: bib10
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
– volume: 254
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib5
  article-title: An online physical-based multiple linear regression model for building's hourly cooling load prediction
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111574
– volume: 144
  start-page: 211
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib2
  article-title: Prediction of functional zones cooling load for shopping mall using dual attention based LSTM: a case study
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2022.07.020
– volume: 254
  year: 2020
  ident: 10.1016/j.energy.2024.130388_bib21
  article-title: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120082
– start-page: 291
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib30
– volume: 283
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib27
  article-title: Electrical load forecasting based on variable T-distribution and dual attention mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128569
– volume: 299
  year: 2021
  ident: 10.1016/j.energy.2024.130388_bib14
  article-title: Attention-based interpretable neural network for building cooling load prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117238
– volume: 230
  start-page: 622
  year: 2019
  ident: 10.1016/j.energy.2024.130388_bib19
  article-title: Development and evaluation of cooling load prediction models for a factory workshop
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.085
– volume: 73
  start-page: 1104
  year: 2017
  ident: 10.1016/j.energy.2024.130388_bib12
  article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.02.023
– volume: 47
  start-page: 14185
  issue: 11
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib39
  article-title: A hybrid solar irradiance forecasting using full wavelet packet decomposition and Bi-directional long short-term memory (BiLSTM)
  publication-title: Arabian J Sci Eng
  doi: 10.1007/s13369-022-06655-2
– volume: 268
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib32
  article-title: Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126660
– volume: 327
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib4
  article-title: Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120144
– volume: 226
  year: 2020
  ident: 10.1016/j.energy.2024.130388_bib6
  article-title: Improving cooling load prediction reliability for HVAC system using Monte-Carlo simulation to deal with uncertainties in input variables
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.110372
– volume: 233
  year: 2021
  ident: 10.1016/j.energy.2024.130388_bib37
  article-title: Determination of HVAC meteorological parameters for floating nuclear power stations (FNPSs) in the area of China sea and its vicinity
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121084
– volume: 107
  start-page: 445
  year: 2015
  ident: 10.1016/j.energy.2024.130388_bib17
  article-title: An improved office building cooling load prediction model based on multivariable linear regression
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.08.041
– volume: 233
  year: 2021
  ident: 10.1016/j.energy.2024.130388_bib29
  article-title: Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121134
– volume: 309
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib26
  article-title: Improved harris hawks optimization with hybrid deep learning based heating and cooling load prediction on residential buildings
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136525
– volume: 128
  start-page: 225
  year: 2018
  ident: 10.1016/j.energy.2024.130388_bib8
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.09.007
– start-page: 296
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib16
  article-title: Load extraction from actual operation data for data-driven ultra-short-term room air-conditioning load prediction
  publication-title: Energy Build
– volume: 197
  start-page: 7
  year: 2019
  ident: 10.1016/j.energy.2024.130388_bib7
  article-title: Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.05.043
– volume: 238
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib9
  article-title: A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122073
– start-page: 168
  year: 2021
  ident: 10.1016/j.energy.2024.130388_bib34
  article-title: Optimized neural network combined model based on the induced ordered weighted averaging operator for vegetable price forecasting
  publication-title: Expert Syst Appl
– start-page: 244
  year: 2021
  ident: 10.1016/j.energy.2024.130388_bib41
  article-title: Short time air temperature prediction using pattern approximate matching
  publication-title: Energy Build
– volume: 96
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib22
  article-title: An improved attention-based deep learning approach for robust cooling load prediction: public building cases under diverse occupancy schedules
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2023.104679
– volume: vol. 124
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib28
– volume: 195
  start-page: 222
  year: 2017
  ident: 10.1016/j.energy.2024.130388_bib11
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.064
– volume: 266
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib31
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126419
– volume: 272
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib3
  article-title: Short-term building cooling load prediction model based on DwdAdam-ILSTM algorithm: a case study of a commercial building
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2022.112337
– volume: 154
  start-page: 254
  year: 2017
  ident: 10.1016/j.energy.2024.130388_bib13
  article-title: Research on short-term and ultra-short-term cooling load prediction models for office buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.08.077
– start-page: 282
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib20
  article-title: Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
  publication-title: Energy
– volume: 61
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib18
  article-title: Prediction and optimization of heating and cooling loads for low energy buildings in Morocco: an application of hybrid machine learning methods
  publication-title: J Build Eng
– start-page: 236
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib35
  article-title: Prediction of heating and cooling loads based on light gradient boosting machine algorithms
  publication-title: Build Environ
– volume: 234
  year: 2021
  ident: 10.1016/j.energy.2024.130388_bib36
  article-title: A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121127
– volume: 174
  start-page: 388
  year: 2018
  ident: 10.1016/j.energy.2024.130388_bib33
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.08.053
– volume: 278
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib23
  article-title: Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127865
– volume: 275
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib1
  article-title: A novel approach of day-ahead cooling load prediction and optimal control for ice-based thermal energy storage (TES) system in commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2022.112478
– start-page: 274
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib15
  article-title: Automated machine learning-based framework of heating and cooling load prediction for quick residential building design
  publication-title: Energy
– volume: 217
  year: 2023
  ident: 10.1016/j.energy.2024.130388_bib24
  article-title: Feature extraction and classification of time-varying power load characteristics based on PCANet and CNN+Bi-LSTM algorithms
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2023.109149
– volume: 82
  start-page: 1027
  year: 2018
  ident: 10.1016/j.energy.2024.130388_bib10
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.09.108
– volume: 81
  start-page: 1192
  year: 2018
  ident: 10.1016/j.energy.2024.130388_bib38
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.095
– volume: 240
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib25
  article-title: Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122692
– volume: 44
  start-page: 1583
  issue: 1
  year: 2022
  ident: 10.1016/j.energy.2024.130388_bib40
  article-title: A dual decomposition with error correction strategy based improved hybrid deep learning model to forecast solar irradiance
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
SSID ssj0005899
Score 2.5165775
Snippet Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130388
SubjectTerms algorithms
Bidirectional long short-term memory
Cooling load forecasting
energy
Improved whale optimization algorithm
Large commercial building
neural networks
prediction
Prediction accuracy
principal component analysis
Title A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism
URI https://dx.doi.org/10.1016/j.energy.2024.130388
https://www.proquest.com/docview/3153557434
Volume 292
WOSCitedRecordID wos001171923500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBchHWwvY-tW1u4DDfYWXGJbtuVHUzK6MULHOsiejC3La0pqlzopyXMf-0_vTmfZ_WB0G4yACYctObpfpNPpd3eMfdAq0-MsUE4e56EjPCWc3A1KR0SyKKV23ZA0_SWaTuVsFh8NBlc2FuZyEVWVXK_j8_-qapCBsjF09i_U3TUKAvgOSocrqB2uf6T4ZHSywTAsDP8v5lQJ3NS7MdkhjA8Brc45LWbkCVxgxaHmBExxB6fq0Rnybzejijjihoqo6tpEri_qDJ6Gta_Ac4ajg2SqiaSOiTqJOnmmMZzY5ia0bn8KMsTspmsi1HcuiB_khJ3NVxu7kCKnZ07C6uf6hhRZuCj_CjJ86_5Qy7RxmLWi1pHh3eS_GO-ajbDp6UwU1TV2AiFuzdgelc-7N_uTI-J0X5tftI-dYLVrnwoH3smr_Q2bxpaRRQtGHazjW14UxHLItpJPk9nnnikkTRnS7lVsBKahCd7v63cWzp213hgwx8_Y03bnwRNCzHM20NU2e2wD05tttjPpgx7hxnbWb16w64QTpHgPKW4gxeuSW0jxW5DiqBzeQ4oTpHgLKQ4Q4C2kOEKKG0hxaJggxQFSvIMU7yD1kn3_ODk-OHTaIh6O8v146YS5FlmkcznOMhmWsJyUrqv8KM_CWPu5wgxzeTiOsxCHsHR9BR9ZKAF7A61F4O-wYVVX-hXjCvYqCv0RXuALmQeYylGXXiFV7opCRbvMtwOfqjbDPRZaWaSWyniakrpS7Cslde0yp3vqnDK8PHB_ZHWatlYqjW4KMHzgyfcWAilM4ngyl1W6XjWpD3ZHEIAxL_b-ufXX7En_r3rDhsuLlX7LHqnL5by5eNdi-hdK1sor
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+prediction+model+of+improved+bidirectional+long+short-term+memory+network+for+cooling+load+based+on+PCANet+and+attention+mechanism&rft.jtitle=Energy+%28Oxford%29&rft.au=Yan%2C+Xiuying&rft.au=Ji%2C+Xingxing&rft.au=Meng%2C+Qinglong&rft.au=Sun%2C+Hang&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=292&rft_id=info:doi/10.1016%2Fj.energy.2024.130388&rft.externalDocID=S0360544224001592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon