Inertial Measurement Unit-Based Real-Time Adaptive Algorithm for Human Walking Pattern and Gait Event Detection

In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 12; no. 20; p. 4319
Main Authors: Lu, Yinxiao, Zhu, Jun, Chen, Wenming, Ma, Xin
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2023
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F1-scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications.
AbstractList In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F[sub.1] -scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications.
In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F1-scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications.
Audience Academic
Author Chen, Wenming
Ma, Xin
Lu, Yinxiao
Zhu, Jun
Author_xml – sequence: 1
  givenname: Yinxiao
  surname: Lu
  fullname: Lu, Yinxiao
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-1311-4333
  surname: Zhu
  fullname: Zhu, Jun
– sequence: 3
  givenname: Wenming
  orcidid: 0000-0003-0409-5118
  surname: Chen
  fullname: Chen, Wenming
– sequence: 4
  givenname: Xin
  surname: Ma
  fullname: Ma, Xin
BookMark eNptUU1LAzEQDaLg5y_wEvC8NZtss5tj_WoFRRHF4zLNTmp0N6lJWvDfG1FQoTOHeQxv3szw9sm28w4JOS7ZSAjFTrFHnYJ3VseSc1aJUm2RPc5qVSiu-PYfvEuOYnxlOVQpGsH2iL92GJKFnt4ixFXAAV2iT86m4gwidvQBoS8e7YB00sEy2XUG_cIHm14Ganygs9UAjj5D_2bdgt5DShgcBdfRKdhEL9dfgheY8pHWu0OyY6CPePRTD8jT1eXj-ay4uZten09uCp1_SoXkQlfzssGxZKCgQ94gqzgKaRqDY2ZUpYzp5jWUVQd6Lk3VaN6hrCWAroQ4ICffusvg31cYU_vqV8HllS1vGj6WnInql7WAHlvrjE8B9GCjbid1zZnMRJlZow2snB0OVmczjM39fwPie0AHH2NA0y6DHSB8tCVrvzxrN3gmPgEX3Y55
Cites_doi 10.1109/JSEN.2020.3011627
10.3390/e21040329
10.1109/JSEN.2018.2889970
10.1109/LRA.2020.2970656
10.3390/s19132988
10.1109/TNSRE.2018.2868094
10.3390/s16101634
10.3390/s130912431
10.1109/JSEN.2019.2895289
10.1109/JBHI.2013.2293887
10.1109/TNSRE.2014.2327230
10.3390/s21082882
10.1109/TNSRE.2018.2870152
10.1016/j.medengphy.2010.03.007
10.1088/1742-6596/1903/1/012043
10.1016/j.measurement.2019.04.009
10.3389/fnbot.2020.00047
10.1016/j.inffus.2019.03.002
10.1109/ICRA.2013.6630869
10.1109/TCBB.2019.2951146
10.1002/dac.4348
10.1016/j.jbiomech.2017.02.016
10.1109/TNSRE.2020.3039999
10.1016/j.neucom.2019.06.081
10.1007/s42235-021-00083-y
10.1109/JSEN.2020.2980863
10.1016/j.jbiomech.2021.110446
10.3390/s150306419
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics12204319
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A772062566
10_3390_electronics12204319
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c339t-623c4b18e560a9ade28e042e36f8fe50f949ffdb7a14dacb6f48c2de676aac433
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 08:14:38 EST 2025
Tue Nov 11 11:12:32 EST 2025
Tue Nov 04 18:27:59 EST 2025
Sat Nov 29 07:10:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-623c4b18e560a9ade28e042e36f8fe50f949ffdb7a14dacb6f48c2de676aac433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1311-4333
0000-0003-0409-5118
OpenAccessLink https://www.proquest.com/docview/2882562034?pq-origsite=%requestingapplication%
PQID 2882562034
PQPubID 2032404
ParticipantIDs proquest_journals_2882562034
gale_infotracmisc_A772062566
gale_infotracacademiconefile_A772062566
crossref_primary_10_3390_electronics12204319
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_17) 2021; 1903
Li (ref_10) 2019; 362
Wang (ref_3) 2021; 18
Sahoo (ref_9) 2021; 70
Allseits (ref_11) 2017; 55
Sivarathinabala (ref_22) 2020; 33
Maqbool (ref_14) 2019; 19
Sahoo (ref_13) 2020; 20
Xu (ref_15) 2018; 26
Mannini (ref_28) 2014; 18
Zhao (ref_19) 2019; 52
Siqueira (ref_1) 2020; 28
Chen (ref_18) 2021; 18
Zhang (ref_16) 2015; 23
Wang (ref_21) 2020; 5
Barth (ref_20) 2015; 15
ref_25
Siqueira (ref_23) 2020; 20
Rueterbories (ref_24) 2010; 32
Figueiredo (ref_26) 2018; 26
Chinimilli (ref_12) 2019; 19
Chowdhury (ref_7) 2013; 13
ref_2
ref_29
Godiyal (ref_6) 2019; 140
ref_8
Xu (ref_27) 2020; 14
ref_5
ref_4
References_xml – volume: 20
  start-page: 14984
  year: 2020
  ident: ref_23
  article-title: Identification of Gait Events in Healthy and Parkinson’s Disease Subjects Using Inertial Sensors: A Supervised Learning Approach
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3011627
– ident: ref_4
  doi: 10.3390/e21040329
– volume: 19
  start-page: 3138
  year: 2019
  ident: ref_14
  article-title: Heuristic Real-Time Detection of Temporal Gait Events for Lower Limb Amputees
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2889970
– volume: 5
  start-page: 1970
  year: 2020
  ident: ref_21
  article-title: Two Shank-Mounted IMUs-Based Gait Analysis and Classification for Neurological Disease Patients
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2970656
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: A Motion Mode Adaptive Strategy for Real-Time Detection of Gait Events During Negotiating Staircases
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_25
  doi: 10.3390/s19132988
– volume: 26
  start-page: 1945
  year: 2018
  ident: ref_26
  article-title: Gait event detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2868094
– ident: ref_29
  doi: 10.3390/s16101634
– volume: 13
  start-page: 12431
  year: 2013
  ident: ref_7
  article-title: Surface Electromyography Signal Processing and Classification Techniques
  publication-title: Sensors
  doi: 10.3390/s130912431
– volume: 19
  start-page: 4271
  year: 2019
  ident: ref_12
  article-title: A Two-Dimensional Feature Space-Based Approach for Human Motion Recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2895289
– volume: 18
  start-page: 1122
  year: 2014
  ident: ref_28
  article-title: Online Decoding of Hidden Markov Models for Gait event detection Using Foot-Mounted Gyroscopes
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2293887
– volume: 23
  start-page: 64
  year: 2015
  ident: ref_16
  article-title: Effects of Motion Mode Recognition Errors on Volitional Control of Powered Above-Knee Prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2327230
– ident: ref_5
  doi: 10.3390/s21082882
– volume: 26
  start-page: 2015
  year: 2018
  ident: ref_15
  article-title: Real-Time On-Board Recognition of Continuous Motion Modes for Amputees With Robotic Transtibial Prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2870152
– volume: 32
  start-page: 545
  year: 2010
  ident: ref_24
  article-title: Methods for Gait event detection and Analysis in Ambulatory Systems
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.03.007
– volume: 1903
  start-page: 012043
  year: 2021
  ident: ref_17
  article-title: Pedestrian Inertial Navigation Based on CNN-SVM Gait Recognition Algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1903/1/012043
– volume: 140
  start-page: 497
  year: 2019
  ident: ref_6
  article-title: Analysis of Force Myography Based Walking patterns
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.009
– volume: 14
  start-page: 47
  year: 2020
  ident: ref_27
  article-title: On-Board Training Strategy for IMU-Based Real-Time Motion Recognition of Transtibial Amputees With Robotic Prostheses
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.00047
– volume: 52
  start-page: 157
  year: 2019
  ident: ref_19
  article-title: Adaptive Gait Detection Based on Foot-Mounted Inertial Sensors and Multi-Sensor Fusion
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2019.03.002
– ident: ref_2
  doi: 10.1109/ICRA.2013.6630869
– volume: 18
  start-page: 963
  year: 2021
  ident: ref_3
  article-title: Human Gait Recognition Based on Self-Adaptive Hidden Markov Model
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2951146
– volume: 33
  start-page: e4348
  year: 2020
  ident: ref_22
  article-title: Abnormal Gait Recognition Using Exemplar Based Algorithm in Healthcare Applications
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4348
– volume: 55
  start-page: 27
  year: 2017
  ident: ref_11
  article-title: The Development and Concurrent Validity of a Real-Time Algorithm for Temporal Gait Analysis Using Inertial Measurement Units
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.02.016
– volume: 28
  start-page: 2933
  year: 2020
  ident: ref_1
  article-title: Identification of Gait Events in Healthy Subjects and With Parkinson’s Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3039999
– volume: 362
  start-page: 94
  year: 2019
  ident: ref_10
  article-title: An Adaptive and On-Line IMU-Based Motion Activity Classification Method Using a Triplet Markov Model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.081
– volume: 18
  start-page: 1059
  year: 2021
  ident: ref_18
  article-title: A Novel Gait Pattern Recognition Method Based on LSTM-CNN for Lower Limb Exoskeleton
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-00083-y
– volume: 20
  start-page: 8128
  year: 2020
  ident: ref_13
  article-title: Real-Time Detection of Actual and Early Gait Events During Level-Ground and Ramp Walking
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2980863
– ident: ref_8
  doi: 10.1016/j.jbiomech.2021.110446
– volume: 15
  start-page: 6419
  year: 2015
  ident: ref_20
  article-title: Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data
  publication-title: Sensors
  doi: 10.3390/s150306419
SSID ssj0000913830
Score 2.261642
Snippet In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 4319
SubjectTerms Adaptive algorithms
Adhesives
Algorithms
Cables
Gait
Gait recognition
Inertial measurement units
Inertial platforms
Knee
Machine learning
Mathematical models
Motion perception
Orthopedic apparatus
Parameter modification
Real time
Self-help devices for the disabled
Sensors
Thigh
Time lag
Training
Velocity
Walking
Title Inertial Measurement Unit-Based Real-Time Adaptive Algorithm for Human Walking Pattern and Gait Event Detection
URI https://www.proquest.com/docview/2882562034
Volume 12
WOSCitedRecordID wos001090010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4V6IEeoFAQKTTaA1IvWDj2Zr0-oQChRWoiC_VBe7HG-wAk6qSJ4chvZ8ZxGpBQL716V1rLszPzzXjmG4B9b1w3SpwJlLMqYEJvsoNIQK5baC87FtO66_37l2Q41JeXadYk3KZNWeXcJtaG2o4M58gPI4KC5KvDWB6N_wQ8NYr_rjYjNJZghVkSeHRD1v31N8fCnJc6DmdkQzFF94eL2TLTTsRtocyw88QhvWyWa19ztv6_b_kW1hqUKXqza7EBr1y5CW-ecA--g9F5ySXVtGuwSBMKhqDBMXk2Ky4IQgbcISJ6FsdsFUXv9ooOq65_C4K6os7_ix94y9l2kdVEnaXA0opPeFOJPldSilNX1cVe5RZ8O-t_PfkcNNMXAkOfqgoIFxlZdLQjTIQpWhdpRxruYuW1d93QpzL13hYJdqRFUygvtYmsU4lCNDKOt2G5HJVuBwQFbbZAkyRJLGWIKjXeprJArWVKUolbcDAXQT6ekWzkFJywxPIXJNaCjyymnFWwmqDBppOADmMyq7xHEUNIcZ1SLdh7tpNUxzxfnksxb1R3mi9E-P7fy7uwyrPnZ5V9e7BcTe7cB3ht7qub6aQNK8f9YXbRhqXBQ79d30t6lp0Psp-Poc7ulg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKRJwaMujatpSfABxYdXNruO1D6gKtKVRkyhCBcpp8foBlcomTZZW_Cl-IzP7IK1UceuBsy1ZXn_7zYw98w3AC29cN0qcCYSzIiBBb-RBjY5cN5Oed6xWZdX7p0EyGsnTUzVegt9NLQylVTacWBK1nRi6I9-N0BVEWx3GfG96EVDXKHpdbVpoVLA4dr-uMGSbv-nv4_m-jKLDg5N3R0HdVSAwcayKAO294VlHOrT1WmnrIukQuS4WXnrXDb3iynubJbrDrTaZ8FyayDqRCK0NpwtQpPxlTmBvwfK4Pxx_-XurQyqbMg4reSNcLtxddLOZdyIqRCVNn2sm8HZDUFq3w9X_7buswUrtR7NeBfxHsOTyx_DwmrriE5j0c0oax1nDxUUoIyc7eIu227IP6CQHVAPDelZPifdZ7_wbbq74_oOhM8_KFw72WZ_TewIbl1KkOdO5Ze_1WcEOKFeU7buiTGfLn8LHO9nxOrTySe42gGFYajNtkiSJOQ-1UMZbxTMtJVeIgrgNr5sjT6eVjEiK4RchJL0FIW14RbBIiWSKmTa6rpXAxUiuK-1hTBRi5CpEG7ZvzERyMDeHG9SkNTnN0wVkNv89_BzuH50MB-mgPzreggcR-ndVHuM2tIrZT_cM7pnL4mw-26n_AwZf7xpifwADqUsg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VBSE48EYECvgA4sIqm13Hax8QCqSBqCWKEI-KyzLrB1Qqm5AsIP4av46ZfZBWqrj1wNmWVl5_nm_GnvkG4GGwfphk3kbKOxWxoDfZQSRHbljoIAcOTV31_n4_m830wYGZb8HvrhaG0yo7m1gbarewfEfeT8gVJK6OU9kPbVrEfDx5tvwWcQcpfmnt2mk0ENnzv35S-LZ-Oh3TXj9Kksnu2xevorbDQGTT1FQRcb-VxUB74n006HyiPaHYpyro4IdxMNKE4IoMB9KhLVSQ2ibOq0whWsmXoWT-z2UUY3I64Xz48e_9Dutt6jRuhI7oY3F_09dmPUi4JJXVfY6R4emUUPPc5Mr__IeuwuXWuxaj5jhcgy1fXodLxzQXb8BiWnIqOc16vbkeFex6R8-J0Z14Q65zxJUxYuRwyWwgRkefaXHVl6-CXHxRv3uID3jErwxiXguUlgJLJ17iYSV2OYNUjH1VJ7mVN-Hdmaz4FmyXi9LfBkHBqivQZlmWShmjMjY4IwvUWhpCRNqDJ93258tGXCSnoIzRkp-Clh48ZojkbHqqFVpsKyjoYyzilY8oUoopnlWqBzsnZpLJsCeHOwTlrcla5xv43Pn38AO4QLjK96ezvbtwMSGnr0lu3IHtavXd34Pz9kd1uF7drw-EgE9nja8_MjFSgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Measurement+Unit-Based+Real-Time+Adaptive+Algorithm+for+Human+Walking+Pattern+and+Gait+Event+Detection&rft.jtitle=Electronics+%28Basel%29&rft.au=Lu%2C+Yinxiao&rft.au=Zhu%2C+Jun&rft.au=Chen%2C+Wenming&rft.au=Ma%2C+Xin&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=20&rft_id=info:doi/10.3390%2Felectronics12204319&rft.externalDocID=A772062566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon