Inertial Measurement Unit-Based Real-Time Adaptive Algorithm for Human Walking Pattern and Gait Event Detection
In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes...
Gespeichert in:
| Veröffentlicht in: | Electronics (Basel) Jg. 12; H. 20; S. 4319 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.10.2023
|
| Schlagworte: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F1-scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications. |
|---|---|
| AbstractList | In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F[sub.1] -scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications. In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F1-scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications. |
| Audience | Academic |
| Author | Chen, Wenming Ma, Xin Lu, Yinxiao Zhu, Jun |
| Author_xml | – sequence: 1 givenname: Yinxiao surname: Lu fullname: Lu, Yinxiao – sequence: 2 givenname: Jun orcidid: 0000-0003-1311-4333 surname: Zhu fullname: Zhu, Jun – sequence: 3 givenname: Wenming orcidid: 0000-0003-0409-5118 surname: Chen fullname: Chen, Wenming – sequence: 4 givenname: Xin surname: Ma fullname: Ma, Xin |
| BookMark | eNptUU1LAzEQDaLg5y_wEvC8NZtss5tj_WoFRRHF4zLNTmp0N6lJWvDfG1FQoTOHeQxv3szw9sm28w4JOS7ZSAjFTrFHnYJ3VseSc1aJUm2RPc5qVSiu-PYfvEuOYnxlOVQpGsH2iL92GJKFnt4ixFXAAV2iT86m4gwidvQBoS8e7YB00sEy2XUG_cIHm14Ganygs9UAjj5D_2bdgt5DShgcBdfRKdhEL9dfgheY8pHWu0OyY6CPePRTD8jT1eXj-ay4uZten09uCp1_SoXkQlfzssGxZKCgQ94gqzgKaRqDY2ZUpYzp5jWUVQd6Lk3VaN6hrCWAroQ4ICffusvg31cYU_vqV8HllS1vGj6WnInql7WAHlvrjE8B9GCjbid1zZnMRJlZow2snB0OVmczjM39fwPie0AHH2NA0y6DHSB8tCVrvzxrN3gmPgEX3Y55 |
| Cites_doi | 10.1109/JSEN.2020.3011627 10.3390/e21040329 10.1109/JSEN.2018.2889970 10.1109/LRA.2020.2970656 10.3390/s19132988 10.1109/TNSRE.2018.2868094 10.3390/s16101634 10.3390/s130912431 10.1109/JSEN.2019.2895289 10.1109/JBHI.2013.2293887 10.1109/TNSRE.2014.2327230 10.3390/s21082882 10.1109/TNSRE.2018.2870152 10.1016/j.medengphy.2010.03.007 10.1088/1742-6596/1903/1/012043 10.1016/j.measurement.2019.04.009 10.3389/fnbot.2020.00047 10.1016/j.inffus.2019.03.002 10.1109/ICRA.2013.6630869 10.1109/TCBB.2019.2951146 10.1002/dac.4348 10.1016/j.jbiomech.2017.02.016 10.1109/TNSRE.2020.3039999 10.1016/j.neucom.2019.06.081 10.1007/s42235-021-00083-y 10.1109/JSEN.2020.2980863 10.1016/j.jbiomech.2021.110446 10.3390/s150306419 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics12204319 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A772062566 10_3390_electronics12204319 |
| GeographicLocations | China United States--US |
| GeographicLocations_xml | – name: China – name: United States--US |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c339t-623c4b18e560a9ade28e042e36f8fe50f949ffdb7a14dacb6f48c2de676aac433 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 08:14:38 EST 2025 Tue Nov 11 11:12:32 EST 2025 Tue Nov 04 18:27:59 EST 2025 Sat Nov 29 07:10:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-623c4b18e560a9ade28e042e36f8fe50f949ffdb7a14dacb6f48c2de676aac433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1311-4333 0000-0003-0409-5118 |
| OpenAccessLink | https://www.proquest.com/docview/2882562034?pq-origsite=%requestingapplication% |
| PQID | 2882562034 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2882562034 gale_infotracmisc_A772062566 gale_infotracacademiconefile_A772062566 crossref_primary_10_3390_electronics12204319 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wu (ref_17) 2021; 1903 Li (ref_10) 2019; 362 Wang (ref_3) 2021; 18 Sahoo (ref_9) 2021; 70 Allseits (ref_11) 2017; 55 Sivarathinabala (ref_22) 2020; 33 Maqbool (ref_14) 2019; 19 Sahoo (ref_13) 2020; 20 Xu (ref_15) 2018; 26 Mannini (ref_28) 2014; 18 Zhao (ref_19) 2019; 52 Siqueira (ref_1) 2020; 28 Chen (ref_18) 2021; 18 Zhang (ref_16) 2015; 23 Wang (ref_21) 2020; 5 Barth (ref_20) 2015; 15 ref_25 Siqueira (ref_23) 2020; 20 Rueterbories (ref_24) 2010; 32 Figueiredo (ref_26) 2018; 26 Chinimilli (ref_12) 2019; 19 Chowdhury (ref_7) 2013; 13 ref_2 ref_29 Godiyal (ref_6) 2019; 140 ref_8 Xu (ref_27) 2020; 14 ref_5 ref_4 |
| References_xml | – volume: 20 start-page: 14984 year: 2020 ident: ref_23 article-title: Identification of Gait Events in Healthy and Parkinson’s Disease Subjects Using Inertial Sensors: A Supervised Learning Approach publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3011627 – ident: ref_4 doi: 10.3390/e21040329 – volume: 19 start-page: 3138 year: 2019 ident: ref_14 article-title: Heuristic Real-Time Detection of Temporal Gait Events for Lower Limb Amputees publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2889970 – volume: 5 start-page: 1970 year: 2020 ident: ref_21 article-title: Two Shank-Mounted IMUs-Based Gait Analysis and Classification for Neurological Disease Patients publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2970656 – volume: 70 start-page: 1 year: 2021 ident: ref_9 article-title: A Motion Mode Adaptive Strategy for Real-Time Detection of Gait Events During Negotiating Staircases publication-title: IEEE Trans. Instrum. Meas. – ident: ref_25 doi: 10.3390/s19132988 – volume: 26 start-page: 1945 year: 2018 ident: ref_26 article-title: Gait event detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2868094 – ident: ref_29 doi: 10.3390/s16101634 – volume: 13 start-page: 12431 year: 2013 ident: ref_7 article-title: Surface Electromyography Signal Processing and Classification Techniques publication-title: Sensors doi: 10.3390/s130912431 – volume: 19 start-page: 4271 year: 2019 ident: ref_12 article-title: A Two-Dimensional Feature Space-Based Approach for Human Motion Recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2895289 – volume: 18 start-page: 1122 year: 2014 ident: ref_28 article-title: Online Decoding of Hidden Markov Models for Gait event detection Using Foot-Mounted Gyroscopes publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2293887 – volume: 23 start-page: 64 year: 2015 ident: ref_16 article-title: Effects of Motion Mode Recognition Errors on Volitional Control of Powered Above-Knee Prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2327230 – ident: ref_5 doi: 10.3390/s21082882 – volume: 26 start-page: 2015 year: 2018 ident: ref_15 article-title: Real-Time On-Board Recognition of Continuous Motion Modes for Amputees With Robotic Transtibial Prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2870152 – volume: 32 start-page: 545 year: 2010 ident: ref_24 article-title: Methods for Gait event detection and Analysis in Ambulatory Systems publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.03.007 – volume: 1903 start-page: 012043 year: 2021 ident: ref_17 article-title: Pedestrian Inertial Navigation Based on CNN-SVM Gait Recognition Algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1903/1/012043 – volume: 140 start-page: 497 year: 2019 ident: ref_6 article-title: Analysis of Force Myography Based Walking patterns publication-title: Measurement doi: 10.1016/j.measurement.2019.04.009 – volume: 14 start-page: 47 year: 2020 ident: ref_27 article-title: On-Board Training Strategy for IMU-Based Real-Time Motion Recognition of Transtibial Amputees With Robotic Prostheses publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.00047 – volume: 52 start-page: 157 year: 2019 ident: ref_19 article-title: Adaptive Gait Detection Based on Foot-Mounted Inertial Sensors and Multi-Sensor Fusion publication-title: Inf. Fusion. doi: 10.1016/j.inffus.2019.03.002 – ident: ref_2 doi: 10.1109/ICRA.2013.6630869 – volume: 18 start-page: 963 year: 2021 ident: ref_3 article-title: Human Gait Recognition Based on Self-Adaptive Hidden Markov Model publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2951146 – volume: 33 start-page: e4348 year: 2020 ident: ref_22 article-title: Abnormal Gait Recognition Using Exemplar Based Algorithm in Healthcare Applications publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4348 – volume: 55 start-page: 27 year: 2017 ident: ref_11 article-title: The Development and Concurrent Validity of a Real-Time Algorithm for Temporal Gait Analysis Using Inertial Measurement Units publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.02.016 – volume: 28 start-page: 2933 year: 2020 ident: ref_1 article-title: Identification of Gait Events in Healthy Subjects and With Parkinson’s Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3039999 – volume: 362 start-page: 94 year: 2019 ident: ref_10 article-title: An Adaptive and On-Line IMU-Based Motion Activity Classification Method Using a Triplet Markov Model publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.081 – volume: 18 start-page: 1059 year: 2021 ident: ref_18 article-title: A Novel Gait Pattern Recognition Method Based on LSTM-CNN for Lower Limb Exoskeleton publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-00083-y – volume: 20 start-page: 8128 year: 2020 ident: ref_13 article-title: Real-Time Detection of Actual and Early Gait Events During Level-Ground and Ramp Walking publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2980863 – ident: ref_8 doi: 10.1016/j.jbiomech.2021.110446 – volume: 15 start-page: 6419 year: 2015 ident: ref_20 article-title: Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data publication-title: Sensors doi: 10.3390/s150306419 |
| SSID | ssj0000913830 |
| Score | 2.2615435 |
| Snippet | In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 4319 |
| SubjectTerms | Adaptive algorithms Adhesives Algorithms Cables Gait Gait recognition Inertial measurement units Inertial platforms Knee Machine learning Mathematical models Motion perception Orthopedic apparatus Parameter modification Real time Self-help devices for the disabled Sensors Thigh Time lag Training Velocity Walking |
| Title | Inertial Measurement Unit-Based Real-Time Adaptive Algorithm for Human Walking Pattern and Gait Event Detection |
| URI | https://www.proquest.com/docview/2882562034 |
| Volume | 12 |
| WOSCitedRecordID | wos001090010200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xOsCh5SlSaLQHpF5Y4cdmvT6hQEPhkMhCRTwu1nofNBJ10sTtsb-dGcchIKFeevVaXsuzM_PNeOYbgCNlgtCnoeDOBpaLjhc8db7gHr2PCkNvQm3qYRPJYKDu7tKsSbhNm7LKuU2sDbUdGcqRn0QIBdFXB7E4Hf_iNDWK_q42IzSWYZVYEmh0Q9Z5eMmxEOelioMZ2VCM0f3JYrbMNIyoLZQYdl45pPfNcu1rLj7-71tuwocGZbLu7FhswZIrt2HjFffgDoyuSiqpxrv6izQhIwjKz9CzWXaNEJJThwjrWj0mq8i6T4-4WfXjJ0Ooy-r8P7vVT5RtZ1lN1FkyXVr2TQ8r1qNKSvbVVXWxV7kLNxe97-eXvJm-wA1-qoojLjKiCJVDTKRTbV2kHGq4i6VX3nUCn4rUe1skOhRWm0J6oUxknUyk1kbE8R6slKPS7VNfuImcTrSWkRfSJ0pajCOLII0dPilWLTieiyAfz0g2cgxOSGL5OxJrwRcSU04qWE200U0nAW5GZFZ5FyOGAOM6KVtw-OZOVB3zdnkuxbxR3Wm-EOGnfy8fwDrNnp9V9h3CSjX57T7DmvlTDaeTNqye9QbZdRuW-3977fpc4rXsqp_dPwM_e--B |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgQHmKhQI-gLhgNXFcxzlUaKEtXbW7WqEiyil1_IBKJbvsBir-VH8jM3mwrVRx64GzrViOP883M54HwEttozhkseTeRY7LzSB55kPBA7KPjuNgY2PrZhPpeKyPjrLJCpx3uTAUVtnJxFpQu6klH_mGQFUQuTpK5NvZD05do-h1tWuh0cBi3_8-Q5NtsTXcxvN9JcTuzuH7Pd52FeA2SbKKI99bWcTaI9ebzDgvtEfk-kQFHfxmFDKZheCK1MTSGVuoILUVzqtUGWMlOUBR5K9KAnsPVifD0eTLX68OVdnUSdSUN8Lloo1lN5tFLCgRlWr6XKDAq4mgZrfdtf_tv9yFO60ezQYN8O_Bii_vw-0L1RUfwHRYUtA4zhotHaGMlGz-DrnbsY-oJHPKgWEDZ2Yk99ng9Cturvr2naEyz-oXDvbZnNJ7ApvUpUhLZkrHPpiTiu1QrCjb9lUdzlY-hE_XsuNH0CunpX9Mme9WeJMao0SQKqRaObSUiyhLPH4p0X140x15PmvKiORofhFC8isQ0ofXBIuchEw1N9a0uRK4GJXrygdoE0VouSrVh_VLM1E42MvDHWryVjgt8iVknvx7-AXc3DscHeQHw_H-U7glUL9r4hjXoVfNf_pncMP-qk4W8-ftPWBwfN0Q-wNGF0wL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VBSE48CqIQAEfQFxqZdfreL0HhAJpICpEEaKi4rJ4_WgrlU1IFhB_jV_HzD5IK1W99cDZ1lpef55vZjwPgGfaRnHIYsm9ixyXgyB55kPBA7KPjuNgY2PrZhPpdKoPDrLZBvzpcmEorLKTibWgdnNLPvK-QFUQuTpKZD-0YRGz0fjV4junDlL00tq102ggsud__0LzbfVyMsKzfi7EePfTm3e87TDAbZJkFUfut7KItUfeN5lxXmiPKPaJCjr4QRQymYXgitTE0hlbqCC1Fc6rVBljJTlDUfxfSdHGpHDC2eDLP_8O1dvUSdQUOsLFov66r80qFpSSStV9TpHh-ZRQ89z41v_8h27DzVa7ZsPmOtyBDV_ehRunai5uwXxSUig5zvqwdo8yUr35a2R0xz6i6swpM4YNnVkQG7DhySFurjr6xlDFZ_W7B_tsTuiVgc3qAqUlM6Vjb81xxXYpgpSNfFUHuZX3YP9SdnwfNst56R9QPrwV3qTGKBGkCqlWDu3nIsoSj19KdA92uuPPF01xkRyNMkJLfg5aevCCIJKT6KmWxpo2gwIXoyJe-RAtpQjtWaV6sH1mJooMe3a4Q1DeiqxVvobPw4uHn8I1xFX-fjLdewTXBSp9TXDjNmxWyx_-MVy1P6vj1fJJfSEYfL1sfP0FecZTbg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Measurement+Unit-Based+Real-Time+Adaptive+Algorithm+for+Human+Walking+Pattern+and+Gait+Event+Detection&rft.jtitle=Electronics+%28Basel%29&rft.au=Lu%2C+Yinxiao&rft.au=Zhu%2C+Jun&rft.au=Chen%2C+Wenming&rft.au=Ma%2C+Xin&rft.date=2023-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=20&rft.spage=4319&rft_id=info:doi/10.3390%2Felectronics12204319&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12204319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |