A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling
Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism (HDTPL) to solve the no-wait flow shop scheduling (NWFSSP) with...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 107; s. 219 - 234 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.09.2016
|
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism (HDTPL) to solve the no-wait flow shop scheduling (NWFSSP) with minimization of makespan. The HDTPL consists of four components, i.e. discrete teaching phase, discrete probabilistic learning phase, population reconstruction, neighborhood search. In the discrete teaching phase, Forward-insert and Backward-insert are adopted to imitate the teaching process. In the discrete probabilistic learning phase, an effective probabilistic model is established with consideration of both job orders in the sequence and similar job blocks of selected superior learners, and then each learner interacts with the probabilistic model by using the crossover operator to learn knowledge. The population reconstruction re-initializes the population every several generations to escape from a local optimum. Furthermore, three types of neighborhood search structures based on the speed-up methods, i.e. Referenced-insert-search, Insert-search and Swap-search, are designed to improve the quality of the current learner and the global best learner. Moreover, the main parameters of HDTPL are investigated by the Taguchi method to find appropriate values. The effectiveness of HDTPL components is analyzed by numerical comparisons, and the comparisons with some efficient algorithms demonstrate the effectiveness and robustness of the proposed HDTPL in solving the NWFSSP. |
|---|---|
| AbstractList | Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism (HDTPL) to solve the no-wait flow shop scheduling (NWFSSP) with minimization of makespan. The HDTPL consists of four components, i.e. discrete teaching phase, discrete probabilistic learning phase, population reconstruction, neighborhood search. In the discrete teaching phase, Forward-insert and Backward-insert are adopted to imitate the teaching process. In the discrete probabilistic learning phase, an effective probabilistic model is established with consideration of both job orders in the sequence and similar job blocks of selected superior learners, and then each learner interacts with the probabilistic model by using the crossover operator to learn knowledge. The population reconstruction re-initializes the population every several generations to escape from a local optimum. Furthermore, three types of neighborhood search structures based on the speed-up methods, i.e. Referenced-insert-search, Insert-search and Swap-search, are designed to improve the quality of the current learner and the global best learner. Moreover, the main parameters of HDTPL are investigated by the Taguchi method to find appropriate values. The effectiveness of HDTPL components is analyzed by numerical comparisons, and the comparisons with some efficient algorithms demonstrate the effectiveness and robustness of the proposed HDTPL in solving the NWFSSP. |
| Author | Shao, Weishi Shao, Zhongshi Pi, Dechang |
| Author_xml | – sequence: 1 givenname: Weishi surname: Shao fullname: Shao, Weishi email: shaoweishi@hotmail.com organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Dechang surname: Pi fullname: Pi, Dechang email: nuaacs@126.com organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Zhongshi surname: Shao fullname: Shao, Zhongshi email: shaozhongshi@hotmail.com organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
| BookMark | eNqFkMFuFDEMhiNUJLaFN-CQI5dZkslkdpYDUlUBRarEBc6Rk3g6XmaSJclSLQfEO_CGPElTlhMHkCxZtv_fsr9zdhZiQMaeS7GWQvYvd-vPIeZjXre1WosaUj5iKzls2mbTie0ZW4mtFs1GaPmEnee8E0K0rRxW7Psln442keeesktYkMd9oYW-QaEYOMy3MVGZFm4ho-e1VRDcROH214-f-xQtWJopF3J8RkihDviCboJAeeFjTDzE5g6o8HGOdzxPcc-zm9Af5ip9yh6PMGd89idfsE9v33y8um5uPrx7f3V50ziltqXpJYLse-96Ozo_blvdqQF7YUH4Xlkvu1ELK0BZtKrzgEM7duBFqyVo2Tt1wV6c9taLvxwwF7PUd3GeIWA8ZCMHpbVWWnVV2p2kLsWcE45mn2iBdDRSmAfcZmdOuM0DbiNqSFltr_6yOSq_GZYENP_P_PpkxsrgK2Ey2REGh54SumJ8pH8vuAfZa6WZ |
| CitedBy_id | crossref_primary_10_1007_s12652_020_02662_z crossref_primary_10_1016_j_asoc_2025_113094 crossref_primary_10_1080_0305215X_2020_1741566 crossref_primary_10_3390_app15031420 crossref_primary_10_1111_itor_13108 crossref_primary_10_3390_pr13082325 crossref_primary_10_1016_j_procs_2018_10_364 crossref_primary_10_1109_ACCESS_2020_2984728 crossref_primary_10_1007_s12667_021_00477_1 crossref_primary_10_1109_TASE_2018_2886303 crossref_primary_10_3390_sym15071430 crossref_primary_10_1016_j_knosys_2017_11_028 crossref_primary_10_1016_j_knosys_2017_08_012 crossref_primary_10_1080_17509653_2022_2085205 crossref_primary_10_1016_j_eswa_2023_120043 crossref_primary_10_1016_j_knosys_2018_06_004 crossref_primary_10_1109_ACCESS_2021_3130905 crossref_primary_10_1016_j_asoc_2020_106541 crossref_primary_10_1016_j_swevo_2020_100785 crossref_primary_10_1109_ACCESS_2020_2997379 crossref_primary_10_1007_s11042_023_16236_6 crossref_primary_10_1016_j_knosys_2017_09_026 crossref_primary_10_1109_TSMC_2017_2720178 crossref_primary_10_1007_s10489_019_01497_2 crossref_primary_10_1109_ACCESS_2020_2984272 crossref_primary_10_1016_j_jclepro_2023_137061 crossref_primary_10_1007_s11081_023_09842_8 crossref_primary_10_1016_j_cor_2018_02_003 crossref_primary_10_1007_s10462_019_09691_x crossref_primary_10_3390_app15094611 crossref_primary_10_1016_j_asoc_2017_04_029 crossref_primary_10_1016_j_asoc_2018_04_045 crossref_primary_10_1109_TSMC_2022_3198829 crossref_primary_10_1007_s12065_020_00487_5 crossref_primary_10_1016_j_neucom_2018_06_076 crossref_primary_10_1109_TEM_2017_2774281 crossref_primary_10_1109_ACCESS_2019_2960388 crossref_primary_10_1016_j_enconman_2017_04_054 crossref_primary_10_1109_ACCESS_2018_2885137 crossref_primary_10_1016_j_asoc_2022_109980 crossref_primary_10_1177_00202940231180622 |
| Cites_doi | 10.1016/j.ins.2012.05.009 10.1016/0305-0548(93)E0014-K 10.1016/j.advengsoft.2014.07.006 10.1016/j.cor.2008.11.004 10.1016/j.apm.2012.03.043 10.1051/ro/1978120403331 10.1007/s00170-012-4440-5 10.1016/j.engappai.2014.09.015 10.1177/1687814015622900 10.1016/S0167-6377(03)00005-1 10.1007/s00170-010-3009-4 10.1007/s00170-007-1120-y 10.1016/j.ijpe.2010.06.006 10.1016/j.eswa.2010.09.104 10.1016/j.cad.2010.12.015 10.1007/s00170-011-3197-6 10.1016/j.engappai.2012.05.017 10.1109/JSYST.2012.2183276 10.1016/j.cie.2011.11.002 10.1016/S0167-5060(08)70356-X 10.1109/TEVC.2013.2260548 10.1080/00207543.2011.648277 10.1016/j.cor.2006.12.030 10.1007/s00170-013-5351-9 10.1016/0377-2217(93)90182-M 10.1016/j.knosys.2014.11.016 10.1016/j.cie.2009.02.006 10.1016/j.mcm.2011.05.029 10.1016/j.asoc.2015.02.006 10.1080/07408170008963918 10.1504/IJAISC.2013.053401 10.1016/j.neucom.2013.10.042 10.1007/s00170-005-0277-5 10.1016/j.ins.2014.02.056 10.1016/j.amc.2015.05.012 10.1016/S0305-0548(02)00068-0 10.1016/j.cie.2011.12.014 10.1007/s00170-007-1099-4 10.1145/62.65 10.1016/j.omega.2011.05.002 10.1016/j.cor.2005.11.022 10.1016/j.cie.2015.09.007 |
| ContentType | Journal Article |
| Copyright | 2016 |
| Copyright_xml | – notice: 2016 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2016.06.011 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 234 |
| ExternalDocumentID | 10_1016_j_knosys_2016_06_011 S0950705116301745 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c339t-61ea166dc6bfcdf925438e60ba0d63bd14f50b0a3beb34dae82f4ad0251a516c3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380595900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Thu Oct 02 06:35:43 EDT 2025 Sat Nov 29 06:41:30 EST 2025 Tue Nov 18 22:33:39 EST 2025 Fri Feb 23 02:28:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Discrete probabilistic learning No-wait flow shop scheduling Minimization of makespan Neighborhood search Discrete teaching Population reconstruction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-61ea166dc6bfcdf925438e60ba0d63bd14f50b0a3beb34dae82f4ad0251a516c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1835553534 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1835553534 crossref_primary_10_1016_j_knosys_2016_06_011 crossref_citationtrail_10_1016_j_knosys_2016_06_011 elsevier_sciencedirect_doi_10_1016_j_knosys_2016_06_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-01 2016-09-00 20160901 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Choi, Lu (bib0036) 2015; 90 1994. Gao, Pan, Suganthan, Li (bib0015) 2013; 66 Shen, Wang, Wang (bib0040) 2014; 74 Nagano, Da Silva, Lorena (bib0013) 2012; 25 Ouyang, Gao, Kong, Zou, Li (bib0032) 2015; 265 Jarboui, Eddaly, Siarry (bib0033) 2009; 36 Pan, Ruiz (bib0034) 2012; 40 Graham, Lawler, Lenstra, Kan (bib0003) 1979; 5 Jarboui, Eddaly, Siarry (bib0011) 2011; 54 Chen, Chen, Chang, Chen (bib0035) 2012; 62 Niknam, Golestaneh, Sadeghi (bib0023) 2012; 6 Črepinšek, Liu, Mernik (bib0029) 2012; 212 Wang, Li, Wang (bib0010) 2008; 2008 Liu, Gao, Pan (bib0038) 2011; 38 Xie, Zhang, Shao, Lin, Zhu (bib0026) 2014; 77 Ding, Song, Gupta, Zhang, Chiong, Wu (bib0002) 2015; 30 Gao, Pan, Li (bib0012) 2011; 56 Carlier (bib0042) 1978; 12 Pan, Tasgetiren, Liang (bib0007) 2008; 35 Rao, Savsani, Vakharia (bib0021) 2011; 43 Qian, Wang, Hu, Huang, Wang (bib0009) 2009; 57 Akrout, Jarboui, Rebaï, Siarry (bib0017) 2013 Kouvelis (bib0031) 2000; 32 Röck (bib0004) 1984; 31 Taillard (bib0044) 1993; 64 Deng, Wei, Su, Zhao (bib0019) 2015; 7 Samarghandi, ElMekkawy (bib0001) 2012; 50 Baykasoğlu, Hamzadayi, Köse (bib0025) 2014; 276 Rao, Patel (bib0022) 2013; 37 Xu, Wang, Wang, Liu (bib0028) 2015; 148 Ding, Song, Zhang, Zhou, Wu (bib0018) 2015 Lin, Ying (bib0020) 2015 Satapathy, Naik, Parvathi (bib0024) 2013; 3 Ceberio, Irurozki, Mendiburu, Lozano (bib0037) 2014; 18 Liu, Wang, Jin (bib0008) 2007; 31 Schiavinotto, Stützle (bib0030) 2007; 34 Akhshabi, Tavakkoli-Moghaddam, Rahnamay-Roodposhti (bib0016) 2014; 70 Li, Pan, Mao (bib0027) 2015; 37 Reeves (bib0043) 1995; 22 Aldowaisan, Allahverdi (bib0005) 2003; 30 S. Baluja Davendra, Zelinka, Bialic-Davendra, Senkerik, Jasek (bib0014) 2013; 57 Schuster, Framinan (bib0047) 2003; 31 Pan, Wang, Tasgetiren, Zhao (bib0046) 2008; 38 Wang, Wang, Xu, Zhou, Liu (bib0041) 2012; 62 Montgomery (bib0045) 2005; 30 Pan, Wang, Zhao (bib0048) 2008; 38 Tseng, Lin (bib0006) 2010; 128 Davendra (10.1016/j.knosys.2016.06.011_bib0014) 2013; 57 Montgomery (10.1016/j.knosys.2016.06.011_bib0045) 2005; 30 Gao (10.1016/j.knosys.2016.06.011_bib0015) 2013; 66 Xu (10.1016/j.knosys.2016.06.011_bib0028) 2015; 148 Črepinšek (10.1016/j.knosys.2016.06.011_bib0029) 2012; 212 Akrout (10.1016/j.knosys.2016.06.011_bib0017) 2013 Niknam (10.1016/j.knosys.2016.06.011_bib0023) 2012; 6 Tseng (10.1016/j.knosys.2016.06.011_bib0006) 2010; 128 Liu (10.1016/j.knosys.2016.06.011_bib0038) 2011; 38 Samarghandi (10.1016/j.knosys.2016.06.011_bib0001) 2012; 50 Lin (10.1016/j.knosys.2016.06.011_bib0020) 2015 Pan (10.1016/j.knosys.2016.06.011_bib0007) 2008; 35 Liu (10.1016/j.knosys.2016.06.011_bib0008) 2007; 31 Deng (10.1016/j.knosys.2016.06.011_bib0019) 2015; 7 Schiavinotto (10.1016/j.knosys.2016.06.011_bib0030) 2007; 34 Schuster (10.1016/j.knosys.2016.06.011_bib0047) 2003; 31 Rao (10.1016/j.knosys.2016.06.011_bib0021) 2011; 43 Carlier (10.1016/j.knosys.2016.06.011_bib0042) 1978; 12 Jarboui (10.1016/j.knosys.2016.06.011_bib0011) 2011; 54 Röck (10.1016/j.knosys.2016.06.011_bib0004) 1984; 31 Pan (10.1016/j.knosys.2016.06.011_bib0048) 2008; 38 Nagano (10.1016/j.knosys.2016.06.011_bib0013) 2012; 25 Ouyang (10.1016/j.knosys.2016.06.011_bib0032) 2015; 265 Ceberio (10.1016/j.knosys.2016.06.011_bib0037) 2014; 18 Aldowaisan (10.1016/j.knosys.2016.06.011_bib0005) 2003; 30 Satapathy (10.1016/j.knosys.2016.06.011_bib0024) 2013; 3 Graham (10.1016/j.knosys.2016.06.011_bib0003) 1979; 5 Taillard (10.1016/j.knosys.2016.06.011_bib0044) 1993; 64 Qian (10.1016/j.knosys.2016.06.011_bib0009) 2009; 57 Wang (10.1016/j.knosys.2016.06.011_bib0036) 2015; 90 Akhshabi (10.1016/j.knosys.2016.06.011_bib0016) 2014; 70 Ding (10.1016/j.knosys.2016.06.011_bib0018) 2015 Ding (10.1016/j.knosys.2016.06.011_bib0002) 2015; 30 Pan (10.1016/j.knosys.2016.06.011_bib0046) 2008; 38 10.1016/j.knosys.2016.06.011_bib0039 Rao (10.1016/j.knosys.2016.06.011_bib0022) 2013; 37 Gao (10.1016/j.knosys.2016.06.011_bib0012) 2011; 56 Shen (10.1016/j.knosys.2016.06.011_bib0040) 2014; 74 Wang (10.1016/j.knosys.2016.06.011_bib0010) 2008; 2008 Baykasoğlu (10.1016/j.knosys.2016.06.011_bib0025) 2014; 276 Xie (10.1016/j.knosys.2016.06.011_bib0026) 2014; 77 Li (10.1016/j.knosys.2016.06.011_bib0027) 2015; 37 Reeves (10.1016/j.knosys.2016.06.011_bib0043) 1995; 22 Pan (10.1016/j.knosys.2016.06.011_bib0034) 2012; 40 Chen (10.1016/j.knosys.2016.06.011_bib0035) 2012; 62 Jarboui (10.1016/j.knosys.2016.06.011_bib0033) 2009; 36 Wang (10.1016/j.knosys.2016.06.011_bib0041) 2012; 62 Kouvelis (10.1016/j.knosys.2016.06.011_bib0031) 2000; 32 |
| References_xml | – volume: 56 start-page: 683 year: 2011 end-page: 692 ident: bib0012 article-title: Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion publication-title: Int. J. Adv. Manuf. Technol. – volume: 212 start-page: 79 year: 2012 end-page: 93 ident: bib0029 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inf. Sci. – volume: 30 start-page: 604 year: 2015 end-page: 613 ident: bib0002 article-title: An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem publication-title: Appl. Soft Comput. – volume: 18 start-page: 286 year: 2014 end-page: 300 ident: bib0037 article-title: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem publication-title: Evol. Comput. IEEE Trans. – reference: S. Baluja, – volume: 2008 start-page: 908 year: 2008 end-page: 912 ident: bib0010 article-title: Iterative local search algorithm for no-wait flowshop scheduling problems to minimize makespan publication-title: International Conference on CSCW in Design, CSCWD 2008, April 16-18 – start-page: 2768 year: 2015 end-page: 2774 ident: bib0018 article-title: A novel block-shifting simulated annealing algorithm for the no-wait flowshop scheduling problem publication-title: Evolutionary Computation (CEC), 2015 IEEE Congress on – volume: 12 start-page: 333 year: 1978 end-page: 350 ident: bib0042 article-title: Ordonnancements a contraintes disjonctives publication-title: RAIRO-Oper. Res.-Recherche Opérationnelle – volume: 128 start-page: 144 year: 2010 end-page: 152 ident: bib0006 article-title: A hybrid genetic algorithm for no-wait flowshop scheduling problem publication-title: Int. J. Prod. Econ. – volume: 34 start-page: 3143 year: 2007 end-page: 3153 ident: bib0030 article-title: A review of metrics on permutations for search landscape analysis publication-title: Comput. Oper. Res. – volume: 22 start-page: 5 year: 1995 end-page: 13 ident: bib0043 article-title: A genetic algorithm for flowshop sequencing publication-title: Comput. Oper. Res. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0021 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 265 start-page: 533 year: 2015 end-page: 556 ident: bib0032 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Appl. Math. Comput. – volume: 276 start-page: 204 year: 2014 end-page: 218 ident: bib0025 article-title: Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases publication-title: Inf. Sci. – volume: 77 start-page: 35 year: 2014 end-page: 47 ident: bib0026 article-title: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem publication-title: Adv. Eng. Soft. – volume: 7 year: 2015 ident: bib0019 article-title: An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem publication-title: Adv. Mech. Eng. – reference: , 1994. – volume: 57 start-page: 787 year: 2009 end-page: 805 ident: bib0009 article-title: A DE-based approach to no-wait flow-shop scheduling publication-title: Comput. Ind. Eng. – volume: 62 start-page: 917 year: 2012 end-page: 926 ident: bib0041 article-title: A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 3 start-page: 244 year: 2013 end-page: 256 ident: bib0024 article-title: Unsupervised feature selection using rough set and teaching learning-based optimisation publication-title: Int. J. Artif. Intell. Soft Comput. – volume: 38 start-page: 337 year: 2008 end-page: 347 ident: bib0046 article-title: A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion publication-title: Int. J. Adv. Manuf. Technol. – volume: 30 start-page: 1219 year: 2003 end-page: 1231 ident: bib0005 article-title: New heuristics for no-wait flowshops to minimize makespan publication-title: Comput. Oper. Res. – volume: 35 start-page: 2807 year: 2008 end-page: 2839 ident: bib0007 article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem publication-title: Comput. Oper. Res. – volume: 50 start-page: 1 year: 2012 end-page: 14 ident: bib0001 article-title: A meta-heuristic approach for solving the no-wait flow-shop problem publication-title: Int. J. Prod. Res. – volume: 90 start-page: 186 year: 2015 end-page: 196 ident: bib0036 article-title: A hybrid estimation of distribution algorithm for simulation-based scheduling in a stochastic permutation flowshop publication-title: Comput. Ind. Eng. – volume: 36 start-page: 2638 year: 2009 end-page: 2646 ident: bib0033 article-title: An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems publication-title: Comput. Oper. Res. – volume: 31 start-page: 336 year: 1984 end-page: 345 ident: bib0004 article-title: The three-machine no-wait flow shop is NP-complete. Journal of the ACM, 31(2), 336-345 publication-title: J. ACM – volume: 31 start-page: 1001 year: 2007 end-page: 1011 ident: bib0008 article-title: An effective hybrid particle swarm optimization for no-wait flow shop scheduling publication-title: Int. J. Adv. Manuf. Technol. – volume: 38 start-page: 4348 year: 2011 end-page: 4360 ident: bib0038 article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem publication-title: Expert Syst. Appl. – volume: 6 start-page: 341 year: 2012 end-page: 352 ident: bib0023 article-title: -Multiobjective teaching–learning-based optimization for dynamic economic emission dispatch publication-title: Syst. J. IEEE – volume: 25 start-page: 1114 year: 2012 end-page: 1120 ident: bib0013 article-title: A new evolutionary clustering search for a no-wait flow shop problem with set-up times publication-title: Eng. Appl. Artif. Intell. – volume: 5 start-page: 287 year: 1979 end-page: 326 ident: bib0003 article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey publication-title: Annals Discrete Math. – volume: 37 start-page: 1147 year: 2013 end-page: 1162 ident: bib0022 article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm publication-title: Appl. Math. Model. – volume: 54 start-page: 1129 year: 2011 end-page: 1143 ident: bib0011 article-title: A hybrid genetic algorithm for solving no-wait flowshop scheduling problems publication-title: Int. J. Adv. Manuf. Technol. – volume: 57 start-page: 100 year: 2013 end-page: 110 ident: bib0014 article-title: Discrete Self-Organising Migrating Algorithm for flow-shop scheduling with no-wait makespan publication-title: Math. Comput. Model. – volume: 62 start-page: 536 year: 2012 end-page: 545 ident: bib0035 article-title: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems publication-title: Computers & Industrial Engineering – volume: 148 start-page: 260 year: 2015 end-page: 268 ident: bib0028 article-title: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time publication-title: Neurocomputing – volume: 40 start-page: 166 year: 2012 end-page: 180 ident: bib0034 article-title: An estimation of distribution algorithm for lot-streaming flow shop problems with setup times publication-title: Omega – volume: 64 start-page: 278 year: 1993 end-page: 285 ident: bib0044 article-title: Benchmarks for basic scheduling problems publication-title: Eur. J. Oper. Res. – volume: 38 start-page: 778 year: 2008 end-page: 786 ident: bib0048 article-title: An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion publication-title: Int. J. Adv. Manuf. Technol. – start-page: 327 year: 2013 end-page: 334 ident: bib0017 article-title: New greedy randomized adaptive search procedure based on differential evolution algorithm for solving no-wait flowshop scheduling problem publication-title: Advanced Logistics and Transport (ICALT), 2013 International Conference on – volume: 31 start-page: 308 year: 2003 end-page: 318 ident: bib0047 article-title: Approximative procedures for no-wait job shop scheduling publication-title: Oper. Res. Lett. – volume: 66 start-page: 1563 year: 2013 end-page: 1572 ident: bib0015 article-title: Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization publication-title: Int. J. Adv. Manuf. Technol. – volume: 37 start-page: 279 year: 2015 end-page: 292 ident: bib0027 article-title: A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems publication-title: Eng. Appl. Artif. Intell. – year: 2015 ident: bib0020 article-title: Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics publication-title: Omega – volume: 74 start-page: 167 year: 2014 end-page: 175 ident: bib0040 article-title: A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion publication-title: Knowl. Based Syst. – volume: 30 start-page: 241 year: 2005 end-page: 242 ident: bib0045 article-title: Design and analysis of experiments, sixth edition publication-title: Technometrics – volume: 70 start-page: 1181 year: 2014 end-page: 1188 ident: bib0016 article-title: A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time publication-title: Int. J. Adv. Manuf. Technol. – volume: 32 start-page: 421 year: 2000 end-page: 432 ident: bib0031 article-title: Robust scheduling of a two-machine flow shop with uncertain processing times publication-title: IIE Trans. – volume: 212 start-page: 79 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0029 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.05.009 – ident: 10.1016/j.knosys.2016.06.011_bib0039 – volume: 22 start-page: 5 year: 1995 ident: 10.1016/j.knosys.2016.06.011_bib0043 article-title: A genetic algorithm for flowshop sequencing publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(93)E0014-K – volume: 77 start-page: 35 year: 2014 ident: 10.1016/j.knosys.2016.06.011_bib0026 article-title: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem publication-title: Adv. Eng. Soft. doi: 10.1016/j.advengsoft.2014.07.006 – volume: 36 start-page: 2638 year: 2009 ident: 10.1016/j.knosys.2016.06.011_bib0033 article-title: An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.11.004 – volume: 37 start-page: 1147 year: 2013 ident: 10.1016/j.knosys.2016.06.011_bib0022 article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.03.043 – volume: 12 start-page: 333 year: 1978 ident: 10.1016/j.knosys.2016.06.011_bib0042 article-title: Ordonnancements a contraintes disjonctives publication-title: RAIRO-Oper. Res.-Recherche Opérationnelle doi: 10.1051/ro/1978120403331 – year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0020 article-title: Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics publication-title: Omega – volume: 66 start-page: 1563 year: 2013 ident: 10.1016/j.knosys.2016.06.011_bib0015 article-title: Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4440-5 – volume: 37 start-page: 279 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0027 article-title: A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.09.015 – volume: 7 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0019 article-title: An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem publication-title: Adv. Mech. Eng. doi: 10.1177/1687814015622900 – volume: 31 start-page: 308 year: 2003 ident: 10.1016/j.knosys.2016.06.011_bib0047 article-title: Approximative procedures for no-wait job shop scheduling publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00005-1 – volume: 54 start-page: 1129 year: 2011 ident: 10.1016/j.knosys.2016.06.011_bib0011 article-title: A hybrid genetic algorithm for solving no-wait flowshop scheduling problems publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-3009-4 – volume: 38 start-page: 778 year: 2008 ident: 10.1016/j.knosys.2016.06.011_bib0048 article-title: An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1120-y – volume: 128 start-page: 144 year: 2010 ident: 10.1016/j.knosys.2016.06.011_bib0006 article-title: A hybrid genetic algorithm for no-wait flowshop scheduling problem publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2010.06.006 – volume: 38 start-page: 4348 year: 2011 ident: 10.1016/j.knosys.2016.06.011_bib0038 article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.104 – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.knosys.2016.06.011_bib0021 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 30 start-page: 241 year: 2005 ident: 10.1016/j.knosys.2016.06.011_bib0045 article-title: Design and analysis of experiments, sixth edition publication-title: Technometrics – volume: 56 start-page: 683 year: 2011 ident: 10.1016/j.knosys.2016.06.011_bib0012 article-title: Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3197-6 – volume: 25 start-page: 1114 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0013 article-title: A new evolutionary clustering search for a no-wait flow shop problem with set-up times publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.05.017 – volume: 6 start-page: 341 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0023 article-title: -Multiobjective teaching–learning-based optimization for dynamic economic emission dispatch publication-title: Syst. J. IEEE doi: 10.1109/JSYST.2012.2183276 – volume: 62 start-page: 536 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0035 article-title: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.11.002 – volume: 5 start-page: 287 year: 1979 ident: 10.1016/j.knosys.2016.06.011_bib0003 article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey publication-title: Annals Discrete Math. doi: 10.1016/S0167-5060(08)70356-X – volume: 18 start-page: 286 year: 2014 ident: 10.1016/j.knosys.2016.06.011_bib0037 article-title: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem publication-title: Evol. Comput. IEEE Trans. doi: 10.1109/TEVC.2013.2260548 – volume: 50 start-page: 1 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0001 article-title: A meta-heuristic approach for solving the no-wait flow-shop problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.648277 – volume: 35 start-page: 2807 year: 2008 ident: 10.1016/j.knosys.2016.06.011_bib0007 article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2006.12.030 – volume: 70 start-page: 1181 year: 2014 ident: 10.1016/j.knosys.2016.06.011_bib0016 article-title: A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5351-9 – volume: 64 start-page: 278 year: 1993 ident: 10.1016/j.knosys.2016.06.011_bib0044 article-title: Benchmarks for basic scheduling problems publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(93)90182-M – volume: 74 start-page: 167 year: 2014 ident: 10.1016/j.knosys.2016.06.011_bib0040 article-title: A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.11.016 – volume: 57 start-page: 787 year: 2009 ident: 10.1016/j.knosys.2016.06.011_bib0009 article-title: A DE-based approach to no-wait flow-shop scheduling publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2009.02.006 – volume: 57 start-page: 100 year: 2013 ident: 10.1016/j.knosys.2016.06.011_bib0014 article-title: Discrete Self-Organising Migrating Algorithm for flow-shop scheduling with no-wait makespan publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.05.029 – volume: 30 start-page: 604 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0002 article-title: An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.02.006 – volume: 32 start-page: 421 year: 2000 ident: 10.1016/j.knosys.2016.06.011_bib0031 article-title: Robust scheduling of a two-machine flow shop with uncertain processing times publication-title: IIE Trans. doi: 10.1080/07408170008963918 – volume: 3 start-page: 244 year: 2013 ident: 10.1016/j.knosys.2016.06.011_bib0024 article-title: Unsupervised feature selection using rough set and teaching learning-based optimisation publication-title: Int. J. Artif. Intell. Soft Comput. doi: 10.1504/IJAISC.2013.053401 – volume: 148 start-page: 260 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0028 article-title: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.042 – volume: 31 start-page: 1001 year: 2007 ident: 10.1016/j.knosys.2016.06.011_bib0008 article-title: An effective hybrid particle swarm optimization for no-wait flow shop scheduling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-0277-5 – start-page: 2768 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0018 article-title: A novel block-shifting simulated annealing algorithm for the no-wait flowshop scheduling problem – volume: 276 start-page: 204 year: 2014 ident: 10.1016/j.knosys.2016.06.011_bib0025 article-title: Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.056 – volume: 265 start-page: 533 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0032 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.05.012 – volume: 30 start-page: 1219 year: 2003 ident: 10.1016/j.knosys.2016.06.011_bib0005 article-title: New heuristics for no-wait flowshops to minimize makespan publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(02)00068-0 – volume: 62 start-page: 917 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0041 article-title: A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem☆ publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.12.014 – volume: 38 start-page: 337 year: 2008 ident: 10.1016/j.knosys.2016.06.011_bib0046 article-title: A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1099-4 – volume: 31 start-page: 336 year: 1984 ident: 10.1016/j.knosys.2016.06.011_bib0004 article-title: The three-machine no-wait flow shop is NP-complete. Journal of the ACM, 31(2), 336-345 publication-title: J. ACM doi: 10.1145/62.65 – volume: 2008 start-page: 908 year: 2008 ident: 10.1016/j.knosys.2016.06.011_bib0010 article-title: Iterative local search algorithm for no-wait flowshop scheduling problems to minimize makespan – volume: 40 start-page: 166 year: 2012 ident: 10.1016/j.knosys.2016.06.011_bib0034 article-title: An estimation of distribution algorithm for lot-streaming flow shop problems with setup times publication-title: Omega doi: 10.1016/j.omega.2011.05.002 – volume: 34 start-page: 3143 year: 2007 ident: 10.1016/j.knosys.2016.06.011_bib0030 article-title: A review of metrics on permutations for search landscape analysis publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2005.11.022 – volume: 90 start-page: 186 year: 2015 ident: 10.1016/j.knosys.2016.06.011_bib0036 article-title: A hybrid estimation of distribution algorithm for simulation-based scheduling in a stochastic permutation flowshop publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.09.007 – start-page: 327 year: 2013 ident: 10.1016/j.knosys.2016.06.011_bib0017 article-title: New greedy randomized adaptive search procedure based on differential evolution algorithm for solving no-wait flowshop scheduling problem |
| SSID | ssj0002218 |
| Score | 2.3628123 |
| Snippet | Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 219 |
| SubjectTerms | Algorithms Discrete probabilistic learning Discrete teaching Learning Minimization of makespan Neighborhood search No-wait flow shop scheduling Optimization Population reconstruction Probabilistic methods Probability theory Scheduling Searching Teaching |
| Title | A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling |
| URI | https://dx.doi.org/10.1016/j.knosys.2016.06.011 https://www.proquest.com/docview/1835553534 |
| Volume | 107 |
| WOSCitedRecordID | wos000380595900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLS0biFgUlcewkxwot4iGtkFhExSVyEqftkiZV231wQfwHrvw6fgkzfmS3rdACEpeoihzH7fd1ZjyeByHPqiqMkizkmLGc-bGQ3JdFWftVWPCIp0qxqtDNJpKDg3Q0yt4NBj9cLsxJk7RtenaWzf8r1HAPwMbU2b-Au58UbsBnAB2uADtc_wj4oTf5gmlYePYCJiGGAYBYmNl8S082424xXU1mHiqwSh8W2IhKF_jAsMuMrryLRZxdY4mxN1OYJoxdNTA2se38UzldeXXTnXrLSTf3YKMMiqtxytCavG-d1843L1xeqJGua0NK7a39qNAb1ktqk_-uXzjeHPpp0rVjN9h6LELRh2RZN9pWKo31RwZ-Etjqs8pI4zQB8z8OsjVxbbrkbghco7sj4xjdUgvGQ3H0_HPbwZfEgD6hq7ZaOb9ecPs9LgVXAqYqyKuYXyG7UcIzEPu7w9f7oze9po8i7T_ul-5SM3X84Pa7fmf6bBgB2rI5vEmu2y0JHRoq3SID1d4mN1y7D2ql_x3ydUgNs6hjFr3ILNozi2qgKdxyzPr57fsap6jjFO05RYFT1HKKIqcocoqec-ou-fBy__DFK9-27_BLxrKVL0IlQyGqUhR1WdUZll1IlQgKGVSCFVUY1zwoAskKVbC4kiqN6lhWuOmVPBQlu0d22q5V9wlVseJ1HBUiq3ESjlUKWVwz2BqCgSWTPcLcL5uXtrY9tlhpchfEeJQbPHLEI8dYzjDcI37_1NzUdrlkfOJAy619auzOHHh2yZNPHcY5iG88k5Ot6o6XOWhUzjnjLH7wz7M_JNfO_2aPyM5qcawek6vlyWq6XDyxpP0Fjx3JZQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+discrete+optimization+algorithm+based+on+teaching%E2%80%93probabilistic+learning+mechanism+for+no-wait+flow+shop+scheduling&rft.jtitle=Knowledge-based+systems&rft.au=Shao%2C+Weishi&rft.au=Pi%2C+Dechang&rft.au=Shao%2C+Zhongshi&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=107&rft.spage=219&rft.epage=234&rft_id=info:doi/10.1016%2Fj.knosys.2016.06.011&rft.externalDocID=S0950705116301745 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |