A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling

Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism (HDTPL) to solve the no-wait flow shop scheduling (NWFSSP) with...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 107; s. 219 - 234
Hlavní autori: Shao, Weishi, Pi, Dechang, Shao, Zhongshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2016
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism (HDTPL) to solve the no-wait flow shop scheduling (NWFSSP) with minimization of makespan. The HDTPL consists of four components, i.e. discrete teaching phase, discrete probabilistic learning phase, population reconstruction, neighborhood search. In the discrete teaching phase, Forward-insert and Backward-insert are adopted to imitate the teaching process. In the discrete probabilistic learning phase, an effective probabilistic model is established with consideration of both job orders in the sequence and similar job blocks of selected superior learners, and then each learner interacts with the probabilistic model by using the crossover operator to learn knowledge. The population reconstruction re-initializes the population every several generations to escape from a local optimum. Furthermore, three types of neighborhood search structures based on the speed-up methods, i.e. Referenced-insert-search, Insert-search and Swap-search, are designed to improve the quality of the current learner and the global best learner. Moreover, the main parameters of HDTPL are investigated by the Taguchi method to find appropriate values. The effectiveness of HDTPL components is analyzed by numerical comparisons, and the comparisons with some efficient algorithms demonstrate the effectiveness and robustness of the proposed HDTPL in solving the NWFSSP.
AbstractList Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid discrete optimization algorithm based on teaching-probabilistic learning mechanism (HDTPL) to solve the no-wait flow shop scheduling (NWFSSP) with minimization of makespan. The HDTPL consists of four components, i.e. discrete teaching phase, discrete probabilistic learning phase, population reconstruction, neighborhood search. In the discrete teaching phase, Forward-insert and Backward-insert are adopted to imitate the teaching process. In the discrete probabilistic learning phase, an effective probabilistic model is established with consideration of both job orders in the sequence and similar job blocks of selected superior learners, and then each learner interacts with the probabilistic model by using the crossover operator to learn knowledge. The population reconstruction re-initializes the population every several generations to escape from a local optimum. Furthermore, three types of neighborhood search structures based on the speed-up methods, i.e. Referenced-insert-search, Insert-search and Swap-search, are designed to improve the quality of the current learner and the global best learner. Moreover, the main parameters of HDTPL are investigated by the Taguchi method to find appropriate values. The effectiveness of HDTPL components is analyzed by numerical comparisons, and the comparisons with some efficient algorithms demonstrate the effectiveness and robustness of the proposed HDTPL in solving the NWFSSP.
Author Shao, Weishi
Shao, Zhongshi
Pi, Dechang
Author_xml – sequence: 1
  givenname: Weishi
  surname: Shao
  fullname: Shao, Weishi
  email: shaoweishi@hotmail.com
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Dechang
  surname: Pi
  fullname: Pi, Dechang
  email: nuaacs@126.com
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Zhongshi
  surname: Shao
  fullname: Shao, Zhongshi
  email: shaozhongshi@hotmail.com
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNqFkMFuFDEMhiNUJLaFN-CQI5dZkslkdpYDUlUBRarEBc6Rk3g6XmaSJclSLQfEO_CGPElTlhMHkCxZtv_fsr9zdhZiQMaeS7GWQvYvd-vPIeZjXre1WosaUj5iKzls2mbTie0ZW4mtFs1GaPmEnee8E0K0rRxW7Psln442keeesktYkMd9oYW-QaEYOMy3MVGZFm4ho-e1VRDcROH214-f-xQtWJopF3J8RkihDviCboJAeeFjTDzE5g6o8HGOdzxPcc-zm9Af5ip9yh6PMGd89idfsE9v33y8um5uPrx7f3V50ziltqXpJYLse-96Ozo_blvdqQF7YUH4Xlkvu1ELK0BZtKrzgEM7duBFqyVo2Tt1wV6c9taLvxwwF7PUd3GeIWA8ZCMHpbVWWnVV2p2kLsWcE45mn2iBdDRSmAfcZmdOuM0DbiNqSFltr_6yOSq_GZYENP_P_PpkxsrgK2Ey2REGh54SumJ8pH8vuAfZa6WZ
CitedBy_id crossref_primary_10_1007_s12652_020_02662_z
crossref_primary_10_1016_j_asoc_2025_113094
crossref_primary_10_1080_0305215X_2020_1741566
crossref_primary_10_3390_app15031420
crossref_primary_10_1111_itor_13108
crossref_primary_10_3390_pr13082325
crossref_primary_10_1016_j_procs_2018_10_364
crossref_primary_10_1109_ACCESS_2020_2984728
crossref_primary_10_1007_s12667_021_00477_1
crossref_primary_10_1109_TASE_2018_2886303
crossref_primary_10_3390_sym15071430
crossref_primary_10_1016_j_knosys_2017_11_028
crossref_primary_10_1016_j_knosys_2017_08_012
crossref_primary_10_1080_17509653_2022_2085205
crossref_primary_10_1016_j_eswa_2023_120043
crossref_primary_10_1016_j_knosys_2018_06_004
crossref_primary_10_1109_ACCESS_2021_3130905
crossref_primary_10_1016_j_asoc_2020_106541
crossref_primary_10_1016_j_swevo_2020_100785
crossref_primary_10_1109_ACCESS_2020_2997379
crossref_primary_10_1007_s11042_023_16236_6
crossref_primary_10_1016_j_knosys_2017_09_026
crossref_primary_10_1109_TSMC_2017_2720178
crossref_primary_10_1007_s10489_019_01497_2
crossref_primary_10_1109_ACCESS_2020_2984272
crossref_primary_10_1016_j_jclepro_2023_137061
crossref_primary_10_1007_s11081_023_09842_8
crossref_primary_10_1016_j_cor_2018_02_003
crossref_primary_10_1007_s10462_019_09691_x
crossref_primary_10_3390_app15094611
crossref_primary_10_1016_j_asoc_2017_04_029
crossref_primary_10_1016_j_asoc_2018_04_045
crossref_primary_10_1109_TSMC_2022_3198829
crossref_primary_10_1007_s12065_020_00487_5
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_1109_TEM_2017_2774281
crossref_primary_10_1109_ACCESS_2019_2960388
crossref_primary_10_1016_j_enconman_2017_04_054
crossref_primary_10_1109_ACCESS_2018_2885137
crossref_primary_10_1016_j_asoc_2022_109980
crossref_primary_10_1177_00202940231180622
Cites_doi 10.1016/j.ins.2012.05.009
10.1016/0305-0548(93)E0014-K
10.1016/j.advengsoft.2014.07.006
10.1016/j.cor.2008.11.004
10.1016/j.apm.2012.03.043
10.1051/ro/1978120403331
10.1007/s00170-012-4440-5
10.1016/j.engappai.2014.09.015
10.1177/1687814015622900
10.1016/S0167-6377(03)00005-1
10.1007/s00170-010-3009-4
10.1007/s00170-007-1120-y
10.1016/j.ijpe.2010.06.006
10.1016/j.eswa.2010.09.104
10.1016/j.cad.2010.12.015
10.1007/s00170-011-3197-6
10.1016/j.engappai.2012.05.017
10.1109/JSYST.2012.2183276
10.1016/j.cie.2011.11.002
10.1016/S0167-5060(08)70356-X
10.1109/TEVC.2013.2260548
10.1080/00207543.2011.648277
10.1016/j.cor.2006.12.030
10.1007/s00170-013-5351-9
10.1016/0377-2217(93)90182-M
10.1016/j.knosys.2014.11.016
10.1016/j.cie.2009.02.006
10.1016/j.mcm.2011.05.029
10.1016/j.asoc.2015.02.006
10.1080/07408170008963918
10.1504/IJAISC.2013.053401
10.1016/j.neucom.2013.10.042
10.1007/s00170-005-0277-5
10.1016/j.ins.2014.02.056
10.1016/j.amc.2015.05.012
10.1016/S0305-0548(02)00068-0
10.1016/j.cie.2011.12.014
10.1007/s00170-007-1099-4
10.1145/62.65
10.1016/j.omega.2011.05.002
10.1016/j.cor.2005.11.022
10.1016/j.cie.2015.09.007
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2016.06.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 234
ExternalDocumentID 10_1016_j_knosys_2016_06_011
S0950705116301745
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-61ea166dc6bfcdf925438e60ba0d63bd14f50b0a3beb34dae82f4ad0251a516c3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380595900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Thu Oct 02 06:35:43 EDT 2025
Sat Nov 29 06:41:30 EST 2025
Tue Nov 18 22:33:39 EST 2025
Fri Feb 23 02:28:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discrete probabilistic learning
No-wait flow shop scheduling
Minimization of makespan
Neighborhood search
Discrete teaching
Population reconstruction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-61ea166dc6bfcdf925438e60ba0d63bd14f50b0a3beb34dae82f4ad0251a516c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835553534
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1835553534
crossref_primary_10_1016_j_knosys_2016_06_011
crossref_citationtrail_10_1016_j_knosys_2016_06_011
elsevier_sciencedirect_doi_10_1016_j_knosys_2016_06_011
PublicationCentury 2000
PublicationDate 2016-09-01
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Choi, Lu (bib0036) 2015; 90
1994.
Gao, Pan, Suganthan, Li (bib0015) 2013; 66
Shen, Wang, Wang (bib0040) 2014; 74
Nagano, Da Silva, Lorena (bib0013) 2012; 25
Ouyang, Gao, Kong, Zou, Li (bib0032) 2015; 265
Jarboui, Eddaly, Siarry (bib0033) 2009; 36
Pan, Ruiz (bib0034) 2012; 40
Graham, Lawler, Lenstra, Kan (bib0003) 1979; 5
Jarboui, Eddaly, Siarry (bib0011) 2011; 54
Chen, Chen, Chang, Chen (bib0035) 2012; 62
Niknam, Golestaneh, Sadeghi (bib0023) 2012; 6
Črepinšek, Liu, Mernik (bib0029) 2012; 212
Wang, Li, Wang (bib0010) 2008; 2008
Liu, Gao, Pan (bib0038) 2011; 38
Xie, Zhang, Shao, Lin, Zhu (bib0026) 2014; 77
Ding, Song, Gupta, Zhang, Chiong, Wu (bib0002) 2015; 30
Gao, Pan, Li (bib0012) 2011; 56
Carlier (bib0042) 1978; 12
Pan, Tasgetiren, Liang (bib0007) 2008; 35
Rao, Savsani, Vakharia (bib0021) 2011; 43
Qian, Wang, Hu, Huang, Wang (bib0009) 2009; 57
Akrout, Jarboui, Rebaï, Siarry (bib0017) 2013
Kouvelis (bib0031) 2000; 32
Röck (bib0004) 1984; 31
Taillard (bib0044) 1993; 64
Deng, Wei, Su, Zhao (bib0019) 2015; 7
Samarghandi, ElMekkawy (bib0001) 2012; 50
Baykasoğlu, Hamzadayi, Köse (bib0025) 2014; 276
Rao, Patel (bib0022) 2013; 37
Xu, Wang, Wang, Liu (bib0028) 2015; 148
Ding, Song, Zhang, Zhou, Wu (bib0018) 2015
Lin, Ying (bib0020) 2015
Satapathy, Naik, Parvathi (bib0024) 2013; 3
Ceberio, Irurozki, Mendiburu, Lozano (bib0037) 2014; 18
Liu, Wang, Jin (bib0008) 2007; 31
Schiavinotto, Stützle (bib0030) 2007; 34
Akhshabi, Tavakkoli-Moghaddam, Rahnamay-Roodposhti (bib0016) 2014; 70
Li, Pan, Mao (bib0027) 2015; 37
Reeves (bib0043) 1995; 22
Aldowaisan, Allahverdi (bib0005) 2003; 30
S. Baluja
Davendra, Zelinka, Bialic-Davendra, Senkerik, Jasek (bib0014) 2013; 57
Schuster, Framinan (bib0047) 2003; 31
Pan, Wang, Tasgetiren, Zhao (bib0046) 2008; 38
Wang, Wang, Xu, Zhou, Liu (bib0041) 2012; 62
Montgomery (bib0045) 2005; 30
Pan, Wang, Zhao (bib0048) 2008; 38
Tseng, Lin (bib0006) 2010; 128
Davendra (10.1016/j.knosys.2016.06.011_bib0014) 2013; 57
Montgomery (10.1016/j.knosys.2016.06.011_bib0045) 2005; 30
Gao (10.1016/j.knosys.2016.06.011_bib0015) 2013; 66
Xu (10.1016/j.knosys.2016.06.011_bib0028) 2015; 148
Črepinšek (10.1016/j.knosys.2016.06.011_bib0029) 2012; 212
Akrout (10.1016/j.knosys.2016.06.011_bib0017) 2013
Niknam (10.1016/j.knosys.2016.06.011_bib0023) 2012; 6
Tseng (10.1016/j.knosys.2016.06.011_bib0006) 2010; 128
Liu (10.1016/j.knosys.2016.06.011_bib0038) 2011; 38
Samarghandi (10.1016/j.knosys.2016.06.011_bib0001) 2012; 50
Lin (10.1016/j.knosys.2016.06.011_bib0020) 2015
Pan (10.1016/j.knosys.2016.06.011_bib0007) 2008; 35
Liu (10.1016/j.knosys.2016.06.011_bib0008) 2007; 31
Deng (10.1016/j.knosys.2016.06.011_bib0019) 2015; 7
Schiavinotto (10.1016/j.knosys.2016.06.011_bib0030) 2007; 34
Schuster (10.1016/j.knosys.2016.06.011_bib0047) 2003; 31
Rao (10.1016/j.knosys.2016.06.011_bib0021) 2011; 43
Carlier (10.1016/j.knosys.2016.06.011_bib0042) 1978; 12
Jarboui (10.1016/j.knosys.2016.06.011_bib0011) 2011; 54
Röck (10.1016/j.knosys.2016.06.011_bib0004) 1984; 31
Pan (10.1016/j.knosys.2016.06.011_bib0048) 2008; 38
Nagano (10.1016/j.knosys.2016.06.011_bib0013) 2012; 25
Ouyang (10.1016/j.knosys.2016.06.011_bib0032) 2015; 265
Ceberio (10.1016/j.knosys.2016.06.011_bib0037) 2014; 18
Aldowaisan (10.1016/j.knosys.2016.06.011_bib0005) 2003; 30
Satapathy (10.1016/j.knosys.2016.06.011_bib0024) 2013; 3
Graham (10.1016/j.knosys.2016.06.011_bib0003) 1979; 5
Taillard (10.1016/j.knosys.2016.06.011_bib0044) 1993; 64
Qian (10.1016/j.knosys.2016.06.011_bib0009) 2009; 57
Wang (10.1016/j.knosys.2016.06.011_bib0036) 2015; 90
Akhshabi (10.1016/j.knosys.2016.06.011_bib0016) 2014; 70
Ding (10.1016/j.knosys.2016.06.011_bib0018) 2015
Ding (10.1016/j.knosys.2016.06.011_bib0002) 2015; 30
Pan (10.1016/j.knosys.2016.06.011_bib0046) 2008; 38
10.1016/j.knosys.2016.06.011_bib0039
Rao (10.1016/j.knosys.2016.06.011_bib0022) 2013; 37
Gao (10.1016/j.knosys.2016.06.011_bib0012) 2011; 56
Shen (10.1016/j.knosys.2016.06.011_bib0040) 2014; 74
Wang (10.1016/j.knosys.2016.06.011_bib0010) 2008; 2008
Baykasoğlu (10.1016/j.knosys.2016.06.011_bib0025) 2014; 276
Xie (10.1016/j.knosys.2016.06.011_bib0026) 2014; 77
Li (10.1016/j.knosys.2016.06.011_bib0027) 2015; 37
Reeves (10.1016/j.knosys.2016.06.011_bib0043) 1995; 22
Pan (10.1016/j.knosys.2016.06.011_bib0034) 2012; 40
Chen (10.1016/j.knosys.2016.06.011_bib0035) 2012; 62
Jarboui (10.1016/j.knosys.2016.06.011_bib0033) 2009; 36
Wang (10.1016/j.knosys.2016.06.011_bib0041) 2012; 62
Kouvelis (10.1016/j.knosys.2016.06.011_bib0031) 2000; 32
References_xml – volume: 56
  start-page: 683
  year: 2011
  end-page: 692
  ident: bib0012
  article-title: Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 212
  start-page: 79
  year: 2012
  end-page: 93
  ident: bib0029
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inf. Sci.
– volume: 30
  start-page: 604
  year: 2015
  end-page: 613
  ident: bib0002
  article-title: An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 286
  year: 2014
  end-page: 300
  ident: bib0037
  article-title: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem
  publication-title: Evol. Comput. IEEE Trans.
– reference: S. Baluja,
– volume: 2008
  start-page: 908
  year: 2008
  end-page: 912
  ident: bib0010
  article-title: Iterative local search algorithm for no-wait flowshop scheduling problems to minimize makespan
  publication-title: International Conference on CSCW in Design, CSCWD 2008, April 16-18
– start-page: 2768
  year: 2015
  end-page: 2774
  ident: bib0018
  article-title: A novel block-shifting simulated annealing algorithm for the no-wait flowshop scheduling problem
  publication-title: Evolutionary Computation (CEC), 2015 IEEE Congress on
– volume: 12
  start-page: 333
  year: 1978
  end-page: 350
  ident: bib0042
  article-title: Ordonnancements a contraintes disjonctives
  publication-title: RAIRO-Oper. Res.-Recherche Opérationnelle
– volume: 128
  start-page: 144
  year: 2010
  end-page: 152
  ident: bib0006
  article-title: A hybrid genetic algorithm for no-wait flowshop scheduling problem
  publication-title: Int. J. Prod. Econ.
– volume: 34
  start-page: 3143
  year: 2007
  end-page: 3153
  ident: bib0030
  article-title: A review of metrics on permutations for search landscape analysis
  publication-title: Comput. Oper. Res.
– volume: 22
  start-page: 5
  year: 1995
  end-page: 13
  ident: bib0043
  article-title: A genetic algorithm for flowshop sequencing
  publication-title: Comput. Oper. Res.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0021
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 265
  start-page: 533
  year: 2015
  end-page: 556
  ident: bib0032
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Appl. Math. Comput.
– volume: 276
  start-page: 204
  year: 2014
  end-page: 218
  ident: bib0025
  article-title: Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases
  publication-title: Inf. Sci.
– volume: 77
  start-page: 35
  year: 2014
  end-page: 47
  ident: bib0026
  article-title: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem
  publication-title: Adv. Eng. Soft.
– volume: 7
  year: 2015
  ident: bib0019
  article-title: An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem
  publication-title: Adv. Mech. Eng.
– reference: , 1994.
– volume: 57
  start-page: 787
  year: 2009
  end-page: 805
  ident: bib0009
  article-title: A DE-based approach to no-wait flow-shop scheduling
  publication-title: Comput. Ind. Eng.
– volume: 62
  start-page: 917
  year: 2012
  end-page: 926
  ident: bib0041
  article-title: A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 3
  start-page: 244
  year: 2013
  end-page: 256
  ident: bib0024
  article-title: Unsupervised feature selection using rough set and teaching learning-based optimisation
  publication-title: Int. J. Artif. Intell. Soft Comput.
– volume: 38
  start-page: 337
  year: 2008
  end-page: 347
  ident: bib0046
  article-title: A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 30
  start-page: 1219
  year: 2003
  end-page: 1231
  ident: bib0005
  article-title: New heuristics for no-wait flowshops to minimize makespan
  publication-title: Comput. Oper. Res.
– volume: 35
  start-page: 2807
  year: 2008
  end-page: 2839
  ident: bib0007
  article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 50
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib0001
  article-title: A meta-heuristic approach for solving the no-wait flow-shop problem
  publication-title: Int. J. Prod. Res.
– volume: 90
  start-page: 186
  year: 2015
  end-page: 196
  ident: bib0036
  article-title: A hybrid estimation of distribution algorithm for simulation-based scheduling in a stochastic permutation flowshop
  publication-title: Comput. Ind. Eng.
– volume: 36
  start-page: 2638
  year: 2009
  end-page: 2646
  ident: bib0033
  article-title: An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems
  publication-title: Comput. Oper. Res.
– volume: 31
  start-page: 336
  year: 1984
  end-page: 345
  ident: bib0004
  article-title: The three-machine no-wait flow shop is NP-complete. Journal of the ACM, 31(2), 336-345
  publication-title: J. ACM
– volume: 31
  start-page: 1001
  year: 2007
  end-page: 1011
  ident: bib0008
  article-title: An effective hybrid particle swarm optimization for no-wait flow shop scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 38
  start-page: 4348
  year: 2011
  end-page: 4360
  ident: bib0038
  article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 341
  year: 2012
  end-page: 352
  ident: bib0023
  article-title: -Multiobjective teaching–learning-based optimization for dynamic economic emission dispatch
  publication-title: Syst. J. IEEE
– volume: 25
  start-page: 1114
  year: 2012
  end-page: 1120
  ident: bib0013
  article-title: A new evolutionary clustering search for a no-wait flow shop problem with set-up times
  publication-title: Eng. Appl. Artif. Intell.
– volume: 5
  start-page: 287
  year: 1979
  end-page: 326
  ident: bib0003
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Annals Discrete Math.
– volume: 37
  start-page: 1147
  year: 2013
  end-page: 1162
  ident: bib0022
  article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm
  publication-title: Appl. Math. Model.
– volume: 54
  start-page: 1129
  year: 2011
  end-page: 1143
  ident: bib0011
  article-title: A hybrid genetic algorithm for solving no-wait flowshop scheduling problems
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 57
  start-page: 100
  year: 2013
  end-page: 110
  ident: bib0014
  article-title: Discrete Self-Organising Migrating Algorithm for flow-shop scheduling with no-wait makespan
  publication-title: Math. Comput. Model.
– volume: 62
  start-page: 536
  year: 2012
  end-page: 545
  ident: bib0035
  article-title: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems
  publication-title: Computers & Industrial Engineering
– volume: 148
  start-page: 260
  year: 2015
  end-page: 268
  ident: bib0028
  article-title: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time
  publication-title: Neurocomputing
– volume: 40
  start-page: 166
  year: 2012
  end-page: 180
  ident: bib0034
  article-title: An estimation of distribution algorithm for lot-streaming flow shop problems with setup times
  publication-title: Omega
– volume: 64
  start-page: 278
  year: 1993
  end-page: 285
  ident: bib0044
  article-title: Benchmarks for basic scheduling problems
  publication-title: Eur. J. Oper. Res.
– volume: 38
  start-page: 778
  year: 2008
  end-page: 786
  ident: bib0048
  article-title: An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 327
  year: 2013
  end-page: 334
  ident: bib0017
  article-title: New greedy randomized adaptive search procedure based on differential evolution algorithm for solving no-wait flowshop scheduling problem
  publication-title: Advanced Logistics and Transport (ICALT), 2013 International Conference on
– volume: 31
  start-page: 308
  year: 2003
  end-page: 318
  ident: bib0047
  article-title: Approximative procedures for no-wait job shop scheduling
  publication-title: Oper. Res. Lett.
– volume: 66
  start-page: 1563
  year: 2013
  end-page: 1572
  ident: bib0015
  article-title: Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 37
  start-page: 279
  year: 2015
  end-page: 292
  ident: bib0027
  article-title: A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems
  publication-title: Eng. Appl. Artif. Intell.
– year: 2015
  ident: bib0020
  article-title: Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics
  publication-title: Omega
– volume: 74
  start-page: 167
  year: 2014
  end-page: 175
  ident: bib0040
  article-title: A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion
  publication-title: Knowl. Based Syst.
– volume: 30
  start-page: 241
  year: 2005
  end-page: 242
  ident: bib0045
  article-title: Design and analysis of experiments, sixth edition
  publication-title: Technometrics
– volume: 70
  start-page: 1181
  year: 2014
  end-page: 1188
  ident: bib0016
  article-title: A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 32
  start-page: 421
  year: 2000
  end-page: 432
  ident: bib0031
  article-title: Robust scheduling of a two-machine flow shop with uncertain processing times
  publication-title: IIE Trans.
– volume: 212
  start-page: 79
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0029
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.009
– ident: 10.1016/j.knosys.2016.06.011_bib0039
– volume: 22
  start-page: 5
  year: 1995
  ident: 10.1016/j.knosys.2016.06.011_bib0043
  article-title: A genetic algorithm for flowshop sequencing
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(93)E0014-K
– volume: 77
  start-page: 35
  year: 2014
  ident: 10.1016/j.knosys.2016.06.011_bib0026
  article-title: An effective hybrid teaching–learning-based optimization algorithm for permutation flow shop scheduling problem
  publication-title: Adv. Eng. Soft.
  doi: 10.1016/j.advengsoft.2014.07.006
– volume: 36
  start-page: 2638
  year: 2009
  ident: 10.1016/j.knosys.2016.06.011_bib0033
  article-title: An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.11.004
– volume: 37
  start-page: 1147
  year: 2013
  ident: 10.1016/j.knosys.2016.06.011_bib0022
  article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.03.043
– volume: 12
  start-page: 333
  year: 1978
  ident: 10.1016/j.knosys.2016.06.011_bib0042
  article-title: Ordonnancements a contraintes disjonctives
  publication-title: RAIRO-Oper. Res.-Recherche Opérationnelle
  doi: 10.1051/ro/1978120403331
– year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0020
  article-title: Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics
  publication-title: Omega
– volume: 66
  start-page: 1563
  year: 2013
  ident: 10.1016/j.knosys.2016.06.011_bib0015
  article-title: Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4440-5
– volume: 37
  start-page: 279
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0027
  article-title: A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.09.015
– volume: 7
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0019
  article-title: An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814015622900
– volume: 31
  start-page: 308
  year: 2003
  ident: 10.1016/j.knosys.2016.06.011_bib0047
  article-title: Approximative procedures for no-wait job shop scheduling
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00005-1
– volume: 54
  start-page: 1129
  year: 2011
  ident: 10.1016/j.knosys.2016.06.011_bib0011
  article-title: A hybrid genetic algorithm for solving no-wait flowshop scheduling problems
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-3009-4
– volume: 38
  start-page: 778
  year: 2008
  ident: 10.1016/j.knosys.2016.06.011_bib0048
  article-title: An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1120-y
– volume: 128
  start-page: 144
  year: 2010
  ident: 10.1016/j.knosys.2016.06.011_bib0006
  article-title: A hybrid genetic algorithm for no-wait flowshop scheduling problem
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2010.06.006
– volume: 38
  start-page: 4348
  year: 2011
  ident: 10.1016/j.knosys.2016.06.011_bib0038
  article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.104
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.knosys.2016.06.011_bib0021
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 30
  start-page: 241
  year: 2005
  ident: 10.1016/j.knosys.2016.06.011_bib0045
  article-title: Design and analysis of experiments, sixth edition
  publication-title: Technometrics
– volume: 56
  start-page: 683
  year: 2011
  ident: 10.1016/j.knosys.2016.06.011_bib0012
  article-title: Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3197-6
– volume: 25
  start-page: 1114
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0013
  article-title: A new evolutionary clustering search for a no-wait flow shop problem with set-up times
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.017
– volume: 6
  start-page: 341
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0023
  article-title: -Multiobjective teaching–learning-based optimization for dynamic economic emission dispatch
  publication-title: Syst. J. IEEE
  doi: 10.1109/JSYST.2012.2183276
– volume: 62
  start-page: 536
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0035
  article-title: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.11.002
– volume: 5
  start-page: 287
  year: 1979
  ident: 10.1016/j.knosys.2016.06.011_bib0003
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Annals Discrete Math.
  doi: 10.1016/S0167-5060(08)70356-X
– volume: 18
  start-page: 286
  year: 2014
  ident: 10.1016/j.knosys.2016.06.011_bib0037
  article-title: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem
  publication-title: Evol. Comput. IEEE Trans.
  doi: 10.1109/TEVC.2013.2260548
– volume: 50
  start-page: 1
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0001
  article-title: A meta-heuristic approach for solving the no-wait flow-shop problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.648277
– volume: 35
  start-page: 2807
  year: 2008
  ident: 10.1016/j.knosys.2016.06.011_bib0007
  article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2006.12.030
– volume: 70
  start-page: 1181
  year: 2014
  ident: 10.1016/j.knosys.2016.06.011_bib0016
  article-title: A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5351-9
– volume: 64
  start-page: 278
  year: 1993
  ident: 10.1016/j.knosys.2016.06.011_bib0044
  article-title: Benchmarks for basic scheduling problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(93)90182-M
– volume: 74
  start-page: 167
  year: 2014
  ident: 10.1016/j.knosys.2016.06.011_bib0040
  article-title: A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.11.016
– volume: 57
  start-page: 787
  year: 2009
  ident: 10.1016/j.knosys.2016.06.011_bib0009
  article-title: A DE-based approach to no-wait flow-shop scheduling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2009.02.006
– volume: 57
  start-page: 100
  year: 2013
  ident: 10.1016/j.knosys.2016.06.011_bib0014
  article-title: Discrete Self-Organising Migrating Algorithm for flow-shop scheduling with no-wait makespan
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.05.029
– volume: 30
  start-page: 604
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0002
  article-title: An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.02.006
– volume: 32
  start-page: 421
  year: 2000
  ident: 10.1016/j.knosys.2016.06.011_bib0031
  article-title: Robust scheduling of a two-machine flow shop with uncertain processing times
  publication-title: IIE Trans.
  doi: 10.1080/07408170008963918
– volume: 3
  start-page: 244
  year: 2013
  ident: 10.1016/j.knosys.2016.06.011_bib0024
  article-title: Unsupervised feature selection using rough set and teaching learning-based optimisation
  publication-title: Int. J. Artif. Intell. Soft Comput.
  doi: 10.1504/IJAISC.2013.053401
– volume: 148
  start-page: 260
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0028
  article-title: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.042
– volume: 31
  start-page: 1001
  year: 2007
  ident: 10.1016/j.knosys.2016.06.011_bib0008
  article-title: An effective hybrid particle swarm optimization for no-wait flow shop scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0277-5
– start-page: 2768
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0018
  article-title: A novel block-shifting simulated annealing algorithm for the no-wait flowshop scheduling problem
– volume: 276
  start-page: 204
  year: 2014
  ident: 10.1016/j.knosys.2016.06.011_bib0025
  article-title: Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.056
– volume: 265
  start-page: 533
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0032
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.05.012
– volume: 30
  start-page: 1219
  year: 2003
  ident: 10.1016/j.knosys.2016.06.011_bib0005
  article-title: New heuristics for no-wait flowshops to minimize makespan
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(02)00068-0
– volume: 62
  start-page: 917
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0041
  article-title: A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem☆
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2011.12.014
– volume: 38
  start-page: 337
  year: 2008
  ident: 10.1016/j.knosys.2016.06.011_bib0046
  article-title: A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1099-4
– volume: 31
  start-page: 336
  year: 1984
  ident: 10.1016/j.knosys.2016.06.011_bib0004
  article-title: The three-machine no-wait flow shop is NP-complete. Journal of the ACM, 31(2), 336-345
  publication-title: J. ACM
  doi: 10.1145/62.65
– volume: 2008
  start-page: 908
  year: 2008
  ident: 10.1016/j.knosys.2016.06.011_bib0010
  article-title: Iterative local search algorithm for no-wait flowshop scheduling problems to minimize makespan
– volume: 40
  start-page: 166
  year: 2012
  ident: 10.1016/j.knosys.2016.06.011_bib0034
  article-title: An estimation of distribution algorithm for lot-streaming flow shop problems with setup times
  publication-title: Omega
  doi: 10.1016/j.omega.2011.05.002
– volume: 34
  start-page: 3143
  year: 2007
  ident: 10.1016/j.knosys.2016.06.011_bib0030
  article-title: A review of metrics on permutations for search landscape analysis
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.11.022
– volume: 90
  start-page: 186
  year: 2015
  ident: 10.1016/j.knosys.2016.06.011_bib0036
  article-title: A hybrid estimation of distribution algorithm for simulation-based scheduling in a stochastic permutation flowshop
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.09.007
– start-page: 327
  year: 2013
  ident: 10.1016/j.knosys.2016.06.011_bib0017
  article-title: New greedy randomized adaptive search procedure based on differential evolution algorithm for solving no-wait flowshop scheduling problem
SSID ssj0002218
Score 2.3628123
Snippet Inspired by the phenomenon of teaching and learning introduced by the teaching-learning based optimization (TLBO) algorithm, this paper presents a hybrid...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms Algorithms
Discrete probabilistic learning
Discrete teaching
Learning
Minimization of makespan
Neighborhood search
No-wait flow shop scheduling
Optimization
Population reconstruction
Probabilistic methods
Probability theory
Scheduling
Searching
Teaching
Title A hybrid discrete optimization algorithm based on teaching–probabilistic learning mechanism for no-wait flow shop scheduling
URI https://dx.doi.org/10.1016/j.knosys.2016.06.011
https://www.proquest.com/docview/1835553534
Volume 107
WOSCitedRecordID wos000380595900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLS0biFgUlcewkxwot4iGtkFhExSVyEqftkiZV231wQfwHrvw6fgkzfmS3rdACEpeoihzH7fd1ZjyeByHPqiqMkizkmLGc-bGQ3JdFWftVWPCIp0qxqtDNJpKDg3Q0yt4NBj9cLsxJk7RtenaWzf8r1HAPwMbU2b-Au58UbsBnAB2uADtc_wj4oTf5gmlYePYCJiGGAYBYmNl8S082424xXU1mHiqwSh8W2IhKF_jAsMuMrryLRZxdY4mxN1OYJoxdNTA2se38UzldeXXTnXrLSTf3YKMMiqtxytCavG-d1843L1xeqJGua0NK7a39qNAb1ktqk_-uXzjeHPpp0rVjN9h6LELRh2RZN9pWKo31RwZ-Etjqs8pI4zQB8z8OsjVxbbrkbghco7sj4xjdUgvGQ3H0_HPbwZfEgD6hq7ZaOb9ecPs9LgVXAqYqyKuYXyG7UcIzEPu7w9f7oze9po8i7T_ul-5SM3X84Pa7fmf6bBgB2rI5vEmu2y0JHRoq3SID1d4mN1y7D2ql_x3ydUgNs6hjFr3ILNozi2qgKdxyzPr57fsap6jjFO05RYFT1HKKIqcocoqec-ou-fBy__DFK9-27_BLxrKVL0IlQyGqUhR1WdUZll1IlQgKGVSCFVUY1zwoAskKVbC4kiqN6lhWuOmVPBQlu0d22q5V9wlVseJ1HBUiq3ESjlUKWVwz2BqCgSWTPcLcL5uXtrY9tlhpchfEeJQbPHLEI8dYzjDcI37_1NzUdrlkfOJAy619auzOHHh2yZNPHcY5iG88k5Ot6o6XOWhUzjnjLH7wz7M_JNfO_2aPyM5qcawek6vlyWq6XDyxpP0Fjx3JZQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+discrete+optimization+algorithm+based+on+teaching%E2%80%93probabilistic+learning+mechanism+for+no-wait+flow+shop+scheduling&rft.jtitle=Knowledge-based+systems&rft.au=Shao%2C+Weishi&rft.au=Pi%2C+Dechang&rft.au=Shao%2C+Zhongshi&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=107&rft.spage=219&rft.epage=234&rft_id=info:doi/10.1016%2Fj.knosys.2016.06.011&rft.externalDocID=S0950705116301745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon