Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics

In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 155; s. 248 - 256
Hlavní autoři: Sia, Sheng Qiang, Wang, Wei-Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2020
Témata:
ISSN:0960-1481, 1879-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H2 are mostly at the lower part of the reactor, CH4 is in the freeboard region and CO2 is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis. •The hydrodynamics and chemical kinetics for fluidized bed pyrolysis was simulated.•The transitions of fluidization for gas, biomass and sand were numerically observed.•The simulated results well-agreed with the experimental ones for product yields.•The distributions of CO, H2, CH4 and CO2 in the reactor were also exhibited.
AbstractList In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H2 are mostly at the lower part of the reactor, CH4 is in the freeboard region and CO2 is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis. •The hydrodynamics and chemical kinetics for fluidized bed pyrolysis was simulated.•The transitions of fluidization for gas, biomass and sand were numerically observed.•The simulated results well-agreed with the experimental ones for product yields.•The distributions of CO, H2, CH4 and CO2 in the reactor were also exhibited.
In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H₂ are mostly at the lower part of the reactor, CH₄ is in the freeboard region and CO₂ is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis.
Author Sia, Sheng Qiang
Wang, Wei-Cheng
Author_xml – sequence: 1
  givenname: Sheng Qiang
  surname: Sia
  fullname: Sia, Sheng Qiang
– sequence: 2
  givenname: Wei-Cheng
  surname: Wang
  fullname: Wang, Wei-Cheng
  email: wilsonwang@mail.ncku.edu.tw
BookMark eNqFkEtL9DAUhoMoOF7-gYsu3bSeXKZNXQgf4g1EN7oOaXKiGdpmTFph_PV2pq5cfBJCDjnneTk8R2S_Dz0SckahoEDLi1URsZ9OwYBBAbygXOyRBZVVnUMp2T5ZQF1CToWkh-QopRUAXcpKLAg-jR1Gb3SbJd-NrR586FMWXOba0Vv_hTZrput0GrL1JoZ2k_yu3_jQ6ZSy4T2G8e09M6Fbj8OOn8J2dGY3ve68SSfkwOk24enPe0xeb29eru_zx-e7h-t_j7nhvB7yEhoDDYK0ZYWGN9JZJxibKi5qJ7SRBoTWjLGlrkTNnKSWbf9r0dDKAj8m53PuOoaPEdOgOp8Mtq3uMYxJMcGpFEsQ5TR6OY-aGFKK6JTx8_ZD1L5VFNTWrVqp2a3aulXA1eR2gsUveB19p-PmL-xqxnBy8OkxqmQ89gatj2gGZYP_f8A3eaqaoA
CitedBy_id crossref_primary_10_1016_j_biteb_2022_101221
crossref_primary_10_1016_j_jaap_2022_105433
crossref_primary_10_1016_j_powtec_2021_04_039
crossref_primary_10_1016_j_renene_2021_09_038
crossref_primary_10_1016_j_jaap_2023_106163
crossref_primary_10_1016_j_fuel_2022_127266
crossref_primary_10_1007_s13399_021_01693_6
crossref_primary_10_3390_su16219506
crossref_primary_10_1016_j_powtec_2021_04_094
crossref_primary_10_1134_S1027451023060101
crossref_primary_10_1063_5_0276064
crossref_primary_10_3390_fluids9120301
crossref_primary_10_3390_ma15124215
crossref_primary_10_3390_su16031169
crossref_primary_10_1016_j_fuel_2024_131487
crossref_primary_10_1016_j_jclepro_2023_136774
crossref_primary_10_1016_j_jaap_2024_106477
crossref_primary_10_3390_en13246605
crossref_primary_10_1016_j_combustflame_2024_113798
crossref_primary_10_1016_j_jclepro_2021_129613
crossref_primary_10_3390_su162210119
crossref_primary_10_1016_j_renene_2024_120175
crossref_primary_10_1016_j_pecs_2021_100930
crossref_primary_10_1016_j_ces_2021_117131
crossref_primary_10_1016_j_cjche_2025_01_007
crossref_primary_10_1016_j_cej_2023_147791
Cites_doi 10.1016/S0065-2377(06)31004-6
10.1016/j.fuproc.2016.12.014
10.1016/j.biortech.2010.01.037
10.1080/00102209708935670
10.1016/j.pecs.2006.12.001
10.1021/ie801854c
10.1016/S0165-2370(99)00006-6
10.1016/j.biortech.2012.03.036
10.1002/aic.690320104
10.1021/ie0504856
10.1016/S0301-9322(01)00059-3
10.1016/0016-2361(95)00001-L
10.1021/ef0502397
10.1021/ef010053h
10.3390/pr7080524
10.1016/j.rser.2015.07.191
10.1016/j.enconman.2019.112143
10.1016/j.fuel.2019.115790
10.1016/j.fuel.2015.09.074
10.1016/j.energy.2014.08.010
10.1016/j.fuproc.2013.02.022
10.1016/S0016-2361(02)00294-6
10.1016/j.ces.2008.11.007
10.1039/C6RA28615A
10.1126/science.1121416
10.1016/j.rser.2012.04.028
10.1016/j.enconman.2006.05.010
10.1016/j.ces.2011.03.010
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2020.03.134
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 256
ExternalDocumentID 10_1016_j_renene_2020_03_134
S0960148120304663
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-60bc0be08d67ec3b8fdf422c3b349f4ac8c04aa2225a7492f81d2f4ac94b17d03
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537825800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Sun Sep 28 00:52:04 EDT 2025
Tue Nov 18 21:58:11 EST 2025
Sat Nov 29 07:10:56 EST 2025
Fri Feb 23 02:47:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrodynamics
Biofuel
Biomass
Computational fluid dynamics
Fast pyrolysis
Fluidized bed
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-60bc0be08d67ec3b8fdf422c3b349f4ac8c04aa2225a7492f81d2f4ac94b17d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2431845046
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2431845046
crossref_citationtrail_10_1016_j_renene_2020_03_134
crossref_primary_10_1016_j_renene_2020_03_134
elsevier_sciencedirect_doi_10_1016_j_renene_2020_03_134
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiong, Xu, Ramirez, Pannala, Daw (bib30) 2016; 164
Authier, Ferrer, Mauviel, Khalfi, Lédé (bib16) 2009; 48
Miller, Bellan (bib31) 1997; 126
Li, Li, Yi, Fu, Li, Bai (bib4) 2017; 161
Khezri, Wan Ab Karim Ghani, Masoudi Soltani, Awang Biak, Yunus, Silas (bib20) 2019; 7
Bridgwater (bib13) 1995; 74
Lathouwers, Bellan (bib18) 2001; 15
Mohan, Pittman, Steele (bib5) 2006; 20
Neogi, Chang, Walawender, Fan (bib9) 1986; 32
Shaddix, Hardesty (bib12) 1999; vol. 71
Lathouwers, Bellan (bib17) 2001; 27
Zhou, Zhang, Bai, Shi, Li, Wang (bib27) 2017; 7
Kersten, Wang, Prins, van Swaaij (bib24) 2005; 44
Farrell, Plevin, Turner, Jones, O’hare, Kammen (bib1) 2006; 311
Di Blasi (bib22) 2008; 34
Chareonlimkun, Champreda, Shotipruk, Laosiripojana (bib28) 2010; 101
Shen, Zhang (bib8) 2003; 82
Li, Xu, Yang, Zhou, Xu (bib21) 2019; 201
Xue, Heindel, Fox (bib14) 2011; 66
Xiu, Shahbazi (bib25) 2012; 16
Papadikis, Gu, Bridgwater (bib15) 2009; 64
P. Fransham, C. Leggett, and H. Leggett, "Compact Fast Pyrolysis System for Conversion of Carbonaceous Materials to Liquid, Solid and Gas," ed: Google Patents, 2017.
Papari, Hawboldt (bib11) 2015; 52
Fernandez-Akarregi, Makibar, Lopez, Amutio, Olazar (bib10) 2013; 112
Ostermeier, Fischer, Fendt, DeYoung, Spliethoff (bib19) 2019/11/01/2019; 255
Robinson (bib2) 2017
Kim, Oh, Hwang, Moon, Choi (bib3) 2014; 76
Scott, Majerski, Piskorz, Radlein (bib6) 1999; 51
Zhang, Chang, Wang, Xu (bib26) 2007; 48
Pasangulapati, Ramachandriya, Kumar, Wilkins, Jones, Huhnke (bib29) 2012; 114
Fox (bib23) 2006; 31
10.1016/j.renene.2020.03.134_bib7
Papadikis (10.1016/j.renene.2020.03.134_bib15) 2009; 64
Fernandez-Akarregi (10.1016/j.renene.2020.03.134_bib10) 2013; 112
Lathouwers (10.1016/j.renene.2020.03.134_bib18) 2001; 15
Mohan (10.1016/j.renene.2020.03.134_bib5) 2006; 20
Kersten (10.1016/j.renene.2020.03.134_bib24) 2005; 44
Di Blasi (10.1016/j.renene.2020.03.134_bib22) 2008; 34
Robinson (10.1016/j.renene.2020.03.134_bib2) 2017
Khezri (10.1016/j.renene.2020.03.134_bib20) 2019; 7
Shen (10.1016/j.renene.2020.03.134_bib8) 2003; 82
Neogi (10.1016/j.renene.2020.03.134_bib9) 1986; 32
Shaddix (10.1016/j.renene.2020.03.134_bib12) 1999; vol. 71
Farrell (10.1016/j.renene.2020.03.134_bib1) 2006; 311
Papari (10.1016/j.renene.2020.03.134_bib11) 2015; 52
Pasangulapati (10.1016/j.renene.2020.03.134_bib29) 2012; 114
Xue (10.1016/j.renene.2020.03.134_bib14) 2011; 66
Xiong (10.1016/j.renene.2020.03.134_bib30) 2016; 164
Lathouwers (10.1016/j.renene.2020.03.134_bib17) 2001; 27
Miller (10.1016/j.renene.2020.03.134_bib31) 1997; 126
Chareonlimkun (10.1016/j.renene.2020.03.134_bib28) 2010; 101
Zhou (10.1016/j.renene.2020.03.134_bib27) 2017; 7
Bridgwater (10.1016/j.renene.2020.03.134_bib13) 1995; 74
Xiu (10.1016/j.renene.2020.03.134_bib25) 2012; 16
Li (10.1016/j.renene.2020.03.134_bib4) 2017; 161
Kim (10.1016/j.renene.2020.03.134_bib3) 2014; 76
Scott (10.1016/j.renene.2020.03.134_bib6) 1999; 51
Zhang (10.1016/j.renene.2020.03.134_bib26) 2007; 48
Fox (10.1016/j.renene.2020.03.134_bib23) 2006; 31
Ostermeier (10.1016/j.renene.2020.03.134_bib19) 2019; 255
Li (10.1016/j.renene.2020.03.134_bib21) 2019; 201
Authier (10.1016/j.renene.2020.03.134_bib16) 2009; 48
References_xml – volume: 311
  start-page: 506
  year: 2006
  end-page: 508
  ident: bib1
  article-title: Ethanol can contribute to energy and environmental goals
  publication-title: Science
– reference: P. Fransham, C. Leggett, and H. Leggett, "Compact Fast Pyrolysis System for Conversion of Carbonaceous Materials to Liquid, Solid and Gas," ed: Google Patents, 2017.
– volume: 76
  start-page: 284
  year: 2014
  end-page: 291
  ident: bib3
  article-title: Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis
  publication-title: Energy
– volume: 15
  start-page: 1247
  year: 2001
  end-page: 1262
  ident: bib18
  article-title: Yield optimization and scaling of fluidized beds for tar production from biomass
  publication-title: Energy Fuels
– volume: 52
  start-page: 1580
  year: 2015
  end-page: 1595
  ident: bib11
  article-title: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 74
  start-page: 631
  year: 1995
  end-page: 653
  ident: bib13
  article-title: The technical and economic feasibility of biomass gasification for power generation
  publication-title: Fuel
– year: 2017
  ident: bib2
  article-title: Generation and Characterisation of Graphite and Bio-Oil from the Pyrolysis of Woody Biomass
– volume: 161
  start-page: 182
  year: 2017
  end-page: 192
  ident: bib4
  article-title: Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis
  publication-title: Fuel Process. Technol.
– volume: 16
  start-page: 4406
  year: 2012
  end-page: 4414
  ident: bib25
  article-title: Bio-oil production and upgrading research: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 101
  start-page: 4179
  year: 2010
  end-page: 4186
  ident: bib28
  article-title: Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition
  publication-title: Bioresour. Technol.
– volume: 114
  start-page: 663
  year: 2012
  end-page: 669
  ident: bib29
  article-title: Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 524
  year: 2019
  ident: bib20
  article-title: Computational fluid dynamics simulation of gas–solid hydrodynamics in a bubbling fluidized-bed reactor: effects of air distributor, viscous and drag models
  publication-title: Processes
– volume: 126
  start-page: 97
  year: 1997
  end-page: 137
  ident: bib31
  article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics
  publication-title: Combust. Sci. Technol.
– volume: 34
  start-page: 47
  year: 2008
  end-page: 90
  ident: bib22
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog. Energy Combust. Sci.
– volume: 27
  start-page: 2155
  year: 2001
  end-page: 2187
  ident: bib17
  article-title: Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed
  publication-title: Int. J. Multiphas. Flow
– volume: 112
  start-page: 48
  year: 2013
  end-page: 56
  ident: bib10
  article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis
  publication-title: Fuel Process. Technol.
– volume: 48
  start-page: 4796
  year: 2009
  end-page: 4809
  ident: bib16
  article-title: Wood fast pyrolysis: comparison of Lagrangian and Eulerian modeling approaches with experimental measurements
  publication-title: Ind. Eng. Chem. Res.
– volume: vol. 71
  year: 1999
  ident: bib12
  article-title: Combustion Properties of Biomass Flash Pyrolysis Oils
– volume: 32
  start-page: 17
  year: 1986
  end-page: 28
  ident: bib9
  article-title: Study of coal gasification in an experimental fluidized bed reactor
  publication-title: AIChE J.
– volume: 255
  start-page: 115790
  year: 2019/11/01/2019
  ident: bib19
  article-title: Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor
  publication-title: Fuel
– volume: 20
  start-page: 848
  year: 2006
  end-page: 889
  ident: bib5
  article-title: Pyrolysis of wood/biomass for bio-oil: a critical review
  publication-title: Energy Fuels
– volume: 66
  start-page: 2440
  year: 2011
  end-page: 2452
  ident: bib14
  article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors
  publication-title: Chem. Eng. Sci.
– volume: 31
  start-page: 231
  year: 2006
  end-page: 305
  ident: bib23
  article-title: CFD models for analysis and design of chemical reactors
  publication-title: Adv. Chem. Eng.
– volume: 48
  start-page: 87
  year: 2007
  end-page: 92
  ident: bib26
  article-title: Review of biomass pyrolysis oil properties and upgrading research
  publication-title: Energy Convers. Manag.
– volume: 82
  start-page: 465
  year: 2003
  end-page: 472
  ident: bib8
  article-title: An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed☆
  publication-title: Fuel
– volume: 164
  start-page: 11
  year: 2016
  end-page: 17
  ident: bib30
  article-title: Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis
  publication-title: Fuel
– volume: 201
  start-page: 112143
  year: 2019
  ident: bib21
  article-title: CFD simulation of a fluidized bed reactor for biomass chemical looping gasification with continuous feedstock
  publication-title: Energy Convers. Manag.
– volume: 44
  start-page: 8773
  year: 2005
  end-page: 8785
  ident: bib24
  article-title: Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 12764
  year: 2017
  end-page: 12774
  ident: bib27
  article-title: Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models
  publication-title: RSC Adv.
– volume: 64
  start-page: 1036
  year: 2009
  end-page: 1045
  ident: bib15
  article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: heat, momentum and mass transport in bubbling fluidised beds
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 23
  year: 1999
  end-page: 37
  ident: bib6
  article-title: A second look at fast pyrolysis of biomass—the RTI process
  publication-title: J. Anal. Appl. Pyrol.
– volume: 31
  start-page: 231
  year: 2006
  ident: 10.1016/j.renene.2020.03.134_bib23
  article-title: CFD models for analysis and design of chemical reactors
  publication-title: Adv. Chem. Eng.
  doi: 10.1016/S0065-2377(06)31004-6
– volume: 161
  start-page: 182
  year: 2017
  ident: 10.1016/j.renene.2020.03.134_bib4
  article-title: Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.12.014
– volume: 101
  start-page: 4179
  year: 2010
  ident: 10.1016/j.renene.2020.03.134_bib28
  article-title: Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.037
– volume: 126
  start-page: 97
  year: 1997
  ident: 10.1016/j.renene.2020.03.134_bib31
  article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209708935670
– volume: 34
  start-page: 47
  year: 2008
  ident: 10.1016/j.renene.2020.03.134_bib22
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2006.12.001
– volume: 48
  start-page: 4796
  year: 2009
  ident: 10.1016/j.renene.2020.03.134_bib16
  article-title: Wood fast pyrolysis: comparison of Lagrangian and Eulerian modeling approaches with experimental measurements
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801854c
– volume: 51
  start-page: 23
  year: 1999
  ident: 10.1016/j.renene.2020.03.134_bib6
  article-title: A second look at fast pyrolysis of biomass—the RTI process
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/S0165-2370(99)00006-6
– volume: 114
  start-page: 663
  year: 2012
  ident: 10.1016/j.renene.2020.03.134_bib29
  article-title: Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.03.036
– ident: 10.1016/j.renene.2020.03.134_bib7
– volume: 32
  start-page: 17
  year: 1986
  ident: 10.1016/j.renene.2020.03.134_bib9
  article-title: Study of coal gasification in an experimental fluidized bed reactor
  publication-title: AIChE J.
  doi: 10.1002/aic.690320104
– volume: 44
  start-page: 8773
  year: 2005
  ident: 10.1016/j.renene.2020.03.134_bib24
  article-title: Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0504856
– volume: 27
  start-page: 2155
  year: 2001
  ident: 10.1016/j.renene.2020.03.134_bib17
  article-title: Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/S0301-9322(01)00059-3
– year: 2017
  ident: 10.1016/j.renene.2020.03.134_bib2
– volume: 74
  start-page: 631
  year: 1995
  ident: 10.1016/j.renene.2020.03.134_bib13
  article-title: The technical and economic feasibility of biomass gasification for power generation
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)00001-L
– volume: 20
  start-page: 848
  year: 2006
  ident: 10.1016/j.renene.2020.03.134_bib5
  article-title: Pyrolysis of wood/biomass for bio-oil: a critical review
  publication-title: Energy Fuels
  doi: 10.1021/ef0502397
– volume: 15
  start-page: 1247
  year: 2001
  ident: 10.1016/j.renene.2020.03.134_bib18
  article-title: Yield optimization and scaling of fluidized beds for tar production from biomass
  publication-title: Energy Fuels
  doi: 10.1021/ef010053h
– volume: 7
  start-page: 524
  year: 2019
  ident: 10.1016/j.renene.2020.03.134_bib20
  article-title: Computational fluid dynamics simulation of gas–solid hydrodynamics in a bubbling fluidized-bed reactor: effects of air distributor, viscous and drag models
  publication-title: Processes
  doi: 10.3390/pr7080524
– volume: 52
  start-page: 1580
  year: 2015
  ident: 10.1016/j.renene.2020.03.134_bib11
  article-title: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.191
– volume: 201
  start-page: 112143
  year: 2019
  ident: 10.1016/j.renene.2020.03.134_bib21
  article-title: CFD simulation of a fluidized bed reactor for biomass chemical looping gasification with continuous feedstock
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112143
– volume: 255
  start-page: 115790
  year: 2019
  ident: 10.1016/j.renene.2020.03.134_bib19
  article-title: Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115790
– volume: 164
  start-page: 11
  year: 2016
  ident: 10.1016/j.renene.2020.03.134_bib30
  article-title: Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.09.074
– volume: 76
  start-page: 284
  year: 2014
  ident: 10.1016/j.renene.2020.03.134_bib3
  article-title: Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.010
– volume: 112
  start-page: 48
  year: 2013
  ident: 10.1016/j.renene.2020.03.134_bib10
  article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2013.02.022
– volume: 82
  start-page: 465
  year: 2003
  ident: 10.1016/j.renene.2020.03.134_bib8
  article-title: An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed☆
  publication-title: Fuel
  doi: 10.1016/S0016-2361(02)00294-6
– volume: 64
  start-page: 1036
  year: 2009
  ident: 10.1016/j.renene.2020.03.134_bib15
  article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: heat, momentum and mass transport in bubbling fluidised beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.11.007
– volume: 7
  start-page: 12764
  year: 2017
  ident: 10.1016/j.renene.2020.03.134_bib27
  article-title: Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28615A
– volume: 311
  start-page: 506
  year: 2006
  ident: 10.1016/j.renene.2020.03.134_bib1
  article-title: Ethanol can contribute to energy and environmental goals
  publication-title: Science
  doi: 10.1126/science.1121416
– volume: 16
  start-page: 4406
  year: 2012
  ident: 10.1016/j.renene.2020.03.134_bib25
  article-title: Bio-oil production and upgrading research: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.04.028
– volume: vol. 71
  year: 1999
  ident: 10.1016/j.renene.2020.03.134_bib12
– volume: 48
  start-page: 87
  year: 2007
  ident: 10.1016/j.renene.2020.03.134_bib26
  article-title: Review of biomass pyrolysis oil properties and upgrading research
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2006.05.010
– volume: 66
  start-page: 2440
  year: 2011
  ident: 10.1016/j.renene.2020.03.134_bib14
  article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.03.010
SSID ssj0015874
Score 2.452379
Snippet In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 248
SubjectTerms Biofuel
Biomass
carbon dioxide
carbon monoxide
Computational fluid dynamics
Fast pyrolysis
Fluidized bed
fluidized beds
Hydrodynamics
hydrogen
kinetics
mathematical models
methane
pyrolysis
reaction kinetics
renewable energy sources
sand
temperature
Title Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics
URI https://dx.doi.org/10.1016/j.renene.2020.03.134
https://www.proquest.com/docview/2431845046
Volume 155
WOSCitedRecordID wos000537825800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE8xvmQkblVQYidOfJymIeBQARuit8j1x8jUpVXTjG1_Pc-xnaZMaIDEoVFkx6nl98vz87Pf7yH0htisb4nKI0WljlLBWCQSOotkwoXiTCfSuGQT-WRSTKf802hkQizM-Tyv6-Ligi__q6ihDIRtQ2f_Qtz9S6EA7kHocAWxw_WPBD9p3SbMfNxUZ-3gqJuZt5WqrqzJCT8jmvV4ebla9JwkNhIfTOk-dY_sEj4EZ2HXeqxcAvtmaNN-AXX5o4vA0l0gYe-0cedwj77r-mT8GWB4svHeOw3zTVfRga0e-h7I5uSbd4iFoJjNCaTOs8jiCFZZ7jnt9GqRW7KDYlvxZtlQdTrGTT8LE0c3fk3BO1_D6VvL91lbmlMSW5LaxHtEt6mzj2xXbE9ItwHM6C20S_KMgz7c3f9wOP3Y7zdlhePrDl0PQZbdScDr__U7I-aX6byzUY7vo3t-cYH3HSgeoJGuH6K7A8rJR0j38MADeOCFwT08MMADW3jgHh623sMDe3jgLXi41jjA4zH6-u7w-OB95FNtRJJSvo5YPJPxTMeFYrmWdFYYZVJC4I6m3KRCFjJOhbDOAZGnnBhY5hBbztNZkquYPkE79aLWTxHWnIFWMArWtiIlKrUfPONUUAY1MC_vIRrGrpSeh96mQ5mX4cDhaelGvLQjXsa0hBHfQ1Hfaul4WG54Pg9iKb0t6WzEEpB0Q8vXQYolqFq7fyZqvWibkoCxXaQZIOnZP7_9Obqz-ZBeoJ31qtUv0W15vq6a1SsPy58fb6rp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+fluidized+bed+fast+pyrolysis+of+biomass+through+computational+fluid+dynamics&rft.jtitle=Renewable+energy&rft.au=Sia%2C+Sheng+Qiang&rft.au=Wang%2C+Wei-Cheng&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=155&rft.spage=248&rft.epage=256&rft_id=info:doi/10.1016%2Fj.renene.2020.03.134&rft.externalDocID=S0960148120304663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon