Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics
In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous an...
Uloženo v:
| Vydáno v: | Renewable energy Ročník 155; s. 248 - 256 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2020
|
| Témata: | |
| ISSN: | 0960-1481, 1879-0682 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H2 are mostly at the lower part of the reactor, CH4 is in the freeboard region and CO2 is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis.
•The hydrodynamics and chemical kinetics for fluidized bed pyrolysis was simulated.•The transitions of fluidization for gas, biomass and sand were numerically observed.•The simulated results well-agreed with the experimental ones for product yields.•The distributions of CO, H2, CH4 and CO2 in the reactor were also exhibited. |
|---|---|
| AbstractList | In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H2 are mostly at the lower part of the reactor, CH4 is in the freeboard region and CO2 is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis.
•The hydrodynamics and chemical kinetics for fluidized bed pyrolysis was simulated.•The transitions of fluidization for gas, biomass and sand were numerically observed.•The simulated results well-agreed with the experimental ones for product yields.•The distributions of CO, H2, CH4 and CO2 in the reactor were also exhibited. In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast pyrolysis. Based on the Euler-Euler multiphase framework, standard K-ε model and Finite-Rate/Eddy-Dissipation model were selected for the viscous and the species transport model, respectively. Syamlal O’brien model and Arrhenius kinetic model were chosen as the drag and reaction kinetics model, respectively. The volume fractions as well as the temperature distributions of the fluidizing gas, biomass and fluidizing sand at the fluidization velocity of 0.6 m/s were numerically observed. The simulation of the reaction temperature influence on product yield agreed well with the lab-scale experimental results. The distributions of the gas products show that CO and H₂ are mostly at the lower part of the reactor, CH₄ is in the freeboard region and CO₂ is at both the reaction and freeboard zone. The proposed CFD model was expected to make contributions for improving the internal process and reactor optimization for biomass fluidized bed fast pyrolysis. |
| Author | Sia, Sheng Qiang Wang, Wei-Cheng |
| Author_xml | – sequence: 1 givenname: Sheng Qiang surname: Sia fullname: Sia, Sheng Qiang – sequence: 2 givenname: Wei-Cheng surname: Wang fullname: Wang, Wei-Cheng email: wilsonwang@mail.ncku.edu.tw |
| BookMark | eNqFkEtL9DAUhoMoOF7-gYsu3bSeXKZNXQgf4g1EN7oOaXKiGdpmTFph_PV2pq5cfBJCDjnneTk8R2S_Dz0SckahoEDLi1URsZ9OwYBBAbygXOyRBZVVnUMp2T5ZQF1CToWkh-QopRUAXcpKLAg-jR1Gb3SbJd-NrR586FMWXOba0Vv_hTZrput0GrL1JoZ2k_yu3_jQ6ZSy4T2G8e09M6Fbj8OOn8J2dGY3ve68SSfkwOk24enPe0xeb29eru_zx-e7h-t_j7nhvB7yEhoDDYK0ZYWGN9JZJxibKi5qJ7SRBoTWjLGlrkTNnKSWbf9r0dDKAj8m53PuOoaPEdOgOp8Mtq3uMYxJMcGpFEsQ5TR6OY-aGFKK6JTx8_ZD1L5VFNTWrVqp2a3aulXA1eR2gsUveB19p-PmL-xqxnBy8OkxqmQ89gatj2gGZYP_f8A3eaqaoA |
| CitedBy_id | crossref_primary_10_1016_j_biteb_2022_101221 crossref_primary_10_1016_j_jaap_2022_105433 crossref_primary_10_1016_j_powtec_2021_04_039 crossref_primary_10_1016_j_renene_2021_09_038 crossref_primary_10_1016_j_jaap_2023_106163 crossref_primary_10_1016_j_fuel_2022_127266 crossref_primary_10_1007_s13399_021_01693_6 crossref_primary_10_3390_su16219506 crossref_primary_10_1016_j_powtec_2021_04_094 crossref_primary_10_1134_S1027451023060101 crossref_primary_10_1063_5_0276064 crossref_primary_10_3390_fluids9120301 crossref_primary_10_3390_ma15124215 crossref_primary_10_3390_su16031169 crossref_primary_10_1016_j_fuel_2024_131487 crossref_primary_10_1016_j_jclepro_2023_136774 crossref_primary_10_1016_j_jaap_2024_106477 crossref_primary_10_3390_en13246605 crossref_primary_10_1016_j_combustflame_2024_113798 crossref_primary_10_1016_j_jclepro_2021_129613 crossref_primary_10_3390_su162210119 crossref_primary_10_1016_j_renene_2024_120175 crossref_primary_10_1016_j_pecs_2021_100930 crossref_primary_10_1016_j_ces_2021_117131 crossref_primary_10_1016_j_cjche_2025_01_007 crossref_primary_10_1016_j_cej_2023_147791 |
| Cites_doi | 10.1016/S0065-2377(06)31004-6 10.1016/j.fuproc.2016.12.014 10.1016/j.biortech.2010.01.037 10.1080/00102209708935670 10.1016/j.pecs.2006.12.001 10.1021/ie801854c 10.1016/S0165-2370(99)00006-6 10.1016/j.biortech.2012.03.036 10.1002/aic.690320104 10.1021/ie0504856 10.1016/S0301-9322(01)00059-3 10.1016/0016-2361(95)00001-L 10.1021/ef0502397 10.1021/ef010053h 10.3390/pr7080524 10.1016/j.rser.2015.07.191 10.1016/j.enconman.2019.112143 10.1016/j.fuel.2019.115790 10.1016/j.fuel.2015.09.074 10.1016/j.energy.2014.08.010 10.1016/j.fuproc.2013.02.022 10.1016/S0016-2361(02)00294-6 10.1016/j.ces.2008.11.007 10.1039/C6RA28615A 10.1126/science.1121416 10.1016/j.rser.2012.04.028 10.1016/j.enconman.2006.05.010 10.1016/j.ces.2011.03.010 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2020.03.134 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 256 |
| ExternalDocumentID | 10_1016_j_renene_2020_03_134 S0960148120304663 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-60bc0be08d67ec3b8fdf422c3b349f4ac8c04aa2225a7492f81d2f4ac94b17d03 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537825800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 |
| IngestDate | Sun Sep 28 00:52:04 EDT 2025 Tue Nov 18 21:58:11 EST 2025 Sat Nov 29 07:10:56 EST 2025 Fri Feb 23 02:47:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrodynamics Biofuel Biomass Computational fluid dynamics Fast pyrolysis Fluidized bed |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-60bc0be08d67ec3b8fdf422c3b349f4ac8c04aa2225a7492f81d2f4ac94b17d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2431845046 |
| PQPubID | 24069 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2431845046 crossref_citationtrail_10_1016_j_renene_2020_03_134 crossref_primary_10_1016_j_renene_2020_03_134 elsevier_sciencedirect_doi_10_1016_j_renene_2020_03_134 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 20200801 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xiong, Xu, Ramirez, Pannala, Daw (bib30) 2016; 164 Authier, Ferrer, Mauviel, Khalfi, Lédé (bib16) 2009; 48 Miller, Bellan (bib31) 1997; 126 Li, Li, Yi, Fu, Li, Bai (bib4) 2017; 161 Khezri, Wan Ab Karim Ghani, Masoudi Soltani, Awang Biak, Yunus, Silas (bib20) 2019; 7 Bridgwater (bib13) 1995; 74 Lathouwers, Bellan (bib18) 2001; 15 Mohan, Pittman, Steele (bib5) 2006; 20 Neogi, Chang, Walawender, Fan (bib9) 1986; 32 Shaddix, Hardesty (bib12) 1999; vol. 71 Lathouwers, Bellan (bib17) 2001; 27 Zhou, Zhang, Bai, Shi, Li, Wang (bib27) 2017; 7 Kersten, Wang, Prins, van Swaaij (bib24) 2005; 44 Farrell, Plevin, Turner, Jones, O’hare, Kammen (bib1) 2006; 311 Di Blasi (bib22) 2008; 34 Chareonlimkun, Champreda, Shotipruk, Laosiripojana (bib28) 2010; 101 Shen, Zhang (bib8) 2003; 82 Li, Xu, Yang, Zhou, Xu (bib21) 2019; 201 Xue, Heindel, Fox (bib14) 2011; 66 Xiu, Shahbazi (bib25) 2012; 16 Papadikis, Gu, Bridgwater (bib15) 2009; 64 P. Fransham, C. Leggett, and H. Leggett, "Compact Fast Pyrolysis System for Conversion of Carbonaceous Materials to Liquid, Solid and Gas," ed: Google Patents, 2017. Papari, Hawboldt (bib11) 2015; 52 Fernandez-Akarregi, Makibar, Lopez, Amutio, Olazar (bib10) 2013; 112 Ostermeier, Fischer, Fendt, DeYoung, Spliethoff (bib19) 2019/11/01/2019; 255 Robinson (bib2) 2017 Kim, Oh, Hwang, Moon, Choi (bib3) 2014; 76 Scott, Majerski, Piskorz, Radlein (bib6) 1999; 51 Zhang, Chang, Wang, Xu (bib26) 2007; 48 Pasangulapati, Ramachandriya, Kumar, Wilkins, Jones, Huhnke (bib29) 2012; 114 Fox (bib23) 2006; 31 10.1016/j.renene.2020.03.134_bib7 Papadikis (10.1016/j.renene.2020.03.134_bib15) 2009; 64 Fernandez-Akarregi (10.1016/j.renene.2020.03.134_bib10) 2013; 112 Lathouwers (10.1016/j.renene.2020.03.134_bib18) 2001; 15 Mohan (10.1016/j.renene.2020.03.134_bib5) 2006; 20 Kersten (10.1016/j.renene.2020.03.134_bib24) 2005; 44 Di Blasi (10.1016/j.renene.2020.03.134_bib22) 2008; 34 Robinson (10.1016/j.renene.2020.03.134_bib2) 2017 Khezri (10.1016/j.renene.2020.03.134_bib20) 2019; 7 Shen (10.1016/j.renene.2020.03.134_bib8) 2003; 82 Neogi (10.1016/j.renene.2020.03.134_bib9) 1986; 32 Shaddix (10.1016/j.renene.2020.03.134_bib12) 1999; vol. 71 Farrell (10.1016/j.renene.2020.03.134_bib1) 2006; 311 Papari (10.1016/j.renene.2020.03.134_bib11) 2015; 52 Pasangulapati (10.1016/j.renene.2020.03.134_bib29) 2012; 114 Xue (10.1016/j.renene.2020.03.134_bib14) 2011; 66 Xiong (10.1016/j.renene.2020.03.134_bib30) 2016; 164 Lathouwers (10.1016/j.renene.2020.03.134_bib17) 2001; 27 Miller (10.1016/j.renene.2020.03.134_bib31) 1997; 126 Chareonlimkun (10.1016/j.renene.2020.03.134_bib28) 2010; 101 Zhou (10.1016/j.renene.2020.03.134_bib27) 2017; 7 Bridgwater (10.1016/j.renene.2020.03.134_bib13) 1995; 74 Xiu (10.1016/j.renene.2020.03.134_bib25) 2012; 16 Li (10.1016/j.renene.2020.03.134_bib4) 2017; 161 Kim (10.1016/j.renene.2020.03.134_bib3) 2014; 76 Scott (10.1016/j.renene.2020.03.134_bib6) 1999; 51 Zhang (10.1016/j.renene.2020.03.134_bib26) 2007; 48 Fox (10.1016/j.renene.2020.03.134_bib23) 2006; 31 Ostermeier (10.1016/j.renene.2020.03.134_bib19) 2019; 255 Li (10.1016/j.renene.2020.03.134_bib21) 2019; 201 Authier (10.1016/j.renene.2020.03.134_bib16) 2009; 48 |
| References_xml | – volume: 311 start-page: 506 year: 2006 end-page: 508 ident: bib1 article-title: Ethanol can contribute to energy and environmental goals publication-title: Science – reference: P. Fransham, C. Leggett, and H. Leggett, "Compact Fast Pyrolysis System for Conversion of Carbonaceous Materials to Liquid, Solid and Gas," ed: Google Patents, 2017. – volume: 76 start-page: 284 year: 2014 end-page: 291 ident: bib3 article-title: Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis publication-title: Energy – volume: 15 start-page: 1247 year: 2001 end-page: 1262 ident: bib18 article-title: Yield optimization and scaling of fluidized beds for tar production from biomass publication-title: Energy Fuels – volume: 52 start-page: 1580 year: 2015 end-page: 1595 ident: bib11 article-title: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models publication-title: Renew. Sustain. Energy Rev. – volume: 74 start-page: 631 year: 1995 end-page: 653 ident: bib13 article-title: The technical and economic feasibility of biomass gasification for power generation publication-title: Fuel – year: 2017 ident: bib2 article-title: Generation and Characterisation of Graphite and Bio-Oil from the Pyrolysis of Woody Biomass – volume: 161 start-page: 182 year: 2017 end-page: 192 ident: bib4 article-title: Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis publication-title: Fuel Process. Technol. – volume: 16 start-page: 4406 year: 2012 end-page: 4414 ident: bib25 article-title: Bio-oil production and upgrading research: a review publication-title: Renew. Sustain. Energy Rev. – volume: 101 start-page: 4179 year: 2010 end-page: 4186 ident: bib28 article-title: Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition publication-title: Bioresour. Technol. – volume: 114 start-page: 663 year: 2012 end-page: 669 ident: bib29 article-title: Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass publication-title: Bioresour. Technol. – volume: 7 start-page: 524 year: 2019 ident: bib20 article-title: Computational fluid dynamics simulation of gas–solid hydrodynamics in a bubbling fluidized-bed reactor: effects of air distributor, viscous and drag models publication-title: Processes – volume: 126 start-page: 97 year: 1997 end-page: 137 ident: bib31 article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics publication-title: Combust. Sci. Technol. – volume: 34 start-page: 47 year: 2008 end-page: 90 ident: bib22 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog. Energy Combust. Sci. – volume: 27 start-page: 2155 year: 2001 end-page: 2187 ident: bib17 article-title: Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed publication-title: Int. J. Multiphas. Flow – volume: 112 start-page: 48 year: 2013 end-page: 56 ident: bib10 article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis publication-title: Fuel Process. Technol. – volume: 48 start-page: 4796 year: 2009 end-page: 4809 ident: bib16 article-title: Wood fast pyrolysis: comparison of Lagrangian and Eulerian modeling approaches with experimental measurements publication-title: Ind. Eng. Chem. Res. – volume: vol. 71 year: 1999 ident: bib12 article-title: Combustion Properties of Biomass Flash Pyrolysis Oils – volume: 32 start-page: 17 year: 1986 end-page: 28 ident: bib9 article-title: Study of coal gasification in an experimental fluidized bed reactor publication-title: AIChE J. – volume: 255 start-page: 115790 year: 2019/11/01/2019 ident: bib19 article-title: Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor publication-title: Fuel – volume: 20 start-page: 848 year: 2006 end-page: 889 ident: bib5 article-title: Pyrolysis of wood/biomass for bio-oil: a critical review publication-title: Energy Fuels – volume: 66 start-page: 2440 year: 2011 end-page: 2452 ident: bib14 article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem. Eng. Sci. – volume: 31 start-page: 231 year: 2006 end-page: 305 ident: bib23 article-title: CFD models for analysis and design of chemical reactors publication-title: Adv. Chem. Eng. – volume: 48 start-page: 87 year: 2007 end-page: 92 ident: bib26 article-title: Review of biomass pyrolysis oil properties and upgrading research publication-title: Energy Convers. Manag. – volume: 82 start-page: 465 year: 2003 end-page: 472 ident: bib8 article-title: An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed☆ publication-title: Fuel – volume: 164 start-page: 11 year: 2016 end-page: 17 ident: bib30 article-title: Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis publication-title: Fuel – volume: 201 start-page: 112143 year: 2019 ident: bib21 article-title: CFD simulation of a fluidized bed reactor for biomass chemical looping gasification with continuous feedstock publication-title: Energy Convers. Manag. – volume: 44 start-page: 8773 year: 2005 end-page: 8785 ident: bib24 article-title: Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 12764 year: 2017 end-page: 12774 ident: bib27 article-title: Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models publication-title: RSC Adv. – volume: 64 start-page: 1036 year: 2009 end-page: 1045 ident: bib15 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: heat, momentum and mass transport in bubbling fluidised beds publication-title: Chem. Eng. Sci. – volume: 51 start-page: 23 year: 1999 end-page: 37 ident: bib6 article-title: A second look at fast pyrolysis of biomass—the RTI process publication-title: J. Anal. Appl. Pyrol. – volume: 31 start-page: 231 year: 2006 ident: 10.1016/j.renene.2020.03.134_bib23 article-title: CFD models for analysis and design of chemical reactors publication-title: Adv. Chem. Eng. doi: 10.1016/S0065-2377(06)31004-6 – volume: 161 start-page: 182 year: 2017 ident: 10.1016/j.renene.2020.03.134_bib4 article-title: Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.12.014 – volume: 101 start-page: 4179 year: 2010 ident: 10.1016/j.renene.2020.03.134_bib28 article-title: Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.037 – volume: 126 start-page: 97 year: 1997 ident: 10.1016/j.renene.2020.03.134_bib31 article-title: A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics publication-title: Combust. Sci. Technol. doi: 10.1080/00102209708935670 – volume: 34 start-page: 47 year: 2008 ident: 10.1016/j.renene.2020.03.134_bib22 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2006.12.001 – volume: 48 start-page: 4796 year: 2009 ident: 10.1016/j.renene.2020.03.134_bib16 article-title: Wood fast pyrolysis: comparison of Lagrangian and Eulerian modeling approaches with experimental measurements publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801854c – volume: 51 start-page: 23 year: 1999 ident: 10.1016/j.renene.2020.03.134_bib6 article-title: A second look at fast pyrolysis of biomass—the RTI process publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/S0165-2370(99)00006-6 – volume: 114 start-page: 663 year: 2012 ident: 10.1016/j.renene.2020.03.134_bib29 article-title: Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.03.036 – ident: 10.1016/j.renene.2020.03.134_bib7 – volume: 32 start-page: 17 year: 1986 ident: 10.1016/j.renene.2020.03.134_bib9 article-title: Study of coal gasification in an experimental fluidized bed reactor publication-title: AIChE J. doi: 10.1002/aic.690320104 – volume: 44 start-page: 8773 year: 2005 ident: 10.1016/j.renene.2020.03.134_bib24 article-title: Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0504856 – volume: 27 start-page: 2155 year: 2001 ident: 10.1016/j.renene.2020.03.134_bib17 article-title: Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed publication-title: Int. J. Multiphas. Flow doi: 10.1016/S0301-9322(01)00059-3 – year: 2017 ident: 10.1016/j.renene.2020.03.134_bib2 – volume: 74 start-page: 631 year: 1995 ident: 10.1016/j.renene.2020.03.134_bib13 article-title: The technical and economic feasibility of biomass gasification for power generation publication-title: Fuel doi: 10.1016/0016-2361(95)00001-L – volume: 20 start-page: 848 year: 2006 ident: 10.1016/j.renene.2020.03.134_bib5 article-title: Pyrolysis of wood/biomass for bio-oil: a critical review publication-title: Energy Fuels doi: 10.1021/ef0502397 – volume: 15 start-page: 1247 year: 2001 ident: 10.1016/j.renene.2020.03.134_bib18 article-title: Yield optimization and scaling of fluidized beds for tar production from biomass publication-title: Energy Fuels doi: 10.1021/ef010053h – volume: 7 start-page: 524 year: 2019 ident: 10.1016/j.renene.2020.03.134_bib20 article-title: Computational fluid dynamics simulation of gas–solid hydrodynamics in a bubbling fluidized-bed reactor: effects of air distributor, viscous and drag models publication-title: Processes doi: 10.3390/pr7080524 – volume: 52 start-page: 1580 year: 2015 ident: 10.1016/j.renene.2020.03.134_bib11 article-title: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.07.191 – volume: 201 start-page: 112143 year: 2019 ident: 10.1016/j.renene.2020.03.134_bib21 article-title: CFD simulation of a fluidized bed reactor for biomass chemical looping gasification with continuous feedstock publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112143 – volume: 255 start-page: 115790 year: 2019 ident: 10.1016/j.renene.2020.03.134_bib19 article-title: Coarse-grained CFD-DEM simulation of biomass gasification in a fluidized bed reactor publication-title: Fuel doi: 10.1016/j.fuel.2019.115790 – volume: 164 start-page: 11 year: 2016 ident: 10.1016/j.renene.2020.03.134_bib30 article-title: Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2015.09.074 – volume: 76 start-page: 284 year: 2014 ident: 10.1016/j.renene.2020.03.134_bib3 article-title: Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis publication-title: Energy doi: 10.1016/j.energy.2014.08.010 – volume: 112 start-page: 48 year: 2013 ident: 10.1016/j.renene.2020.03.134_bib10 article-title: Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2013.02.022 – volume: 82 start-page: 465 year: 2003 ident: 10.1016/j.renene.2020.03.134_bib8 article-title: An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed☆ publication-title: Fuel doi: 10.1016/S0016-2361(02)00294-6 – volume: 64 start-page: 1036 year: 2009 ident: 10.1016/j.renene.2020.03.134_bib15 article-title: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: heat, momentum and mass transport in bubbling fluidised beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.11.007 – volume: 7 start-page: 12764 year: 2017 ident: 10.1016/j.renene.2020.03.134_bib27 article-title: Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models publication-title: RSC Adv. doi: 10.1039/C6RA28615A – volume: 311 start-page: 506 year: 2006 ident: 10.1016/j.renene.2020.03.134_bib1 article-title: Ethanol can contribute to energy and environmental goals publication-title: Science doi: 10.1126/science.1121416 – volume: 16 start-page: 4406 year: 2012 ident: 10.1016/j.renene.2020.03.134_bib25 article-title: Bio-oil production and upgrading research: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.04.028 – volume: vol. 71 year: 1999 ident: 10.1016/j.renene.2020.03.134_bib12 – volume: 48 start-page: 87 year: 2007 ident: 10.1016/j.renene.2020.03.134_bib26 article-title: Review of biomass pyrolysis oil properties and upgrading research publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2006.05.010 – volume: 66 start-page: 2440 year: 2011 ident: 10.1016/j.renene.2020.03.134_bib14 article-title: A CFD model for biomass fast pyrolysis in fluidized-bed reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.03.010 |
| SSID | ssj0015874 |
| Score | 2.452379 |
| Snippet | In this study, computational fluid dynamics (CFD) was applied for simulating the hydrodynamics and chemical kinetics for the fluidized bed biomass fast... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 248 |
| SubjectTerms | Biofuel Biomass carbon dioxide carbon monoxide Computational fluid dynamics Fast pyrolysis Fluidized bed fluidized beds Hydrodynamics hydrogen kinetics mathematical models methane pyrolysis reaction kinetics renewable energy sources sand temperature |
| Title | Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics |
| URI | https://dx.doi.org/10.1016/j.renene.2020.03.134 https://www.proquest.com/docview/2431845046 |
| Volume | 155 |
| WOSCitedRecordID | wos000537825800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE8xvmQkblVQYidOfJymIeBQARuit8j1x8jUpVXTjG1_Pc-xnaZMaIDEoVFkx6nl98vz87Pf7yH0htisb4nKI0WljlLBWCQSOotkwoXiTCfSuGQT-WRSTKf802hkQizM-Tyv6-Ligi__q6ihDIRtQ2f_Qtz9S6EA7kHocAWxw_WPBD9p3SbMfNxUZ-3gqJuZt5WqrqzJCT8jmvV4ebla9JwkNhIfTOk-dY_sEj4EZ2HXeqxcAvtmaNN-AXX5o4vA0l0gYe-0cedwj77r-mT8GWB4svHeOw3zTVfRga0e-h7I5uSbd4iFoJjNCaTOs8jiCFZZ7jnt9GqRW7KDYlvxZtlQdTrGTT8LE0c3fk3BO1_D6VvL91lbmlMSW5LaxHtEt6mzj2xXbE9ItwHM6C20S_KMgz7c3f9wOP3Y7zdlhePrDl0PQZbdScDr__U7I-aX6byzUY7vo3t-cYH3HSgeoJGuH6K7A8rJR0j38MADeOCFwT08MMADW3jgHh623sMDe3jgLXi41jjA4zH6-u7w-OB95FNtRJJSvo5YPJPxTMeFYrmWdFYYZVJC4I6m3KRCFjJOhbDOAZGnnBhY5hBbztNZkquYPkE79aLWTxHWnIFWMArWtiIlKrUfPONUUAY1MC_vIRrGrpSeh96mQ5mX4cDhaelGvLQjXsa0hBHfQ1Hfaul4WG54Pg9iKb0t6WzEEpB0Q8vXQYolqFq7fyZqvWibkoCxXaQZIOnZP7_9Obqz-ZBeoJ31qtUv0W15vq6a1SsPy58fb6rp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+fluidized+bed+fast+pyrolysis+of+biomass+through+computational+fluid+dynamics&rft.jtitle=Renewable+energy&rft.au=Sia%2C+Sheng+Qiang&rft.au=Wang%2C+Wei-Cheng&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=155&rft.spage=248&rft.epage=256&rft_id=info:doi/10.1016%2Fj.renene.2020.03.134&rft.externalDocID=S0960148120304663 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |