A novel spatial–temporal generative autoencoder for wind speed uncertainty forecasting

Wind speed interval prediction is one of the most long-standing challenges because of the high uncertainty and the complex spatial–temporal correlation between wind turbines. In this paper, based on variational Bayesian inference, we propose a novel spatial–temporal generative autoencoder (STGAE) mo...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 282; p. 128946
Main Authors: Ma, Long, Huang, Ling, Shi, Huifeng
Format: Journal Article
Language:English
Published: 01.11.2023
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wind speed interval prediction is one of the most long-standing challenges because of the high uncertainty and the complex spatial–temporal correlation between wind turbines. In this paper, based on variational Bayesian inference, we propose a novel spatial–temporal generative autoencoder (STGAE) model to capture the continuous probability distribution of each wind turbine on an arbitrary graph structure. In the encoding process, a parameterization strategy is used to expand the hypothesis space of the adjacency matrix rather than being limited by the distance between nodes. The multiple graph convolution layers with kernels approximated by Chebyshev polynomials adjust the collecting scope of spatial information. The bi-directional dependency is modeled by the multi-head attention to tap correlations of different time horizons effectively. The interval prediction at each node is yielded based on the probability densities of generated samples produced by the decoder. Using publicly available wind data from the Global Energy Forecasting Competition 2014, numerical experiments are conducted to compare the prediction reliability and accuracy between the proposed model and the recent state-of-the-art models. The forecasting results suggest that the proposed model significantly improves performance, especially the strong generalization ability makes it practical under different weather conditions.
AbstractList Wind speed interval prediction is one of the most long-standing challenges because of the high uncertainty and the complex spatial–temporal correlation between wind turbines. In this paper, based on variational Bayesian inference, we propose a novel spatial–temporal generative autoencoder (STGAE) model to capture the continuous probability distribution of each wind turbine on an arbitrary graph structure. In the encoding process, a parameterization strategy is used to expand the hypothesis space of the adjacency matrix rather than being limited by the distance between nodes. The multiple graph convolution layers with kernels approximated by Chebyshev polynomials adjust the collecting scope of spatial information. The bi-directional dependency is modeled by the multi-head attention to tap correlations of different time horizons effectively. The interval prediction at each node is yielded based on the probability densities of generated samples produced by the decoder. Using publicly available wind data from the Global Energy Forecasting Competition 2014, numerical experiments are conducted to compare the prediction reliability and accuracy between the proposed model and the recent state-of-the-art models. The forecasting results suggest that the proposed model significantly improves performance, especially the strong generalization ability makes it practical under different weather conditions.
ArticleNumber 128946
Author Shi, Huifeng
Ma, Long
Huang, Ling
Author_xml – sequence: 1
  givenname: Long
  surname: Ma
  fullname: Ma, Long
– sequence: 2
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
– sequence: 3
  givenname: Huifeng
  surname: Shi
  fullname: Shi, Huifeng
BookMark eNp9kL1OwzAUhT0UibbwBgwZWRL8Fydhqyr-pEosILFZrnNdpUrtYDtF3XgH3pAnIVGYGJiudM_5zvAt0Mw6CwhdEZwRTMTNPgMLfnfKKKYsI7SsuJihOWYCpznn9BwtQthjjPOyqubobZVYd4Q2CZ2KjWq_P78iHDrnVZvsxqXhe4RE9dGB1a4Gnxjnk4_G1gMCUCe91eCjamw8jRFoFWJjdxfozKg2wOXvXaLX-7uX9WO6eX54Wq82qWasimluaFUVqmC4LKhmoI0wnKqCC0MoMF1xU6ha5QBYYF5vmWIlLUWxFUYMsWFLdD3tdt699xCiPDRBQ9sqC64PkpGckUpQmg9VPlW1dyF4MLLzzUH5kyRYjvLkXk7y5ChPTvIG7PYPpps4aHE2etW0_8M_s9p_UA
CitedBy_id crossref_primary_10_1007_s42835_025_02353_9
crossref_primary_10_1109_TSTE_2025_3543420
crossref_primary_10_1016_j_segan_2024_101591
crossref_primary_10_1016_j_energy_2024_131590
crossref_primary_10_1016_j_jweia_2024_105875
Cites_doi 10.1016/j.energy.2022.124095
10.1109/TPWRS.2013.2287871
10.1016/j.renene.2010.06.049
10.1016/j.ijforecast.2015.11.007
10.1016/j.energy.2021.122012
10.1016/j.energy.2023.127852
10.1109/TPAMI.2021.3116668
10.1016/j.renene.2022.09.036
10.1016/j.renene.2020.10.132
10.1016/j.apenergy.2019.04.047
10.1109/TSTE.2019.2926147
10.1016/j.rser.2008.02.002
10.1109/TSTE.2018.2844102
10.1016/j.enconman.2018.07.052
10.1109/TII.2020.2973413
10.1016/j.apenergy.2016.08.108
10.3390/en15082881
10.1016/j.enconman.2016.08.086
10.1109/TPWRS.2021.3105101
10.1016/j.epsr.2020.106865
10.1109/TNN.2010.2096824
10.1016/j.epsr.2011.08.009
10.1016/j.renene.2022.04.055
10.1016/j.neucom.2020.10.093
10.1016/j.apenergy.2019.114259
10.3390/en13226125
10.1016/j.enconman.2019.112077
10.1016/j.ijforecast.2016.02.001
10.3390/electronics11020206
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2023.128946
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_128946
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-5f2997a730872c3ecf6f42a746f12e3c94f7ada5ee0604db3a382867b6f6e3cf3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071022400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Nov 09 11:04:55 EST 2025
Sat Nov 29 07:18:42 EST 2025
Tue Nov 18 22:12:47 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-5f2997a730872c3ecf6f42a746f12e3c94f7ada5ee0604db3a382867b6f6e3cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153196225
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153196225
crossref_primary_10_1016_j_energy_2023_128946
crossref_citationtrail_10_1016_j_energy_2023_128946
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
References Zhang (10.1016/j.energy.2023.128946_b16) 2019; 247
Khodayar (10.1016/j.energy.2023.128946_b3) 2019; 10
Saeed (10.1016/j.energy.2023.128946_b19) 2022; 238
Zhang (10.1016/j.energy.2023.128946_b7) 2016; 126
Harrou (10.1016/j.energy.2023.128946_b6) 2019; 201
Khosravi (10.1016/j.energy.2023.128946_b12) 2011; 22
Khodayar (10.1016/j.energy.2023.128946_b32) 2019; 10
Li (10.1016/j.energy.2023.128946_b5) 2011; 36
Oliveira Santos (10.1016/j.energy.2023.128946_b29) 2023; 278
Deng (10.1016/j.energy.2023.128946_b24) 2021; 163
Pan (10.1016/j.energy.2023.128946_b27) 2022; 253
Qin (10.1016/j.energy.2023.128946_b8) 2011; 81
Zhang (10.1016/j.energy.2023.128946_b9) 2020; 13
Shang (10.1016/j.energy.2023.128946_b33) 2022; 15
Bergstra (10.1016/j.energy.2023.128946_b35) 2012; 13
Khodayar (10.1016/j.energy.2023.128946_b2) 2017; PP
Tang (10.1016/j.energy.2023.128946_b20) 2020; 16
Gan (10.1016/j.energy.2023.128946_b18) 2021; 191
Salazar (10.1016/j.energy.2023.128946_b22) 2022; 10
Lei (10.1016/j.energy.2023.128946_b1) 2009; 13
Hong (10.1016/j.energy.2023.128946_b25) 2016; 32
Mangalova (10.1016/j.energy.2023.128946_b10) 2016; 32
Mhaskar (10.1016/j.energy.2023.128946_b14) 2016
Liu (10.1016/j.energy.2023.128946_b30) 2020; 260
Khan (10.1016/j.energy.2023.128946_b31) 2022; 11
Li (10.1016/j.energy.2023.128946_b17) 2020; 11
He (10.1016/j.energy.2023.128946_b13) 2021; 430
Hu (10.1016/j.energy.2023.128946_b4) 2018; 173
Huang (10.1016/j.energy.2023.128946_b26) 2022; 192
Zheng (10.1016/j.energy.2023.128946_b23) 2022; 37
Wu (10.1016/j.energy.2023.128946_b28) 2022; 199
Doersch (10.1016/j.energy.2023.128946_b34) 2016
Bond-Taylor (10.1016/j.energy.2023.128946_b21) 2022; 44
Wang (10.1016/j.energy.2023.128946_b15) 2016; 182
Wan (10.1016/j.energy.2023.128946_b11) 2014; 29
References_xml – volume: 253
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b27
  article-title: Short-term wind speed forecasting based on spatial-temporal graph transformer networks
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124095
– volume: 29
  start-page: 1033
  issue: 3
  year: 2014
  ident: 10.1016/j.energy.2023.128946_b11
  article-title: Probabilistic forecasting of wind power generation using extreme learning machine
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2287871
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2023.128946_b35
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 36
  start-page: 352
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2023.128946_b5
  article-title: Bayesian adaptive combination of short-term wind speed forecasts from neural network models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.06.049
– volume: 32
  start-page: 1067
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2023.128946_b10
  article-title: K-nearest neighbors for GEFCom2014 probabilistic wind power forecasting
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.11.007
– volume: 238
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b19
  article-title: A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122012
– volume: 278
  year: 2023
  ident: 10.1016/j.energy.2023.128946_b29
  article-title: Spatiotemporal analysis of bidimensional wind speed forecasting: Development and thorough assessment of LSTM and ensemble graph neural networks on the Dutch database
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127852
– volume: 44
  start-page: 7327
  issue: 11
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b21
  article-title: Deep generative modelling: A comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3116668
– volume: 199
  start-page: 977
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b28
  article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.09.036
– volume: 163
  start-page: 1951
  year: 2021
  ident: 10.1016/j.energy.2023.128946_b24
  article-title: A new wind speed scenario generation method based on spatiotemporal dependency structure
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.10.132
– volume: 247
  start-page: 270
  year: 2019
  ident: 10.1016/j.energy.2023.128946_b16
  article-title: Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.047
– volume: 11
  start-page: 1370
  issue: 3
  year: 2020
  ident: 10.1016/j.energy.2023.128946_b17
  article-title: Short-term wind speed interval prediction based on ensemble GRU model
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2926147
– volume: PP
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.energy.2023.128946_b2
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans Ind Inf
– year: 2016
  ident: 10.1016/j.energy.2023.128946_b14
– volume: 10
  start-page: 1855
  issue: 6
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b22
  article-title: Deep generative model for probabilistic wind speed and wind power estimation at a wind farm
  publication-title: Wiley Online Library
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.energy.2023.128946_b1
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 10
  start-page: 670
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2023.128946_b3
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2844102
– volume: 173
  start-page: 197
  year: 2018
  ident: 10.1016/j.energy.2023.128946_b4
  article-title: Research and application of a hybrid model based on Meta learning strategy for wind power deterministic and probabilistic forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.07.052
– volume: 16
  start-page: 6806
  issue: 11
  year: 2020
  ident: 10.1016/j.energy.2023.128946_b20
  article-title: A novel wind speed interval prediction based on error prediction method
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2973413
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.energy.2023.128946_b15
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 15
  issue: 8
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b33
  article-title: Wind speed forecasting using attention-based causal convolutional network and wind energy conversion
  publication-title: Energies
  doi: 10.3390/en15082881
– volume: 126
  start-page: 1084
  year: 2016
  ident: 10.1016/j.energy.2023.128946_b7
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.086
– volume: 37
  start-page: 1386
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b23
  article-title: Generative probabilistic wind speed forecasting: A variational recurrent autoencoder based method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2021.3105101
– volume: 191
  year: 2021
  ident: 10.1016/j.energy.2023.128946_b18
  article-title: Temporal convolutional networks interval prediction model for wind speed forecasting
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2020.106865
– volume: 22
  start-page: 337
  issue: 3
  year: 2011
  ident: 10.1016/j.energy.2023.128946_b12
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2096824
– year: 2016
  ident: 10.1016/j.energy.2023.128946_b34
– volume: 81
  start-page: 2139
  issue: 12
  year: 2011
  ident: 10.1016/j.energy.2023.128946_b8
  article-title: Estimating wind speed probability distribution using kernel density method
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2011.08.009
– volume: 192
  start-page: 526
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b26
  article-title: Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.04.055
– volume: 430
  start-page: 121
  year: 2021
  ident: 10.1016/j.energy.2023.128946_b13
  article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.093
– volume: 260
  year: 2020
  ident: 10.1016/j.energy.2023.128946_b30
  article-title: Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114259
– volume: 13
  issue: 22
  year: 2020
  ident: 10.1016/j.energy.2023.128946_b9
  article-title: Probability density forecasting of wind speed based on quantile regression and kernel density estimation
  publication-title: Energies
  doi: 10.3390/en13226125
– volume: 201
  year: 2019
  ident: 10.1016/j.energy.2023.128946_b6
  article-title: Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112077
– volume: 32
  start-page: 896
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2023.128946_b25
  article-title: Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2016.02.001
– volume: 11
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2023.128946_b31
  article-title: Power forecasting of regional wind farms via variational auto-encoder and deep hybrid transfer learning
  publication-title: Electronics
  doi: 10.3390/electronics11020206
– volume: 10
  start-page: 670
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2023.128946_b32
  article-title: Spatio-temporal graph deep neural network for short-term wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2844102
SSID ssj0005899
Score 2.452751
Snippet Wind speed interval prediction is one of the most long-standing challenges because of the high uncertainty and the complex spatial–temporal correlation between...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 128946
SubjectTerms Bayesian theory
energy
prediction
probability distribution
spatial data
uncertainty
wind speed
wind turbines
Title A novel spatial–temporal generative autoencoder for wind speed uncertainty forecasting
URI https://www.proquest.com/docview/3153196225
Volume 282
WOSCitedRecordID wos001071022400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFwkuCBZWLC8ZCXGpXHVj53VBqlBXgEJBoivlFrmOre0qSsImLT3yH_iH_BLGsd20AonlwCVqXOchfxPPeDzzDUKvoolUsRKCLOOIEsb9nESK-YR7ii0DWIsp1iUKJ-F8HqVp_HkweONyYTZFWJbRdhvX_xVqaAOwdersP8C9uyk0wG8AHY4AOxxvBPx0VFYbWYwaHSvNCxfNQC0JVaGLJkvL983XbaWZLDWhhI43_LbSbvQaNNoI9J2JFjAhnVLwpnVqznnyTd6gJizdmhj5nVfhY2eTJpW9oJMb65lOVn3jl0tTNHu9UtK2Wg-ER20qXj9R0WBCfMYOZlVYyo3qMWi_mAXkj3O1cRtcjWX3smN9Z9u_101uP37-KTu_SJJsMUsXr-uvRFcN07vrtoTKLXTkhX4cDdHR9P0s_dAH-URdBdHdG7rkyS7C7_cHHxonh7q5MzgW99E9u1LAU4PwAzSQ5TG64xLJm2N0MuuTFKGjnaWbhyid4k4EsBWBn99_OPBxDz7eAx8DfFiDjzvw8R74eA_8R-jifLZ4-47YChpEUBq3xFdgbYQ81LSPnqBSqEAxj4csUGeepCJmKuQ596XUHEr5knKqaQXCZaAC-FvREzQsq1I-RjhgQezHuRATP4cvWGoiPOFTCWfabM1PEXVDlwlLL6-rnBSZiyO8ysyAZ3rAMzPgp4jsrqoNvcpf-r90qGQwD-rNLV7Kat1k9KzTJqCentygz1N0t5fkZ2jYXq_lc3RbbNpVc_3CStEvFPmB9A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+spatial%E2%80%93temporal+generative+autoencoder+for+wind+speed+uncertainty+forecasting&rft.jtitle=Energy+%28Oxford%29&rft.au=Ma%2C+Long&rft.au=Huang%2C+Ling&rft.au=Shi%2C+Huifeng&rft.date=2023-11-01&rft.issn=0360-5442&rft.volume=282+p.128946-&rft_id=info:doi/10.1016%2Fj.energy.2023.128946&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon