A new online optimization method for boiler combustion system based on the data-driven technique and the case-based reasoning principle

To adapt to the time-variability of boiler combustion systems, a new online combustion optimization method for boiler is proposed in this paper. The massive historical combustion data are preprocessed, and then an improved constrained fuzzy weighted rule is employed to extract combustion rules from...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 263; p. 125508
Main Authors: Xu, Wentao, Huang, Yaji, Song, Siheng, Chen, Yuzhu, Cao, Gehan, Yu, Mengzhu, Chen, Bo, Zhang, Rongchu, Liu, Yuqing, Zou, Yiran
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.01.2023
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To adapt to the time-variability of boiler combustion systems, a new online combustion optimization method for boiler is proposed in this paper. The massive historical combustion data are preprocessed, and then an improved constrained fuzzy weighted rule is employed to extract combustion rules from historical combustion data. After that, an improved particle swarm optimization-based least square support vector machine is adopted to construct the dynamic mathematic model for boiler efficiency and NOx emission, respectively, and an improved multi-objective particle swarm optimization algorithm based on the well-construction dynamic mathematical model is proposed and applied to excavate deeply the combustion rules of boiler, and the optimization case library is constructed by integrating all combustion rules. At last similarity measure-based case-based reasoning method is employed to rapidly identify the well-performance similar cases from the optimization case library, which is helpful to complete the online combustion optimization. The effectiveness of proposed online optimization method for boiler is proved by applying it to an actual combustion process. The results showed that proposed online optimization method could take less time to gain a set of excellent operating solution, the NOx emission reduced by 9.236% on average and the boiler efficiency increased by 0.046% on average. Therefore, the proposed online combustion optimization method for boiler has the ability to realize the online combustion optimization of boiler. •Bullet Points:•ICFWRE method is proposed to extract combustion rules.•IPSO-LSSVM is adopted to construct the dynamic mathematic model for boiler.•IMOPSO is applied to further extract combustion rules.•Clustering algorithm-based CBR is applied to realize online combustion optimization of boiler.
AbstractList To adapt to the time-variability of boiler combustion systems, a new online combustion optimization method for boiler is proposed in this paper. The massive historical combustion data are preprocessed, and then an improved constrained fuzzy weighted rule is employed to extract combustion rules from historical combustion data. After that, an improved particle swarm optimization-based least square support vector machine is adopted to construct the dynamic mathematic model for boiler efficiency and NOx emission, respectively, and an improved multi-objective particle swarm optimization algorithm based on the well-construction dynamic mathematical model is proposed and applied to excavate deeply the combustion rules of boiler, and the optimization case library is constructed by integrating all combustion rules. At last similarity measure-based case-based reasoning method is employed to rapidly identify the well-performance similar cases from the optimization case library, which is helpful to complete the online combustion optimization. The effectiveness of proposed online optimization method for boiler is proved by applying it to an actual combustion process. The results showed that proposed online optimization method could take less time to gain a set of excellent operating solution, the NOx emission reduced by 9.236% on average and the boiler efficiency increased by 0.046% on average. Therefore, the proposed online combustion optimization method for boiler has the ability to realize the online combustion optimization of boiler.
To adapt to the time-variability of boiler combustion systems, a new online combustion optimization method for boiler is proposed in this paper. The massive historical combustion data are preprocessed, and then an improved constrained fuzzy weighted rule is employed to extract combustion rules from historical combustion data. After that, an improved particle swarm optimization-based least square support vector machine is adopted to construct the dynamic mathematic model for boiler efficiency and NOx emission, respectively, and an improved multi-objective particle swarm optimization algorithm based on the well-construction dynamic mathematical model is proposed and applied to excavate deeply the combustion rules of boiler, and the optimization case library is constructed by integrating all combustion rules. At last similarity measure-based case-based reasoning method is employed to rapidly identify the well-performance similar cases from the optimization case library, which is helpful to complete the online combustion optimization. The effectiveness of proposed online optimization method for boiler is proved by applying it to an actual combustion process. The results showed that proposed online optimization method could take less time to gain a set of excellent operating solution, the NOx emission reduced by 9.236% on average and the boiler efficiency increased by 0.046% on average. Therefore, the proposed online combustion optimization method for boiler has the ability to realize the online combustion optimization of boiler. •Bullet Points:•ICFWRE method is proposed to extract combustion rules.•IPSO-LSSVM is adopted to construct the dynamic mathematic model for boiler.•IMOPSO is applied to further extract combustion rules.•Clustering algorithm-based CBR is applied to realize online combustion optimization of boiler.
ArticleNumber 125508
Author Liu, Yuqing
Chen, Yuzhu
Yu, Mengzhu
Zou, Yiran
Xu, Wentao
Song, Siheng
Cao, Gehan
Chen, Bo
Huang, Yaji
Zhang, Rongchu
Author_xml – sequence: 1
  givenname: Wentao
  surname: Xu
  fullname: Xu, Wentao
  organization: Key Laboratory of Energy Thermal Conversion and Process Measurement and Control of Ministry of Education, Southeast University, Nanjing, 210096, China
– sequence: 2
  givenname: Yaji
  surname: Huang
  fullname: Huang, Yaji
  email: heyyj@seu.edu.cn
  organization: Key Laboratory of Energy Thermal Conversion and Process Measurement and Control of Ministry of Education, Southeast University, Nanjing, 210096, China
– sequence: 3
  givenname: Siheng
  surname: Song
  fullname: Song, Siheng
  organization: State Grid Liaoning Electric Power Co., Ltd. Dalian Power Supply Company, Dalian, 116001, China
– sequence: 4
  givenname: Yuzhu
  surname: Chen
  fullname: Chen, Yuzhu
  organization: Key Laboratory of Energy Thermal Conversion and Process Measurement and Control of Ministry of Education, Southeast University, Nanjing, 210096, China
– sequence: 5
  givenname: Gehan
  surname: Cao
  fullname: Cao, Gehan
  organization: Key Laboratory of Energy Thermal Conversion and Process Measurement and Control of Ministry of Education, Southeast University, Nanjing, 210096, China
– sequence: 6
  givenname: Mengzhu
  surname: Yu
  fullname: Yu, Mengzhu
  organization: Key Laboratory of Energy Thermal Conversion and Process Measurement and Control of Ministry of Education, Southeast University, Nanjing, 210096, China
– sequence: 7
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: JiangSu Frontier Electric Technology Co., Nanjing 211102, China
– sequence: 8
  givenname: Rongchu
  surname: Zhang
  fullname: Zhang, Rongchu
  organization: Nanjing Changrong Acoustics Co., Ltd, Nanjing, 210008, China
– sequence: 9
  givenname: Yuqing
  surname: Liu
  fullname: Liu, Yuqing
  organization: Nanjing Changrong Acoustics Co., Ltd, Nanjing, 210008, China
– sequence: 10
  givenname: Yiran
  surname: Zou
  fullname: Zou, Yiran
  organization: Nanjing Changrong Acoustics Co., Ltd, Nanjing, 210008, China
BookMark eNqFkLtu3DAQRVnYQPzIH6RgmUbroURK2hQBDCO2AxhIk9QEHyPvLCRyQ3IdrH8gvx15lcqFXQ0Gc8_F4JyzkxADMvZJwEqAaK-2KwyYHg-rGup6JWqloD9hZ9C0UCkp6w_sPOctAKh-vT5jf695wD88hpEC8rgrNNGzKRQDn7BsoudDTNxGGjFxFye7z8djPuSCE7cmo59pXjbIvSmm8omecN7RbQL93iM3wR-vbo5WSz6hyTFQeOS7RMHRbsRLdjqYMePH__OC_br99vPmvnr4cff95vqhck2zLpVqbd0J2aNa171tRQdWeLDKS4AOlLRD36nGCgAj26H1AhvT9957ia0chqG5YJ-X3l2K83e56Imyw3E0AeM-60aopq9b2ck5KpeoSzHnhIOev51MOmgB-sW13urFtX5xrRfXM_blFeaoHI2WZGh8D_66wDg7eCJMOjvC4NBTQle0j_R2wT9fjKOK
CitedBy_id crossref_primary_10_1016_j_energy_2023_128748
crossref_primary_10_1016_j_jobe_2025_113528
crossref_primary_10_1016_j_energy_2025_138442
crossref_primary_10_1016_j_tsep_2025_103753
crossref_primary_10_1051_matecconf_202541201006
crossref_primary_10_1016_j_applthermaleng_2025_126709
crossref_primary_10_1016_j_measen_2023_101004
crossref_primary_10_1038_s41597_025_05096_4
crossref_primary_10_1016_j_energy_2024_132106
Cites_doi 10.3233/AIC-1994-7104
10.1109/TII.2006.873598
10.1016/j.energy.2013.02.062
10.1016/j.combustflame.2012.07.013
10.1016/j.fuel.2021.122352
10.1016/j.mlwa.2021.100082
10.1016/j.fuel.2009.04.023
10.1016/j.energy.2021.119859
10.1109/TEC.2007.914183
10.1002/er.1070
10.1109/TEVC.2004.826067
10.1016/j.knosys.2011.08.002
10.1016/j.chemolab.2015.04.006
10.1016/j.ijepes.2014.04.036
10.1016/j.isatra.2020.03.024
10.1016/j.fuel.2015.12.065
10.1016/j.jss.2005.03.005
10.1109/TII.2006.890530
10.1007/BF00155578
10.1016/j.jprocont.2011.06.001
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125508
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125508
S0360544222023908
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-56b27148e5928b6170b1d0b5d4007054bf8753b100a46f6d1e3a88ddd4e64fff3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918699600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Wed Oct 01 13:39:11 EDT 2025
Sat Nov 29 07:21:36 EST 2025
Tue Nov 18 20:41:42 EST 2025
Fri Feb 23 02:40:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Improved multi-objective particle swarm optimization algorithm
Online combustion optimization of boiler
Improved constrained fuzzy weighted rule
Similarity measure -based case-based reasoning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-56b27148e5928b6170b1d0b5d4007054bf8753b100a46f6d1e3a88ddd4e64fff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153826474
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153826474
crossref_primary_10_1016_j_energy_2022_125508
crossref_citationtrail_10_1016_j_energy_2022_125508
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125508
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhe, Kusiak (bib6) 2007; 3
Deb, Partap, Agarwal (bib15) 2002; 6
Zhang, Fu, Shen, Li (bib30) 2017; 37
Zhou, Cen, Fan (bib10) 2005; 29
Parsa, Kamyad, Sistani (bib4) 2014
Gu, Zhao, Wu (bib32) 2011; 21
Watson (bib21) 1999; 12
Niu Yuguang, Kang Junjie, Li Fengqiang, Ge Weichun, Zhou Guiping. Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems. ISA Trans, 103: 166-176.
Kusiak, Zhe (bib7) 2008; 23
Kolodner (bib22) 1992; 6
Gu, Liang, Bichindaritz, Zuo, Wang (bib34) 2012
Shaddix (bib1) 2012; 159
Xia, Chen, Tan, Zhang (bib33) 2014
Lv, Liu, Yang (bib29) 2013; 55
Wenjie, Chen (bib3) 2011
Aminmahalati, Fazlali, Safikhani (bib14) 2021; 221
Zhou, Fang, Sun (bib20) 2015; 35
Coello, Pulido, Lechuga (bib16) 2004; 8
Wu, Zhou, Ren (bib19) 2009; 88
Wu, Zhou, Zheng (bib18) 2009; 29
Yang, Liu, Zeng (bib2) 2010
Kusiak, Zhe (bib5) 2006; 2
Chen, Liu (bib17) 2006; 34
Lv, Yang, Liu (bib31) 2015; 145
Lei, Zhao, Lu (bib35) 2014
Zheng, Wang, Yang, Zhang (bib26) 2019; 191
Wang, Liu, Han (bib8) 2016; 37
Lv, Peng, Zhao (bib11) 2011; 31
Li, He, Liu (bib28) 2022; 310
Pears, Koh (bib27) 2011
Lee, Lin, Wang (bib25) 2006; 79
Song, Romero, Zheng (bib12) 2016; 172
Ma, Wang, Zhang, Hou, Song (bib13) 2021; 5
Zheng, Liu (bib9) 2017; 46
Aamodt, Plaza (bib23) 1994; 7
Kusiak (10.1016/j.energy.2022.125508_bib7) 2008; 23
Gu (10.1016/j.energy.2022.125508_bib34) 2012
Aminmahalati (10.1016/j.energy.2022.125508_bib14) 2021; 221
Wu (10.1016/j.energy.2022.125508_bib19) 2009; 88
Zheng (10.1016/j.energy.2022.125508_bib9) 2017; 46
Li (10.1016/j.energy.2022.125508_bib28) 2022; 310
Watson (10.1016/j.energy.2022.125508_bib21) 1999; 12
Chen (10.1016/j.energy.2022.125508_bib17) 2006; 34
Deb (10.1016/j.energy.2022.125508_bib15) 2002; 6
Wenjie (10.1016/j.energy.2022.125508_bib3) 2011
Gu (10.1016/j.energy.2022.125508_bib32) 2011; 21
Ma (10.1016/j.energy.2022.125508_bib13) 2021; 5
Lv (10.1016/j.energy.2022.125508_bib29) 2013; 55
Zheng (10.1016/j.energy.2022.125508_bib26) 2019; 191
Shaddix (10.1016/j.energy.2022.125508_bib1) 2012; 159
Wang (10.1016/j.energy.2022.125508_bib8) 2016; 37
Yang (10.1016/j.energy.2022.125508_bib2) 2010
Kusiak (10.1016/j.energy.2022.125508_bib5) 2006; 2
Zhou (10.1016/j.energy.2022.125508_bib10) 2005; 29
Lei (10.1016/j.energy.2022.125508_bib35) 2014
Lee (10.1016/j.energy.2022.125508_bib25) 2006; 79
Wu (10.1016/j.energy.2022.125508_bib18) 2009; 29
Song (10.1016/j.energy.2022.125508_bib12) 2016; 172
Lv (10.1016/j.energy.2022.125508_bib31) 2015; 145
Zhe (10.1016/j.energy.2022.125508_bib6) 2007; 3
Coello (10.1016/j.energy.2022.125508_bib16) 2004; 8
Lv (10.1016/j.energy.2022.125508_bib11) 2011; 31
Aamodt (10.1016/j.energy.2022.125508_bib23) 1994; 7
10.1016/j.energy.2022.125508_bib24
Xia (10.1016/j.energy.2022.125508_bib33) 2014
Zhang (10.1016/j.energy.2022.125508_bib30) 2017; 37
Parsa (10.1016/j.energy.2022.125508_bib4) 2014
Pears (10.1016/j.energy.2022.125508_bib27) 2011
Kolodner (10.1016/j.energy.2022.125508_bib22) 1992; 6
Zhou (10.1016/j.energy.2022.125508_bib20) 2015; 35
References_xml – volume: 29
  start-page: 499
  year: 2005
  end-page: 510
  ident: bib10
  article-title: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms [J]
  publication-title: Int J Energy Res
– volume: 37
  start-page: 123
  year: 2017
  end-page: 128
  ident: bib30
  article-title: Study on dynamic modeling method of boiler based on on-line support vector machine [J]
  publication-title: Proceedings of the CSEE
– volume: 88
  start-page: 1864
  year: 2009
  end-page: 1870
  ident: bib19
  article-title: Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers
  publication-title: Fuel
– year: 2010
  ident: bib2
  article-title: Application of data mining in boiler combustion optimization[C]//international conference on computer & automation engineering
– start-page: 185
  year: 2012
  end-page: 195
  ident: bib34
  article-title: A case-based knowledge system for safety evaluation decision making of thermal power plants
  publication-title: Knowl Base Syst
– volume: 7
  start-page: 39
  year: 1994
  end-page: 59
  ident: bib23
  article-title: Case-based reasoning;foundational issues, methodological variations, and system approaches
  publication-title: AI Commun
– volume: 23
  start-page: 651
  year: 2008
  end-page: 658
  ident: bib7
  article-title: Clustering-based performance optimization of the boiler-turbine system
  publication-title: IEEE Trans Energy Convers
– start-page: 306
  year: 2011
  end-page: 311
  ident: bib3
  article-title: The optimizing for boiler combustion based on fuzzy association rules
  publication-title: Soft computing and pattern recognition (SoCPaR), 2011 international conference on
– volume: 172
  start-page: 20
  year: 2016
  end-page: 28
  ident: bib12
  article-title: Improved artificial bee colony-based optimization of boiler combustion considering NOx emissions, heat rate and fly ash recycling for on-line applications
  publication-title: Fuel
– volume: 12
  start-page: 303
  year: 1999
  end-page: 308
  ident: bib21
  publication-title: Case-based reasoning is a methodology not a technology Knowl-Based Syst
– volume: 6
  start-page: 3
  year: 1992
  end-page: 34
  ident: bib22
  article-title: An introduction to case-based reasoning
  publication-title: Artif Intell Rev
– volume: 159
  start-page: 3003
  year: 2012
  end-page: 3006
  ident: bib1
  article-title: Coal combustion, gasification, and beyond: developing new technologies for a changing world
  publication-title: Combust Flame
– volume: 35
  start-page: 524
  year: 2015
  end-page: 530
  ident: bib20
  article-title: Multi-objective optimization of comprehensive performance in boiler combustion based on benefit model
  publication-title: J. Chin. Soc. Power Eng.
– start-page: 103
  year: 2014
  end-page: 108
  ident: bib4
  article-title: Combustion efficiency optimization by adjusting the amount of excess air
  publication-title: Thermal power plants (CTPP), 2014 5th conference on
– volume: 21
  start-page: 1040
  year: 2011
  end-page: 1048
  ident: bib32
  article-title: Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems
  publication-title: J Process Control
– volume: 5
  year: 2021
  ident: bib13
  article-title: Three-objective optimization of boiler combustion process based on multi-objective teaching–learning based optimization algorithm and ameliorated extreme learning machine
  publication-title: Machine Learning with Applications
– volume: 79
  start-page: 79
  year: 2006
  end-page: 92
  ident: bib25
  article-title: Mining association rules with multi-dimensional constraints
  publication-title: J Syst Software
– year: 2014
  ident: bib35
  article-title: Intuitionistic fuzzy set theory and its application
– volume: 221
  year: 2021
  ident: bib14
  article-title: Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm
  publication-title: Energy
– volume: 8
  start-page: 256e79
  year: 2004
  ident: bib16
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
– volume: 191
  year: 2019
  ident: bib26
  article-title: Multi-objective combustion optimization based on data-driven hybrid strategy [J]
  publication-title: Energy
– volume: 31
  start-page: 16
  year: 2011
  end-page: 22
  ident: bib11
  article-title: Hybrid modeling optimization of thermal efficiency and NOx emissions of utility boiler [J]
  publication-title: Proceed. CSEE
– start-page: 299
  year: 2014
  end-page: 311
  ident: bib33
  article-title: An online case-based reasoning system for coal blends combustion optimization of thermal power plant
  publication-title: Int J Electr Power Energy Syst
– volume: 46
  start-page: 69
  year: 2017
  end-page: 74
  ident: bib9
  article-title: Multi-objective combustion optimization based on data mining with full-scale working condition [J]
  publication-title: Therm Power Gener
– volume: 34
  start-page: 50
  year: 2006
  end-page: 54
  ident: bib17
  article-title: Multiobjective optimization of coal-fired boiler combustion based on LS-SVM and SPEA2. East China Electr
  publication-title: Power
– volume: 37
  start-page: 420
  year: 2016
  end-page: 428
  ident: bib8
  article-title: Combustion optimization in power station based on big data-driven case-matching
  publication-title: Chin J Sci Instrum
– volume: 2
  start-page: 176
  year: 2006
  end-page: 184
  ident: bib5
  article-title: Combustion efficiency optimization and virtual testing: a data-mining approach[J]
  publication-title: IEEE Trans Ind Inf
– start-page: 327
  year: 2011
  end-page: 338
  ident: bib27
  article-title: Weighted association rule mining using particle swarm optimization
  publication-title: Pacific-asia conference on knowledge discovery and data mining
– volume: 29
  start-page: 7
  year: 2009
  end-page: 12
  ident: bib18
  article-title: Multi-objective optimization of coal-fired boiler combustion based on nondominated sorting genetic algorithm
  publication-title: Proceed. CSEE
– volume: 55
  start-page: 319
  year: 2013
  end-page: 329
  ident: bib29
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
– volume: 6
  start-page: 182e97
  year: 2002
  ident: bib15
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– reference: Niu Yuguang, Kang Junjie, Li Fengqiang, Ge Weichun, Zhou Guiping. Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems. ISA Trans, 103: 166-176.
– volume: 310
  year: 2022
  ident: bib28
  article-title: Low NOx combustion optimization based on partial dimension opposition-based learning particle swarm optimization
  publication-title: Fuel
– volume: 3
  start-page: 73
  year: 2007
  end-page: 83
  ident: bib6
  article-title: Constraint-based control of boiler efficiency: a data-mining approach[J]
  publication-title: IEEE Trans Ind Inf
– volume: 145
  start-page: 103
  year: 2015
  end-page: 113
  ident: bib31
  article-title: An adaptive least squares support vector machine model with a novel update for NOx emission prediction
  publication-title: Chemometr Intell Lab Syst
– year: 2014
  ident: 10.1016/j.energy.2022.125508_bib35
– volume: 191
  year: 2019
  ident: 10.1016/j.energy.2022.125508_bib26
  article-title: Multi-objective combustion optimization based on data-driven hybrid strategy [J]
  publication-title: Energy
– volume: 7
  start-page: 39
  issue: 1
  year: 1994
  ident: 10.1016/j.energy.2022.125508_bib23
  article-title: Case-based reasoning;foundational issues, methodological variations, and system approaches
  publication-title: AI Commun
  doi: 10.3233/AIC-1994-7104
– volume: 2
  start-page: 176
  issue: 3
  year: 2006
  ident: 10.1016/j.energy.2022.125508_bib5
  article-title: Combustion efficiency optimization and virtual testing: a data-mining approach[J]
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2006.873598
– volume: 55
  start-page: 319
  year: 2013
  ident: 10.1016/j.energy.2022.125508_bib29
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.062
– volume: 159
  start-page: 3003
  issue: 10
  year: 2012
  ident: 10.1016/j.energy.2022.125508_bib1
  article-title: Coal combustion, gasification, and beyond: developing new technologies for a changing world
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2012.07.013
– volume: 310
  year: 2022
  ident: 10.1016/j.energy.2022.125508_bib28
  article-title: Low NOx combustion optimization based on partial dimension opposition-based learning particle swarm optimization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122352
– volume: 5
  year: 2021
  ident: 10.1016/j.energy.2022.125508_bib13
  article-title: Three-objective optimization of boiler combustion process based on multi-objective teaching–learning based optimization algorithm and ameliorated extreme learning machine
  publication-title: Machine Learning with Applications
  doi: 10.1016/j.mlwa.2021.100082
– volume: 88
  start-page: 1864
  issue: 10
  year: 2009
  ident: 10.1016/j.energy.2022.125508_bib19
  article-title: Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.04.023
– volume: 221
  year: 2021
  ident: 10.1016/j.energy.2022.125508_bib14
  article-title: Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119859
– volume: 35
  start-page: 524
  issue: 7
  year: 2015
  ident: 10.1016/j.energy.2022.125508_bib20
  article-title: Multi-objective optimization of comprehensive performance in boiler combustion based on benefit model
  publication-title: J. Chin. Soc. Power Eng.
– volume: 34
  start-page: 50
  issue: 3
  year: 2006
  ident: 10.1016/j.energy.2022.125508_bib17
  article-title: Multiobjective optimization of coal-fired boiler combustion based on LS-SVM and SPEA2. East China Electr
  publication-title: Power
– volume: 23
  start-page: 651
  issue: 2
  year: 2008
  ident: 10.1016/j.energy.2022.125508_bib7
  article-title: Clustering-based performance optimization of the boiler-turbine system
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2007.914183
– volume: 12
  start-page: 303
  issue: 5
  year: 1999
  ident: 10.1016/j.energy.2022.125508_bib21
  publication-title: Case-based reasoning is a methodology not a technology Knowl-Based Syst
– volume: 29
  start-page: 499
  issue: 6
  year: 2005
  ident: 10.1016/j.energy.2022.125508_bib10
  article-title: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms [J]
  publication-title: Int J Energy Res
  doi: 10.1002/er.1070
– volume: 6
  start-page: 182e97
  issue: 22
  year: 2002
  ident: 10.1016/j.energy.2022.125508_bib15
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 8
  start-page: 256e79
  issue: 3
  year: 2004
  ident: 10.1016/j.energy.2022.125508_bib16
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– start-page: 327
  year: 2011
  ident: 10.1016/j.energy.2022.125508_bib27
  article-title: Weighted association rule mining using particle swarm optimization
– volume: 37
  start-page: 420
  issue: 2
  year: 2016
  ident: 10.1016/j.energy.2022.125508_bib8
  article-title: Combustion optimization in power station based on big data-driven case-matching
  publication-title: Chin J Sci Instrum
– volume: 31
  start-page: 16
  issue: 26
  year: 2011
  ident: 10.1016/j.energy.2022.125508_bib11
  article-title: Hybrid modeling optimization of thermal efficiency and NOx emissions of utility boiler [J]
  publication-title: Proceed. CSEE
– volume: 29
  start-page: 7
  issue: 29
  year: 2009
  ident: 10.1016/j.energy.2022.125508_bib18
  article-title: Multi-objective optimization of coal-fired boiler combustion based on nondominated sorting genetic algorithm
  publication-title: Proceed. CSEE
– start-page: 185
  issue: 26
  year: 2012
  ident: 10.1016/j.energy.2022.125508_bib34
  article-title: A case-based knowledge system for safety evaluation decision making of thermal power plants
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2011.08.002
– volume: 145
  start-page: 103
  year: 2015
  ident: 10.1016/j.energy.2022.125508_bib31
  article-title: An adaptive least squares support vector machine model with a novel update for NOx emission prediction
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.04.006
– start-page: 299
  year: 2014
  ident: 10.1016/j.energy.2022.125508_bib33
  article-title: An online case-based reasoning system for coal blends combustion optimization of thermal power plant
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.036
– volume: 37
  start-page: 123
  year: 2017
  ident: 10.1016/j.energy.2022.125508_bib30
  article-title: Study on dynamic modeling method of boiler based on on-line support vector machine [J]
  publication-title: Proceedings of the CSEE
– ident: 10.1016/j.energy.2022.125508_bib24
  doi: 10.1016/j.isatra.2020.03.024
– start-page: 103
  year: 2014
  ident: 10.1016/j.energy.2022.125508_bib4
  article-title: Combustion efficiency optimization by adjusting the amount of excess air
– start-page: 306
  year: 2011
  ident: 10.1016/j.energy.2022.125508_bib3
  article-title: The optimizing for boiler combustion based on fuzzy association rules
– volume: 172
  start-page: 20
  year: 2016
  ident: 10.1016/j.energy.2022.125508_bib12
  article-title: Improved artificial bee colony-based optimization of boiler combustion considering NOx emissions, heat rate and fly ash recycling for on-line applications
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.12.065
– volume: 79
  start-page: 79
  issue: 1
  year: 2006
  ident: 10.1016/j.energy.2022.125508_bib25
  article-title: Mining association rules with multi-dimensional constraints
  publication-title: J Syst Software
  doi: 10.1016/j.jss.2005.03.005
– volume: 3
  start-page: 73
  issue: 1
  year: 2007
  ident: 10.1016/j.energy.2022.125508_bib6
  article-title: Constraint-based control of boiler efficiency: a data-mining approach[J]
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2006.890530
– volume: 46
  start-page: 69
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2022.125508_bib9
  article-title: Multi-objective combustion optimization based on data mining with full-scale working condition [J]
  publication-title: Therm Power Gener
– year: 2010
  ident: 10.1016/j.energy.2022.125508_bib2
– volume: 6
  start-page: 3
  issue: 1
  year: 1992
  ident: 10.1016/j.energy.2022.125508_bib22
  article-title: An introduction to case-based reasoning
  publication-title: Artif Intell Rev
  doi: 10.1007/BF00155578
– volume: 21
  start-page: 1040
  issue: 7
  year: 2011
  ident: 10.1016/j.energy.2022.125508_bib32
  article-title: Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2011.06.001
SSID ssj0005899
Score 2.4396186
Snippet To adapt to the time-variability of boiler combustion systems, a new online combustion optimization method for boiler is proposed in this paper. The massive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125508
SubjectTerms combustion
energy
Improved constrained fuzzy weighted rule
Improved multi-objective particle swarm optimization algorithm
mathematical models
Online combustion optimization of boiler
Similarity measure -based case-based reasoning
support vector machines
system optimization
Title A new online optimization method for boiler combustion system based on the data-driven technique and the case-based reasoning principle
URI https://dx.doi.org/10.1016/j.energy.2022.125508
https://www.proquest.com/docview/3153826474
Volume 263
WOSCitedRecordID wos000918699600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF_KnaAvoqeH5xcr-Fb2SDabr8ciFRU5hDul9xTyscu1nElpm6OI7_7bzmR2k56HnAq-hJLsbtP-fpndnfxmhrHXYZ5qX_m-iEOdC6VyeOY8HYmikqWRqspNV87ny8f45CSZzdJPo9F3FwtzdRnXdbLdpsv_CjWcA7AxdPYv4O4HhRPwGUCHI8AOxz8CfoJVwseUAWPcgEX4akMtbbVoEmg2YA1WKCgvsJwXXKSUzmOc1Sr7BmGM8lFRrdAgjodkr05zWUJTQe1R2U5-3aVz3l9z-VOAIWY23ZKYvnc_zNpO5YcK9magmHVin-eLee8Cstrh0_mFtrNtp0ogs3nefrtodz0YEvVbgmI4ya3mQmsGHROFc3kiVOqaqZZkDG-YffJALI5193Ng1y_lMazcQi8ZprlefHiKQ-PIEm8mxUjxfRmHKdjE_cn76ezDIBFKuvqj_a240MtOH3jzu363tPllku9WLmcP2H275eATospDNtL1AbvrItLXB-xwOkQ7QkNr7teP2I8JBy5x4hLf5RInLnFAkxOX-MAlTlziHTegNwe28B0u8Z5LHLjUXR24xHsu8Z5Lj9nnt9OzN--ErdwhyiBINyKMChnDRluHqUwKzPlf-JVXhJXC9FKhKgxukwvf83IVmajydZAnSVVVSkfKGBMcsr26qfUTxmWS-tIvokCWUhWln5cmMloZlepc-iY6YoH707PSprXH6iqXmdMvLjKCKkOoMoLqiIm-15LSutzSPnZ4ZnZpSkvODCh4S89XDv4MLDe-jstr3bTrLMDFBuxHYvX0n0d_xu4NT9RztrdZtfoFu1Nebebr1UvL558CNsZr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+online+optimization+method+for+boiler+combustion+system+based+on+the+data-driven+technique+and+the+case-based+reasoning+principle&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Wentao&rft.au=Huang%2C+Yaji&rft.au=Song%2C+Siheng&rft.au=Chen%2C+Yuzhu&rft.date=2023-01-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=263&rft_id=info:doi/10.1016%2Fj.energy.2022.125508&rft.externalDocID=S0360544222023908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon