Implementation of coyote optimization algorithm for solving unit commitment problem in power systems

The aim of the Unit Commitment(UC) problem is to find the optimum scheduling of the total generating units at lower operating costs while achieving the constraints of system and units. The decision variables contain the binary UC variables that characterize the 1/0 cases through the total time inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 263; S. 125697
Hauptverfasser: Ali, E.S., Elazim, S.M. Abd, Balobaid, A.S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.01.2023
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aim of the Unit Commitment(UC) problem is to find the optimum scheduling of the total generating units at lower operating costs while achieving the constraints of system and units. The decision variables contain the binary UC variables that characterize the 1/0 cases through the total time intervals in the study era. The scale of this problem grows speedily with great size of the electric power system and longer planning time. Fixing this large scale problem is a challenging process and computationally expensive. It is the most complicated optimization process in the operation and planning of the power system. Meta heuristics methods are capable to outlast the demerits of traditional deterministic methods in solving UC problem. One of the most recent meta heuristics methods is known as Coyote Optimization Algorithm (COA). It is depended on the adaptation attitude of the coyote by the surroundings and the coyote's experiences exchanging. It has a motivating mechanisms to gain a balance between exploitation and exploration. Also, it is very easy in implementation as it has only two control variables. Moreover, its capability to keep larger diversity helps it to get the optimal cost so it is proposed to handle the UC problem in this paper. The election of the schedule and production size are performed by COA. Achievement of COA is examined for two IEEE systems. Outcomes establish that the elected algorithm is supreme to the recorded literature methods in terms of total cost, CPU, percentage reduction, and statistical analysis. •Coyote optimization algorithm is proposed for unit commitment problem.•The objective function is designed to minimize the total operating costs.•The efficacy of the algorithm is confirmed by the total cost, and computational time.•The percentage reduction of total cost can reach 5.4%.•The stability is proved by the difference between the worst and the best cost.
AbstractList The aim of the Unit Commitment(UC) problem is to find the optimum scheduling of the total generating units at lower operating costs while achieving the constraints of system and units. The decision variables contain the binary UC variables that characterize the 1/0 cases through the total time intervals in the study era. The scale of this problem grows speedily with great size of the electric power system and longer planning time. Fixing this large scale problem is a challenging process and computationally expensive. It is the most complicated optimization process in the operation and planning of the power system. Meta heuristics methods are capable to outlast the demerits of traditional deterministic methods in solving UC problem. One of the most recent meta heuristics methods is known as Coyote Optimization Algorithm (COA). It is depended on the adaptation attitude of the coyote by the surroundings and the coyote's experiences exchanging. It has a motivating mechanisms to gain a balance between exploitation and exploration. Also, it is very easy in implementation as it has only two control variables. Moreover, its capability to keep larger diversity helps it to get the optimal cost so it is proposed to handle the UC problem in this paper. The election of the schedule and production size are performed by COA. Achievement of COA is examined for two IEEE systems. Outcomes establish that the elected algorithm is supreme to the recorded literature methods in terms of total cost, CPU, percentage reduction, and statistical analysis. •Coyote optimization algorithm is proposed for unit commitment problem.•The objective function is designed to minimize the total operating costs.•The efficacy of the algorithm is confirmed by the total cost, and computational time.•The percentage reduction of total cost can reach 5.4%.•The stability is proved by the difference between the worst and the best cost.
The aim of the Unit Commitment(UC) problem is to find the optimum scheduling of the total generating units at lower operating costs while achieving the constraints of system and units. The decision variables contain the binary UC variables that characterize the 1/0 cases through the total time intervals in the study era. The scale of this problem grows speedily with great size of the electric power system and longer planning time. Fixing this large scale problem is a challenging process and computationally expensive. It is the most complicated optimization process in the operation and planning of the power system. Meta heuristics methods are capable to outlast the demerits of traditional deterministic methods in solving UC problem. One of the most recent meta heuristics methods is known as Coyote Optimization Algorithm (COA). It is depended on the adaptation attitude of the coyote by the surroundings and the coyote's experiences exchanging. It has a motivating mechanisms to gain a balance between exploitation and exploration. Also, it is very easy in implementation as it has only two control variables. Moreover, its capability to keep larger diversity helps it to get the optimal cost so it is proposed to handle the UC problem in this paper. The election of the schedule and production size are performed by COA. Achievement of COA is examined for two IEEE systems. Outcomes establish that the elected algorithm is supreme to the recorded literature methods in terms of total cost, CPU, percentage reduction, and statistical analysis.
ArticleNumber 125697
Author Elazim, S.M. Abd
Ali, E.S.
Balobaid, A.S.
Author_xml – sequence: 1
  givenname: E.S.
  surname: Ali
  fullname: Ali, E.S.
  email: esalama@jazanu.edu.sa, ehabsalimalisalama@yahoo.com
  organization: Electrical Engineering Department, Faculty of Engineering, Jazan University, Saudi Arabia
– sequence: 2
  givenname: S.M. Abd
  surname: Elazim
  fullname: Elazim, S.M. Abd
  organization: Computer Science Department, Faculty of Computer Science and Information Technology, Jazan University, Saudi Arabia
– sequence: 3
  givenname: A.S.
  surname: Balobaid
  fullname: Balobaid, A.S.
  organization: Computer Science Department, Faculty of Computer Science and Information Technology, Jazan University, Saudi Arabia
BookMark eNqFkD1PwzAQhj0UibbwDxg8srTYTh3HDEio4qNSJRaYrdQ5F1exHWy3qPx6UoWJAaaTTu_z6u6ZoJEPHhC6omROCS1vdnPwELfHOSOMzSnjpRQjNCZFSWZ8sWDnaJLSjhDCKynHqFm5rgUHPtfZBo-DwTocQwYcumyd_RrWdbsN0eZ3h02IOIX2YP0W773Nfdw5m08NuIth05dh63EXPqEPHlMGly7QmanbBJc_c4reHh9el8-z9cvTanm_numikHnGudFES7kRJZOyhMpQsTGVoJyDNlpsikYyWRMQvCk5FSWpatH_BdxAYZgopuh66O0P-dhDysrZpKFtaw9hn1RBeVGxkixkH70dojqGlCIYpe2gIMfatooSddKpdmrQqU461aCzhxe_4C5aV8fjf9jdgEHv4GAhqqQteA2NjaCzaoL9u-AbFAqYDg
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3351710
crossref_primary_10_1016_j_eswa_2024_125259
crossref_primary_10_1016_j_sciaf_2025_e02547
crossref_primary_10_1016_j_epsr_2025_111535
crossref_primary_10_1016_j_energy_2023_129543
crossref_primary_10_1155_2023_2336689
crossref_primary_10_1016_j_enconman_2024_118794
crossref_primary_10_1080_15325008_2024_2329329
crossref_primary_10_3390_biomimetics8050386
crossref_primary_10_1109_ACCESS_2024_3404871
crossref_primary_10_1016_j_energy_2023_128593
crossref_primary_10_1016_j_apenergy_2024_124963
crossref_primary_10_1007_s11071_024_09632_6
crossref_primary_10_1016_j_asoc_2023_111047
crossref_primary_10_1016_j_asoc_2024_111845
crossref_primary_10_1007_s10462_024_10752_z
crossref_primary_10_1007_s00291_025_00819_w
crossref_primary_10_1016_j_est_2023_109867
crossref_primary_10_3390_a16020092
crossref_primary_10_3390_app13010199
crossref_primary_10_1016_j_energy_2025_135454
crossref_primary_10_1016_j_segan_2025_101809
crossref_primary_10_1016_j_engappai_2023_107823
crossref_primary_10_1016_j_ijepes_2024_110033
crossref_primary_10_3390_a16010020
crossref_primary_10_3390_math13101601
crossref_primary_10_1016_j_egyr_2024_02_005
crossref_primary_10_1109_TII_2025_3558319
crossref_primary_10_3390_su16041708
crossref_primary_10_1049_rpg2_70036
Cites_doi 10.1016/j.ijepes.2014.11.025
10.1504/IJBIC.2014.060609
10.1109/59.982197
10.1049/iet-gtd.2013.0436
10.3390/en13174473
10.1016/j.energy.2015.04.102
10.3390/su13063131
10.1109/TPWRS.2009.2021216
10.1109/59.867163
10.1109/TPWRS.2011.2158010
10.1023/B:HEUR.0000012449.84567.1a
10.1007/s00521-016-2650-8
10.1016/j.egypro.2011.12.1201
10.1016/j.asoc.2008.11.010
10.1109/TPAS.1983.318063
10.1049/iet-gtd:20070367
10.1080/02533839.2014.999865
10.3906/elk-2004-144
10.1016/j.ijepes.2014.03.061
10.1109/TPWRS.2009.2038921
10.1016/j.epsr.2011.09.022
10.1016/j.eswa.2008.10.047
10.1016/j.epsr.2007.02.011
10.1016/j.egyr.2020.04.032
10.1016/j.ijepes.2012.10.042
10.1080/15325000801911377
10.1109/ACCESS.2020.3010275
10.1109/TPWRS.2005.860922
10.1080/01430750.2017.1423384
10.1016/j.energy.2019.01.155
10.1016/S0378-7796(97)01175-9
10.1016/0142-0615(95)00013-5
10.1109/MPER.1987.5527261
10.4018/IJSIR.2015040104
10.1016/0378-7796(95)00954-G
10.1007/s00521-021-06175-4
10.1109/59.485989
10.1109/TPWRS.2010.2059716
10.1109/ACCESS.2018.2861319
10.1016/j.apenergy.2009.10.013
10.1016/0378-7796(94)90006-X
10.1016/S0142-0615(98)00013-1
10.1016/j.energy.2016.02.041
10.1016/j.swevo.2017.08.002
10.7763/IJCEE.2011.V3.427
10.1016/j.energy.2019.116001
10.1109/TENCON.1993.320573
10.1016/j.ijepes.2009.06.019
10.1109/59.801925
10.1057/jors.1988.54
10.1049/iet-gtd.2015.0201
10.1016/j.asoc.2010.05.006
10.1177/0020294019890630
10.1016/j.epsr.2005.07.002
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125697
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125697
S036054422202583X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-55fc0c99b762996e8f17bf87155ecfc7b3d929a0e75d6517608a7360e5fe3f273
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878823300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Wed Oct 01 14:35:20 EDT 2025
Sat Nov 29 06:35:16 EST 2025
Tue Nov 18 21:49:27 EST 2025
Sat Nov 16 15:58:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coyote optimization algorithm
Generation scheduling
Unit commitment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-55fc0c99b762996e8f17bf87155ecfc7b3d929a0e75d6517608a7360e5fe3f273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153826049
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153826049
crossref_citationtrail_10_1016_j_energy_2022_125697
crossref_primary_10_1016_j_energy_2022_125697
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125697
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Juste, Kita, Tanaka, Hasegawa (bib74) 1999; 14
Ali, Abd-Elazim (bib54) 2018; 30
Singhal, Naresh, Sharma, Kumar (bib57) 2014
Asokan, Ashokkumar (bib34) 2014; 13
Zand, Bigdeli, Azizian (bib38) July 2016; 3
Moores (bib49) 1988; 39
Yu, Zhang (bib70) 2014; 61
Panwar, Reddy, Verma, Panigrahi, Kumar (bib67) 2018; 38
Arfaoui, Hegazy, Al-Dhaifallah, Ibrahim, Mami (bib43) 2020; 13
Guesmi, Alshammari, Almalaq, Alateeq, Alqunun (bib45) 2021; 13
Elsayed, Maklad, Farrag (bib53) December 2017
Muralikrishan, Jebaraj, Rajan (bib3) 2020; 8
Nieva, Inda, Guillen (bib48) 1987; 7
Patra, Goswami, Goswami (bib64) 2008; 36
Wood, Wollenberg, Sheble (bib1) 2013
Eslamian, Hosseinian, Vahidi (bib75) 2009; 24
Chandrasekaran, Hemamalini, Simon, Padhy (bib77) 2012; 84
Shahid, Malik, Said (bib63) 2021; 29
Pierezan, Coelho, Mariani, Segundo, Prayogo (bib40) 2020; 242
Ma, El-Keib, Smith, Ma (bib15) Jul. 1995; 34
Wang, Singh (bib19) Jun. 2009; 9
Darvishan, Mollashahi, Ghaffari, Lariche (bib24) Aug. 2019; 40
Abdelaziz, Ali, Abd-Elazim (bib55) 2016; 101C
Yuan, Nie, Su, Wang, Yuan (bib69) 2009; 36
Mallipeddi, Suganthan (bib2) 2014; 6
Barati, Farsangi (bib27) 2014; 8
Senthil Kumar, Mohan (bib18) Feb. 2010; 32
Singhal, Sharma (bib51) 2011
Senjyu, Yamashiro, Uezato, Funabashi (bib73) 2002; vol. 1
Purl, Narang, Jain, Chauhan (bib58) 2012; 2
Pourjamal, Ravadanegh (bib76) 2013; 46
Dieu, Ongsakul (bib12) Mar. 2008; 78
Hadji, Vahidi (bib59) Feb. 2012; 27
Yuan, Wang, Wang, Yildizbasi (bib42) Nov 2020; 6
Sheble, Maifeld, Brittig, Fahd, Fukurozaki-Coppinger (bib16) 1996; 18
Merlin, Sandrin (bib47) 1983; 102
Jacob Raglend, Raghuveer, Rakesh Avinash, Padhy, Kothari (bib20) 2010; 10
Pierezan, Coelho (bib39) July 2018
Rong, Luh, Lahdelma (bib11) 2016; 10
Hussein, Jaber (bib62) 2020; 53
Cheng, Liu, Liu (bib72) May 2000; 15
Abu Jasser (bib7) December 2011; 3
Abdelaziz, Kamh, Mekhamer, Badr (bib71) 2010; 2
Senjyu, Miyagi, Saber, Urasaki, Funabashi (bib8) Mar. 2006; 76
Kazarlis, Bakirtzis, Petridis (bib68) Feb. 1996; 11
Pappala, Erlich (bib21) 2010; 25
Chung, Han, Kit Po (bib65) 2011; 26
Benhamida, Abdallah, Rashed (bib60) 2007
Kuo, Lu (bib13) Jul. 2015; 38
Georgopoulou, Giannakoglou (bib25) May 2010; 87
Grey, Sekar (bib10) Nov. 2008; 2
Montero, Bello, Reneses (bib4) 2022; 15
Quan, Jian, Yang (bib9) May 2015; 67
D. P. Kothari, and A. Ahmad, “An expert system Approach to unit commitment problem”, IEEE TENCON '93/Beifng, pp. 5-8.
Singhal (bib56) Dec 2011
Orero, Irving (bib32) Dec. 1997; 43
Qais, Hasanien, Alghuwainem, Nouh (bib44) 2019; 187
Ting, Rao, Loo, Ngu (bib33) Dec. 2003; 9
Pappala, Erlich (bib61) 2008
Yuan, Nie, Su, Wang, Yuan (bib22) 2009; 36
Nguyen, Nguyen, Nguyen (bib46) 2021; 33
Najafi, pourjamal (bib36) 2012; 14
Simopoulos, Kavatza, Vournas (bib37) 2006; 21
Anand, Narang, Dhillon (bib23) Apr. 2019; 172
Swarup, Yamashiro (bib17) 2002; 17
Yalcinoz, Short, Cory (bib6) 1999
Daimari, Goswami (bib28) December-2016; 5
Surekha, Archana, Sumathi (bib26) 2012; 7
Han, Wang, Zhang, Chen (bib29) 2013
Panwar, Reddy, Kumar (bib66) 2015; 6
Singhal, Sharma, Naresh (bib30) 2015; 9
Chang, Chen (bib35) Nov. 2007; 28
Sheble, Maifeld (bib14) Jul. 1994; 30
Zhao, Liu, Zhou, Guo, Qi (bib31) 2018; 6
Sen, Kothari (bib50) 1998; 20
Moradi, Khanmohammadi, Hagh, Mohammadiivatloo (bib52) 2015; 88
Pierezan, Coelho, Mariani, Lebensztajn (bib41) July 2019
Quan (10.1016/j.energy.2022.125697_bib9) 2015; 67
Eslamian (10.1016/j.energy.2022.125697_bib75) 2009; 24
Singhal (10.1016/j.energy.2022.125697_bib51) 2011
Orero (10.1016/j.energy.2022.125697_bib32) 1997; 43
Chung (10.1016/j.energy.2022.125697_bib65) 2011; 26
Simopoulos (10.1016/j.energy.2022.125697_bib37) 2006; 21
Asokan (10.1016/j.energy.2022.125697_bib34) 2014; 13
Chang (10.1016/j.energy.2022.125697_bib35) 2007; 28
Han (10.1016/j.energy.2022.125697_bib29) 2013
Singhal (10.1016/j.energy.2022.125697_bib30) 2015; 9
Pierezan (10.1016/j.energy.2022.125697_bib39) 2018
Jacob Raglend (10.1016/j.energy.2022.125697_bib20) 2010; 10
Yu (10.1016/j.energy.2022.125697_bib70) 2014; 61
Kazarlis (10.1016/j.energy.2022.125697_bib68) 1996; 11
Guesmi (10.1016/j.energy.2022.125697_bib45) 2021; 13
Ma (10.1016/j.energy.2022.125697_bib15) 1995; 34
Darvishan (10.1016/j.energy.2022.125697_bib24) 2019; 40
Wood (10.1016/j.energy.2022.125697_bib1) 2013
Abdelaziz (10.1016/j.energy.2022.125697_bib55) 2016; 101C
Panwar (10.1016/j.energy.2022.125697_bib66) 2015; 6
Singhal (10.1016/j.energy.2022.125697_bib57) 2014
Zand (10.1016/j.energy.2022.125697_bib38) 2016; 3
Surekha (10.1016/j.energy.2022.125697_bib26) 2012; 7
Hadji (10.1016/j.energy.2022.125697_bib59) 2012; 27
Shahid (10.1016/j.energy.2022.125697_bib63) 2021; 29
Senjyu (10.1016/j.energy.2022.125697_bib8) 2006; 76
Sheble (10.1016/j.energy.2022.125697_bib14) 1994; 30
Merlin (10.1016/j.energy.2022.125697_bib47) 1983; 102
Najafi (10.1016/j.energy.2022.125697_bib36) 2012; 14
Dieu (10.1016/j.energy.2022.125697_bib12) 2008; 78
Senthil Kumar (10.1016/j.energy.2022.125697_bib18) 2010; 32
Moradi (10.1016/j.energy.2022.125697_bib52) 2015; 88
Muralikrishan (10.1016/j.energy.2022.125697_bib3) 2020; 8
Nguyen (10.1016/j.energy.2022.125697_bib46) 2021; 33
Anand (10.1016/j.energy.2022.125697_bib23) 2019; 172
Mallipeddi (10.1016/j.energy.2022.125697_bib2) 2014; 6
Daimari (10.1016/j.energy.2022.125697_bib28) 2016; 5
Grey (10.1016/j.energy.2022.125697_bib10) 2008; 2
Pierezan (10.1016/j.energy.2022.125697_bib40) 2020; 242
Sen (10.1016/j.energy.2022.125697_bib50) 1998; 20
Abu Jasser (10.1016/j.energy.2022.125697_bib7) 2011; 3
Kuo (10.1016/j.energy.2022.125697_bib13) 2015; 38
Patra (10.1016/j.energy.2022.125697_bib64) 2008; 36
Yuan (10.1016/j.energy.2022.125697_bib42) 2020; 6
Ting (10.1016/j.energy.2022.125697_bib33) 2003; 9
Swarup (10.1016/j.energy.2022.125697_bib17) 2002; 17
Pierezan (10.1016/j.energy.2022.125697_bib41) 2019
Pappala (10.1016/j.energy.2022.125697_bib21) 2010; 25
Singhal (10.1016/j.energy.2022.125697_bib56) 2011
Montero (10.1016/j.energy.2022.125697_bib4) 2022; 15
Zhao (10.1016/j.energy.2022.125697_bib31) 2018; 6
Senjyu (10.1016/j.energy.2022.125697_bib73) 2002; vol. 1
Barati (10.1016/j.energy.2022.125697_bib27) 2014; 8
Yuan (10.1016/j.energy.2022.125697_bib69) 2009; 36
Nieva (10.1016/j.energy.2022.125697_bib48) 1987; 7
Abdelaziz (10.1016/j.energy.2022.125697_bib71) 2010; 2
10.1016/j.energy.2022.125697_bib5
Cheng (10.1016/j.energy.2022.125697_bib72) 2000; 15
Juste (10.1016/j.energy.2022.125697_bib74) 1999; 14
Pourjamal (10.1016/j.energy.2022.125697_bib76) 2013; 46
Yalcinoz (10.1016/j.energy.2022.125697_bib6) 1999
Chandrasekaran (10.1016/j.energy.2022.125697_bib77) 2012; 84
Moores (10.1016/j.energy.2022.125697_bib49) 1988; 39
Purl (10.1016/j.energy.2022.125697_bib58) 2012; 2
Hussein (10.1016/j.energy.2022.125697_bib62) 2020; 53
Arfaoui (10.1016/j.energy.2022.125697_bib43) 2020; 13
Yuan (10.1016/j.energy.2022.125697_bib22) 2009; 36
Qais (10.1016/j.energy.2022.125697_bib44) 2019; 187
Rong (10.1016/j.energy.2022.125697_bib11) 2016; 10
Benhamida (10.1016/j.energy.2022.125697_bib60) 2007
Pappala (10.1016/j.energy.2022.125697_bib61) 2008
Sheble (10.1016/j.energy.2022.125697_bib16) 1996; 18
Ali (10.1016/j.energy.2022.125697_bib54) 2018; 30
Wang (10.1016/j.energy.2022.125697_bib19) 2009; 9
Panwar (10.1016/j.energy.2022.125697_bib67) 2018; 38
Georgopoulou (10.1016/j.energy.2022.125697_bib25) 2010; 87
Elsayed (10.1016/j.energy.2022.125697_bib53) 2017
References_xml – start-page: 19
  year: December 2017
  end-page: 21
  ident: bib53
  article-title: A new priority list unit commitment method for large-scale power systems
  publication-title: Proceedings of the 2017 nineteenth international Middle East Power Systems Conference (MEPCON), Cairo, Egypt
– volume: 20
  start-page: 443
  year: 1998
  end-page: 451
  ident: bib50
  article-title: Optimal thermal generating unit commitment: a review
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 3131
  year: 2021
  ident: bib45
  article-title: New coordinated tuning of SVC and PSSs in multimachine power system using coyote optimization algorithm
  publication-title: Sustainability
– volume: 61
  start-page: 510
  year: 2014
  end-page: 522
  ident: bib70
  article-title: Unit commitment using Lagrangian relaxation and particle swarm optimization
  publication-title: Electr. Power Energy Syst.
– volume: 40
  start-page: 594
  year: Aug. 2019
  end-page: 599
  ident: bib24
  article-title: Unit commitment-based load uncertainties based on improved particle swarm optimisation
  publication-title: Int J Ambient Energy
– volume: 14
  start-page: 2005
  year: 2012
  end-page: 2011
  ident: bib36
  article-title: A new heuristic algorithm for unit commitment problem
  publication-title: Energy Proc
– volume: 46
  start-page: 211
  year: 2013
  end-page: 220
  ident: bib76
  article-title: HSA based solution to the UC problem
  publication-title: Int J Electr Power Energy Syst
– volume: 18
  start-page: 339
  year: 1996
  end-page: 346
  ident: bib16
  article-title: Unit commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm-economic dispatch example
  publication-title: Elect. Power Energy Syst.
– volume: 9
  start-page: 1697
  year: 2015
  end-page: 1707, Oct
  ident: bib30
  article-title: Binary fish swarm algorithm for profit-based unit commitment problem in competitive electricity market with ramp rate constraints
  publication-title: IET Gener, Transm Distrib
– volume: 6
  start-page: 87
  year: 2015
  end-page: 101
  ident: bib66
  article-title: Binary fireworks algorithm based thermal unit commitment
  publication-title: Int J Swarm Intell Res (IJSIR)
– volume: 8
  start-page: 132980
  year: 2020
  end-page: 133014
  ident: bib3
  article-title: A comprehensive review on evolutionary optimization techniques applied for unit commitment problem
  publication-title: IEEE Access
– volume: 88
  start-page: 244
  year: 2015
  end-page: 259
  ident: bib52
  article-title: Semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem
  publication-title: Energy
– volume: 7
  start-page: 52
  year: 1987
  ident: bib48
  article-title: Lagrangian reduction of search-range for large scale unit commitment
  publication-title: IEEE Power Eng Rev
– start-page: 714
  year: 2011
  end-page: 717
  ident: bib51
  article-title: Dynamic programming approach for large scale unit commitment problem
  publication-title: 2011 International Conference
– volume: 38
  start-page: 547
  year: Jul. 2015
  end-page: 561
  ident: bib13
  article-title: Random feasible directions algorithm with a generalized Lagrangian relaxation algorithm for solving unit commitment problem
  publication-title: J Chin Inst Eng
– volume: 14
  start-page: 1452
  year: 1999
  end-page: 1459, Nov
  ident: bib74
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Trans Power Syst
– volume: 17
  start-page: 87
  year: 2002
  end-page: 91
  ident: bib17
  article-title: Unit commitment solution methodology using genetic algorithm
  publication-title: IEEE Trans Power Syst
– volume: 32
  start-page: 117
  year: Feb. 2010
  end-page: 125
  ident: bib18
  article-title: Solution to security constrained unit commitment problem using genetic algorithm
  publication-title: Int J Electr Power Energy Syst
– start-page: 2633
  year: July 2018
  end-page: 2640
  ident: bib39
  article-title: Coyote optimization algorithm: a new metaheuristic for global optimization problems
  publication-title: Proceedings of the IEEE congress on evolutionary computation (CEC)
– volume: 36
  start-page: 8049
  year: 2009
  end-page: 8055
  ident: bib69
  article-title: An improved binary particle swarm optimization for unit commitment problem
  publication-title: Expert Syst Appl
– volume: 6
  start-page: 43535
  year: 2018
  end-page: 43545
  ident: bib31
  article-title: An improved binary cuckoo search algorithm for solving unit commitment problems: methodological description
  publication-title: IEEE Access
– volume: 13
  start-page: 4473
  year: 2020
  ident: bib43
  article-title: Simulation- based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system
  publication-title: Energies
– volume: 242
  year: 2020
  ident: bib40
  article-title: Chaotic coyote algorithm applied to truss optimization problems
  publication-title: Comput Struct
– volume: 2
  start-page: 9
  year: 2012
  end-page: 16
  ident: bib58
  article-title: Unit commitment using particle swarm optimization
  publication-title: BIOINFO Comput Optim
– volume: 10
  start-page: 1247
  year: 2010
  end-page: 1256, Sep
  ident: bib20
  article-title: Solution to profit based unit commitment problem using particle swarm optimization
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib61
  article-title: A new approach for solving the unit commitment problem by adaptive particle swarm optimization
  publication-title: Power and energy society general meeting-conversion and delivery of electrical energy in the 21st century
– volume: 30
  start-page: 115
  year: Jul. 1994
  end-page: 121
  ident: bib14
  article-title: Unit commitment by genetic algorithm and expert system
  publication-title: Elec Power Syst Res
– start-page: 1
  year: Dec 2011
  end-page: 6
  ident: bib56
  article-title: Generation scheduling methodology for thermal units using Lagrangian relaxation
  publication-title: Proc. 2nd IEEE int. Conf. Current trends in technology
– volume: 87
  start-page: 1782
  year: May 2010
  end-page: 1792
  ident: bib25
  article-title: Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages
  publication-title: Appl Energy
– volume: 28
  start-page: 965
  year: Nov. 2007
  end-page: 984
  ident: bib35
  article-title: Optimal unit commitment decision with risk assessment using tabu search
  publication-title: J Inf Optim Sci
– volume: 43
  start-page: 149
  year: Dec. 1997
  end-page: 156
  ident: bib32
  article-title: A combination of the genetic algorithm and Lagrangian relaxation decomposition techniques for the generation unit commitment problem
  publication-title: Elec Power Syst Res
– volume: vol. 1
  start-page: 58
  year: 2002
  end-page: 63
  ident: bib73
  article-title: A unit commitment problem by using genetic algorithm based on characteristic classification
  publication-title: Proc. IEEE/Power eng Soc Winter meet
– volume: 24
  start-page: 1478
  year: 2009
  end-page: 1488, Aug
  ident: bib75
  article-title: Bacterial foraging-based solution to the unit commitment problem
  publication-title: IEEE Trans Power Syst
– volume: 13
  start-page: 523
  year: 2014
  end-page: 542
  ident: bib34
  article-title: Emission controlled profit based unit commitment for GENCOs using MPPD table with ABC algorithm under competitive environment
  publication-title: WSEAS Trans Syst
– volume: 11
  start-page: 83
  year: Feb. 1996
  end-page: 92
  ident: bib68
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Trans Power Syst
– volume: 36
  start-page: 771
  year: 2008
  end-page: 787
  ident: bib64
  article-title: Differential evolution algorithm for solving unit commitment with ramp constraints
  publication-title: Elec Power Compon Syst
– volume: 53
  start-page: 320
  year: 2020
  end-page: 327
  ident: bib62
  article-title: Unit commitment based on modified firefly algorithm
  publication-title: Measurem Control
– volume: 5
  start-page: 221
  year: December-2016
  end-page: 225
  ident: bib28
  article-title: Firefly based unit commitment
  publication-title: Int J Eng Res Technol
– volume: 10
  start-page: 1054
  year: 2016
  end-page: 1061
  ident: bib11
  article-title: Dynamic programming based algorithm for the unit commitment of the transmission-constrained multi-site combined heat and power system
  publication-title: Int. J Comput Syst Eng
– volume: 34
  start-page: 29
  year: Jul. 1995
  end-page: 36
  ident: bib15
  article-title: A genetic algorithm based approach to thermal unit commitment of electric power systems
  publication-title: Elec Power Syst Res
– volume: 33
  start-page: 12209
  year: 2021
  end-page: 12236
  ident: bib46
  article-title: Optimal radial topology of electric unbalanced and balanced distribution system using improved coyote optimization algorithm for power loss reduction
  publication-title: Neural Comput Appl
– volume: 9
  start-page: 947
  year: Jun. 2009
  end-page: 953
  ident: bib19
  article-title: Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm
  publication-title: Appl Soft Comput
– volume: 3
  year: July 2016
  ident: bib38
  article-title: A modified ant colony algorithm for solving the unit commitment problem
  publication-title: Advanced Energy: Int J
– volume: 187
  start-page: 116001
  year: 2019
  ident: bib44
  article-title: Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules
  publication-title: Energy
– volume: 8
  start-page: 1050
  year: 2014
  end-page: 1060, Jun
  ident: bib27
  article-title: Solving unit commitment problem by a binary shuffled frog leaping algorithm
  publication-title: IET Gener, Transm Distrib
– volume: 6
  start-page: 71
  year: 2014
  end-page: 90
  ident: bib2
  article-title: Unit commitment -A survey and comparison of conventional and nature inspired algorithms
  publication-title: Int J Bio-Inspired Comput
– volume: 76
  start-page: 283
  year: Mar. 2006
  end-page: 292
  ident: bib8
  article-title: Emerging solution of large-scale unit commitment problem by stochastic priority list
  publication-title: Elec Power Syst Res
– volume: 26
  start-page: 847
  year: 2011
  end-page: 854
  ident: bib65
  article-title: An advanced quantum-inspired evolutionary algorithm for unit commitment
  publication-title: IEEE Trans Power Syst
– volume: 27
  start-page: 117
  year: Feb. 2012
  end-page: 124
  ident: bib59
  article-title: A solution to the unit commitment problem using imperialistic competition algorithm
  publication-title: IEEE Trans Power Syst
– volume: 15
  start-page: 1
  year: 2022
  end-page: 40
  ident: bib4
  article-title: A review on the unit commitment problem: approaches, techniques, and resolution methods
  publication-title: Energies
– volume: 6
  start-page: 1106
  year: Nov 2020
  end-page: 1117
  ident: bib42
  article-title: Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC mode
  publication-title: Energy Rep
– volume: 2
  start-page: 37
  year: 2010
  end-page: 49
  ident: bib71
  article-title: An augmented hopfield neural network for optimal thermal unit commitment
  publication-title: Int. J. of Power System Optimization, Vo.
– volume: 15
  start-page: 707
  year: May 2000
  end-page: 714
  ident: bib72
  article-title: Unit commitment by Lagrangian relaxation and genetic algorithms
  publication-title: IEEE Trans Power Syst
– start-page: 15
  year: July 2019
  end-page: 19
  ident: bib41
  article-title: Multiobjective coyote algorithm applied to electromagnetic optimization
  publication-title: 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)
– volume: 101C
  start-page: 506
  year: 2016
  end-page: 518
  ident: bib55
  article-title: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems
  publication-title: Energy
– volume: 78
  start-page: 291
  year: Mar. 2008
  end-page: 301
  ident: bib12
  article-title: Ramp rate constrained unit commitment by improved priority list and augmented Lagrange hopfield network
  publication-title: Elec Power Syst Res
– volume: 21
  start-page: 193
  year: 2006
  end-page: 201
  ident: bib37
  article-title: Unit commitment by an enhanced simulated annealing algorithm
  publication-title: IEEE Trans Power Syst
– volume: 38
  start-page: 251
  year: 2018
  end-page: 266
  ident: bib67
  article-title: Binary grey wolf optimizer for large scale unit commitment problem
  publication-title: Swarm Evol Comput
– year: 2007
  ident: bib60
  article-title: Thermal unit commitment solution using an improved Lagrangian relaxation
  publication-title: Int. Conference on renewable energies and power quality (ICREPQ), sevilla, Spain
– start-page: 649
  year: 1999
  end-page: 654
  ident: bib6
  article-title: Application of neural networks to unit commitment”
– volume: 102
  start-page: 1218
  year: 1983
  end-page: 1225
  ident: bib47
  article-title: A new method for unit commitment at electricite de France
  publication-title: IEEE Trans Power Apparatus Syst
– volume: 25
  start-page: 1696
  year: 2010
  end-page: 1704, Aug
  ident: bib21
  article-title: A variable-dimension optimization approach to unit commitment problem
  publication-title: IEEE Trans Power Syst
– volume: 29
  start-page: 944
  year: 2021
  end-page: 961
  ident: bib63
  article-title: Heuristic based binary grasshopper optimization algorithm to solve unit commitment problem
  publication-title: Turk J Electr Eng Comput Sci
– volume: 84
  start-page: 109
  year: 2012
  end-page: 119
  ident: bib77
  article-title: Thermal unit commitment using binary/real coded artificial bee colony algorithm
  publication-title: Elec Power Syst Res
– volume: 67
  start-page: 278
  year: May 2015
  end-page: 285
  ident: bib9
  article-title: An improved priority list and neighborhood search method for unit commitment
  publication-title: Elect. Power Energy Syst.
– reference: D. P. Kothari, and A. Ahmad, “An expert system Approach to unit commitment problem”, IEEE TENCON '93/Beifng, pp. 5-8.
– year: 2014
  ident: bib57
  article-title: Solution of unit commitment problem using enhanced genetic algorithm
  publication-title: 2014 eighteenth national power systems conference
– volume: 7
  start-page: 159
  year: 2012
  end-page: 171
  ident: bib26
  article-title: Unit commitment and economic load dispatch using self adaptive differential evolution
  publication-title: WSEAS Trans Power Syst
– start-page: 1
  year: 2013
  end-page: 11
  ident: bib29
  article-title: A unit commitment model with implicit reserve constraint based on an improved artificial fish swarm algorithm
  publication-title: Math Probl Eng
– volume: 9
  start-page: 507
  year: Dec. 2003
  end-page: 520
  ident: bib33
  article-title: Solving unit commitment problem using hybrid particle swarm optimization
  publication-title: J Heuristics
– volume: 36
  start-page: 8049
  year: 2009
  end-page: 8055
  ident: bib22
  article-title: An improved binary particle swarm optimization for unit commitment problem
  publication-title: Expert Syst Appl
– volume: 3
  start-page: 824
  year: December 2011
  end-page: 829
  ident: bib7
  article-title: Solving the unit commitment problem using fuzzy logic
  publication-title: Int J Comput Electric Eng
– volume: 39
  start-page: 322
  year: 1988
  ident: bib49
  article-title: Dynamic programming versus conventional optimization: response
  publication-title: J Oper Res Soc
– year: 2013
  ident: bib1
  article-title: Power generation, operation and control
– volume: 2
  start-page: 856
  year: Nov. 2008
  end-page: 867
  ident: bib10
  article-title: Unified solution of security-constrained unit commitment problem using a linear programming methodology
  publication-title: IET Gener, Transm Distrib
– volume: 172
  start-page: 794
  year: Apr. 2019
  end-page: 807
  ident: bib23
  article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization
  publication-title: Energy
– volume: 30
  start-page: 261
  year: 2018
  end-page: 270
  ident: bib54
  article-title: Mine blast algorithm for environmental economic load dispatch with valve loading effect
  publication-title: Neural Comput Appl
– volume: 67
  start-page: 278
  year: 2015
  ident: 10.1016/j.energy.2022.125697_bib9
  article-title: An improved priority list and neighborhood search method for unit commitment
  publication-title: Elect. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.11.025
– volume: 13
  start-page: 523
  year: 2014
  ident: 10.1016/j.energy.2022.125697_bib34
  article-title: Emission controlled profit based unit commitment for GENCOs using MPPD table with ABC algorithm under competitive environment
  publication-title: WSEAS Trans Syst
– volume: 6
  start-page: 71
  issue: No. 2
  year: 2014
  ident: 10.1016/j.energy.2022.125697_bib2
  article-title: Unit commitment -A survey and comparison of conventional and nature inspired algorithms
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2014.060609
– start-page: 15
  year: 2019
  ident: 10.1016/j.energy.2022.125697_bib41
  article-title: Multiobjective coyote algorithm applied to electromagnetic optimization
– volume: 17
  start-page: 87
  issue: No. 1
  year: 2002
  ident: 10.1016/j.energy.2022.125697_bib17
  article-title: Unit commitment solution methodology using genetic algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.982197
– volume: 8
  start-page: 1050
  issue: No. 6
  year: 2014
  ident: 10.1016/j.energy.2022.125697_bib27
  article-title: Solving unit commitment problem by a binary shuffled frog leaping algorithm
  publication-title: IET Gener, Transm Distrib
  doi: 10.1049/iet-gtd.2013.0436
– volume: 13
  start-page: 4473
  year: 2020
  ident: 10.1016/j.energy.2022.125697_bib43
  article-title: Simulation- based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system
  publication-title: Energies
  doi: 10.3390/en13174473
– volume: 88
  start-page: 244
  year: 2015
  ident: 10.1016/j.energy.2022.125697_bib52
  article-title: Semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.102
– start-page: 1
  year: 2008
  ident: 10.1016/j.energy.2022.125697_bib61
  article-title: A new approach for solving the unit commitment problem by adaptive particle swarm optimization
– volume: 7
  start-page: 159
  issue: No. 1
  year: 2012
  ident: 10.1016/j.energy.2022.125697_bib26
  article-title: Unit commitment and economic load dispatch using self adaptive differential evolution
  publication-title: WSEAS Trans Power Syst
– volume: 13
  start-page: 3131
  issue: No. 6
  year: 2021
  ident: 10.1016/j.energy.2022.125697_bib45
  article-title: New coordinated tuning of SVC and PSSs in multimachine power system using coyote optimization algorithm
  publication-title: Sustainability
  doi: 10.3390/su13063131
– volume: 2
  start-page: 37
  issue: No. 1
  year: 2010
  ident: 10.1016/j.energy.2022.125697_bib71
  article-title: An augmented hopfield neural network for optimal thermal unit commitment
  publication-title: Int. J. of Power System Optimization, Vo.
– volume: 24
  start-page: 1478
  issue: No. 3
  year: 2009
  ident: 10.1016/j.energy.2022.125697_bib75
  article-title: Bacterial foraging-based solution to the unit commitment problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2021216
– volume: 15
  start-page: 707
  issue: No. 2
  year: 2000
  ident: 10.1016/j.energy.2022.125697_bib72
  article-title: Unit commitment by Lagrangian relaxation and genetic algorithms
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.867163
– volume: 27
  start-page: 117
  issue: No. 1
  year: 2012
  ident: 10.1016/j.energy.2022.125697_bib59
  article-title: A solution to the unit commitment problem using imperialistic competition algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2158010
– start-page: 649
  year: 1999
  ident: 10.1016/j.energy.2022.125697_bib6
– volume: 9
  start-page: 507
  issue: No. 6
  year: 2003
  ident: 10.1016/j.energy.2022.125697_bib33
  article-title: Solving unit commitment problem using hybrid particle swarm optimization
  publication-title: J Heuristics
  doi: 10.1023/B:HEUR.0000012449.84567.1a
– volume: 10
  start-page: 1054
  issue: No.8
  year: 2016
  ident: 10.1016/j.energy.2022.125697_bib11
  article-title: Dynamic programming based algorithm for the unit commitment of the transmission-constrained multi-site combined heat and power system
  publication-title: Int. J Comput Syst Eng
– volume: 30
  start-page: 261
  issue: No. 1
  year: 2018
  ident: 10.1016/j.energy.2022.125697_bib54
  article-title: Mine blast algorithm for environmental economic load dispatch with valve loading effect
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2650-8
– year: 2014
  ident: 10.1016/j.energy.2022.125697_bib57
  article-title: Solution of unit commitment problem using enhanced genetic algorithm
– volume: 14
  start-page: 2005
  year: 2012
  ident: 10.1016/j.energy.2022.125697_bib36
  article-title: A new heuristic algorithm for unit commitment problem
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2011.12.1201
– volume: 242
  issue: Jan
  year: 2020
  ident: 10.1016/j.energy.2022.125697_bib40
  article-title: Chaotic coyote algorithm applied to truss optimization problems
  publication-title: Comput Struct
– volume: 9
  start-page: 947
  issue: No. 3
  year: 2009
  ident: 10.1016/j.energy.2022.125697_bib19
  article-title: Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2008.11.010
– volume: 102
  start-page: 1218
  issue: No. 5
  year: 1983
  ident: 10.1016/j.energy.2022.125697_bib47
  article-title: A new method for unit commitment at electricite de France
  publication-title: IEEE Trans Power Apparatus Syst
  doi: 10.1109/TPAS.1983.318063
– start-page: 1
  year: 2013
  ident: 10.1016/j.energy.2022.125697_bib29
  article-title: A unit commitment model with implicit reserve constraint based on an improved artificial fish swarm algorithm
  publication-title: Math Probl Eng
– volume: 2
  start-page: 856
  issue: No. 6
  year: 2008
  ident: 10.1016/j.energy.2022.125697_bib10
  article-title: Unified solution of security-constrained unit commitment problem using a linear programming methodology
  publication-title: IET Gener, Transm Distrib
  doi: 10.1049/iet-gtd:20070367
– volume: 38
  start-page: 547
  issue: 5
  year: 2015
  ident: 10.1016/j.energy.2022.125697_bib13
  article-title: Random feasible directions algorithm with a generalized Lagrangian relaxation algorithm for solving unit commitment problem
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2014.999865
– volume: 29
  start-page: 944
  year: 2021
  ident: 10.1016/j.energy.2022.125697_bib63
  article-title: Heuristic based binary grasshopper optimization algorithm to solve unit commitment problem
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-2004-144
– volume: 61
  start-page: 510
  year: 2014
  ident: 10.1016/j.energy.2022.125697_bib70
  article-title: Unit commitment using Lagrangian relaxation and particle swarm optimization
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.03.061
– volume: 25
  start-page: 1696
  issue: No. 3
  year: 2010
  ident: 10.1016/j.energy.2022.125697_bib21
  article-title: A variable-dimension optimization approach to unit commitment problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2038921
– volume: 84
  start-page: 109
  year: 2012
  ident: 10.1016/j.energy.2022.125697_bib77
  article-title: Thermal unit commitment using binary/real coded artificial bee colony algorithm
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2011.09.022
– volume: 2
  start-page: 9
  issue: Issue 1
  year: 2012
  ident: 10.1016/j.energy.2022.125697_bib58
  article-title: Unit commitment using particle swarm optimization
  publication-title: BIOINFO Comput Optim
– volume: 36
  start-page: 8049
  year: 2009
  ident: 10.1016/j.energy.2022.125697_bib69
  article-title: An improved binary particle swarm optimization for unit commitment problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.10.047
– volume: 78
  start-page: 291
  issue: 3
  year: 2008
  ident: 10.1016/j.energy.2022.125697_bib12
  article-title: Ramp rate constrained unit commitment by improved priority list and augmented Lagrange hopfield network
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2007.02.011
– volume: 6
  start-page: 1106
  year: 2020
  ident: 10.1016/j.energy.2022.125697_bib42
  article-title: Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC mode
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.04.032
– volume: 46
  start-page: 211
  year: 2013
  ident: 10.1016/j.energy.2022.125697_bib76
  article-title: HSA based solution to the UC problem
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.10.042
– start-page: 2633
  year: 2018
  ident: 10.1016/j.energy.2022.125697_bib39
  article-title: Coyote optimization algorithm: a new metaheuristic for global optimization problems
– volume: 36
  start-page: 8049
  issue: No. 4
  year: 2009
  ident: 10.1016/j.energy.2022.125697_bib22
  article-title: An improved binary particle swarm optimization for unit commitment problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.10.047
– volume: 36
  start-page: 771
  issue: No. 8
  year: 2008
  ident: 10.1016/j.energy.2022.125697_bib64
  article-title: Differential evolution algorithm for solving unit commitment with ramp constraints
  publication-title: Elec Power Compon Syst
  doi: 10.1080/15325000801911377
– volume: 8
  start-page: 132980
  year: 2020
  ident: 10.1016/j.energy.2022.125697_bib3
  article-title: A comprehensive review on evolutionary optimization techniques applied for unit commitment problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010275
– volume: 21
  start-page: 193
  issue: No.1
  year: 2006
  ident: 10.1016/j.energy.2022.125697_bib37
  article-title: Unit commitment by an enhanced simulated annealing algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.860922
– volume: 40
  start-page: 594
  issue: No. 6
  year: 2019
  ident: 10.1016/j.energy.2022.125697_bib24
  article-title: Unit commitment-based load uncertainties based on improved particle swarm optimisation
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2017.1423384
– volume: 172
  start-page: 794
  year: 2019
  ident: 10.1016/j.energy.2022.125697_bib23
  article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.155
– volume: 43
  start-page: 149
  issue: No. 3
  year: 1997
  ident: 10.1016/j.energy.2022.125697_bib32
  article-title: A combination of the genetic algorithm and Lagrangian relaxation decomposition techniques for the generation unit commitment problem
  publication-title: Elec Power Syst Res
  doi: 10.1016/S0378-7796(97)01175-9
– volume: 18
  start-page: 339
  issue: No. 6
  year: 1996
  ident: 10.1016/j.energy.2022.125697_bib16
  article-title: Unit commitment by genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm-economic dispatch example
  publication-title: Elect. Power Energy Syst.
  doi: 10.1016/0142-0615(95)00013-5
– volume: 7
  start-page: 52
  issue: No. 5
  year: 1987
  ident: 10.1016/j.energy.2022.125697_bib48
  article-title: Lagrangian reduction of search-range for large scale unit commitment
  publication-title: IEEE Power Eng Rev
  doi: 10.1109/MPER.1987.5527261
– volume: 6
  start-page: 87
  issue: No. 2
  year: 2015
  ident: 10.1016/j.energy.2022.125697_bib66
  article-title: Binary fireworks algorithm based thermal unit commitment
  publication-title: Int J Swarm Intell Res (IJSIR)
  doi: 10.4018/IJSIR.2015040104
– volume: 3
  issue: No. 2/3
  year: 2016
  ident: 10.1016/j.energy.2022.125697_bib38
  article-title: A modified ant colony algorithm for solving the unit commitment problem
  publication-title: Advanced Energy: Int J
– volume: 34
  start-page: 29
  issue: No. 1
  year: 1995
  ident: 10.1016/j.energy.2022.125697_bib15
  article-title: A genetic algorithm based approach to thermal unit commitment of electric power systems
  publication-title: Elec Power Syst Res
  doi: 10.1016/0378-7796(95)00954-G
– volume: 33
  start-page: 12209
  year: 2021
  ident: 10.1016/j.energy.2022.125697_bib46
  article-title: Optimal radial topology of electric unbalanced and balanced distribution system using improved coyote optimization algorithm for power loss reduction
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06175-4
– volume: 11
  start-page: 83
  issue: No. 1
  year: 1996
  ident: 10.1016/j.energy.2022.125697_bib68
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.485989
– volume: 26
  start-page: 847
  issue: No. 2
  year: 2011
  ident: 10.1016/j.energy.2022.125697_bib65
  article-title: An advanced quantum-inspired evolutionary algorithm for unit commitment
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2059716
– volume: 6
  start-page: 43535
  year: 2018
  ident: 10.1016/j.energy.2022.125697_bib31
  article-title: An improved binary cuckoo search algorithm for solving unit commitment problems: methodological description
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2861319
– start-page: 1
  year: 2011
  ident: 10.1016/j.energy.2022.125697_bib56
  article-title: Generation scheduling methodology for thermal units using Lagrangian relaxation
– volume: 87
  start-page: 1782
  issue: No. 5
  year: 2010
  ident: 10.1016/j.energy.2022.125697_bib25
  article-title: Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.10.013
– volume: vol. 1
  start-page: 58
  year: 2002
  ident: 10.1016/j.energy.2022.125697_bib73
  article-title: A unit commitment problem by using genetic algorithm based on characteristic classification
– volume: 30
  start-page: 115
  issue: No. 2
  year: 1994
  ident: 10.1016/j.energy.2022.125697_bib14
  article-title: Unit commitment by genetic algorithm and expert system
  publication-title: Elec Power Syst Res
  doi: 10.1016/0378-7796(94)90006-X
– volume: 20
  start-page: 443
  issue: No.7
  year: 1998
  ident: 10.1016/j.energy.2022.125697_bib50
  article-title: Optimal thermal generating unit commitment: a review
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/S0142-0615(98)00013-1
– year: 2007
  ident: 10.1016/j.energy.2022.125697_bib60
  article-title: Thermal unit commitment solution using an improved Lagrangian relaxation
– volume: 101C
  start-page: 506
  year: 2016
  ident: 10.1016/j.energy.2022.125697_bib55
  article-title: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.041
– start-page: 714
  year: 2011
  ident: 10.1016/j.energy.2022.125697_bib51
  article-title: Dynamic programming approach for large scale unit commitment problem
– volume: 15
  start-page: 1
  issue: No. 1296
  year: 2022
  ident: 10.1016/j.energy.2022.125697_bib4
  article-title: A review on the unit commitment problem: approaches, techniques, and resolution methods
  publication-title: Energies
– volume: 38
  start-page: 251
  year: 2018
  ident: 10.1016/j.energy.2022.125697_bib67
  article-title: Binary grey wolf optimizer for large scale unit commitment problem
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.08.002
– year: 2013
  ident: 10.1016/j.energy.2022.125697_bib1
– volume: 3
  start-page: 824
  issue: No. 6
  year: 2011
  ident: 10.1016/j.energy.2022.125697_bib7
  article-title: Solving the unit commitment problem using fuzzy logic
  publication-title: Int J Comput Electric Eng
  doi: 10.7763/IJCEE.2011.V3.427
– volume: 187
  start-page: 116001
  issue: No.15
  year: 2019
  ident: 10.1016/j.energy.2022.125697_bib44
  article-title: Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116001
– ident: 10.1016/j.energy.2022.125697_bib5
  doi: 10.1109/TENCON.1993.320573
– volume: 32
  start-page: 117
  issue: No. 2
  year: 2010
  ident: 10.1016/j.energy.2022.125697_bib18
  article-title: Solution to security constrained unit commitment problem using genetic algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2009.06.019
– volume: 14
  start-page: 1452
  year: 1999
  ident: 10.1016/j.energy.2022.125697_bib74
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.801925
– start-page: 19
  year: 2017
  ident: 10.1016/j.energy.2022.125697_bib53
  article-title: A new priority list unit commitment method for large-scale power systems
– volume: 5
  start-page: 221
  issue: No. 12
  year: 2016
  ident: 10.1016/j.energy.2022.125697_bib28
  article-title: Firefly based unit commitment
  publication-title: Int J Eng Res Technol
– volume: 39
  start-page: 322
  issue: 3
  year: 1988
  ident: 10.1016/j.energy.2022.125697_bib49
  article-title: Dynamic programming versus conventional optimization: response
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.1988.54
– volume: 9
  start-page: 1697
  issue: No. 13
  year: 2015
  ident: 10.1016/j.energy.2022.125697_bib30
  article-title: Binary fish swarm algorithm for profit-based unit commitment problem in competitive electricity market with ramp rate constraints
  publication-title: IET Gener, Transm Distrib
  doi: 10.1049/iet-gtd.2015.0201
– volume: 10
  start-page: 1247
  issue: No. 4
  year: 2010
  ident: 10.1016/j.energy.2022.125697_bib20
  article-title: Solution to profit based unit commitment problem using particle swarm optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.05.006
– volume: 28
  start-page: 965
  issue: No. 6
  year: 2007
  ident: 10.1016/j.energy.2022.125697_bib35
  article-title: Optimal unit commitment decision with risk assessment using tabu search
  publication-title: J Inf Optim Sci
– volume: 53
  start-page: 320
  year: 2020
  ident: 10.1016/j.energy.2022.125697_bib62
  article-title: Unit commitment based on modified firefly algorithm
  publication-title: Measurem Control
  doi: 10.1177/0020294019890630
– volume: 76
  start-page: 283
  issue: No. 5
  year: 2006
  ident: 10.1016/j.energy.2022.125697_bib8
  article-title: Emerging solution of large-scale unit commitment problem by stochastic priority list
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2005.07.002
SSID ssj0005899
Score 2.539335
Snippet The aim of the Unit Commitment(UC) problem is to find the optimum scheduling of the total generating units at lower operating costs while achieving the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125697
SubjectTerms algorithms
Canis latrans
Coyote optimization algorithm
electric power
energy
Generation scheduling
statistical analysis
Unit commitment
Title Implementation of coyote optimization algorithm for solving unit commitment problem in power systems
URI https://dx.doi.org/10.1016/j.energy.2022.125697
https://www.proquest.com/docview/3153826049
Volume 263
WOSCitedRecordID wos000878823300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQ4IXBINpGx8yEm-To9SpY-exQkWAYELaQH2L7MSGTGsyNS3q-Os5fyShm2DsgZeoimzLyv18vrv-7g6h10wksQIzgEwYlwTsf0UkT2NSlpRRmWaidPGOrx_58bGYz7PPIaDfunYCvK7FZpNd_FdRwzsQtk2dvYW4-0XhBfwGocMTxA7PfxK8q_e7CClFtaeNXzaWDQDaYRHSLo_k-bdmWa2-LxzPEHbkAgtrOOCWZb6oPPk8tJtxVHPbTi0Ufm634vk-e9CWLd14pvwQW_C517PoJBo4IvKnb-B8En2KjqaqHGKptjZJ5ePc3YwQj6CWjUV8RmafhxUTNpls6VgatJjXkmBUpZ6Ve02B-1jCWaTd3sF_pzQahm_Xy75yj_Xswo64dpb7VXK7Su5XuYt2KGeZGKGd6fvZ_MNABxKu12i_-y7N0nEBr-_mT2bMlQvdWSmnj9DD4F7gqYfFY3RH17vofpd93u6ivdmQ2QgDg2pvn6ByGze4MdjjBv-OG9zjBoOsccANtrjBA25wwA2uauxwgwNunqIvb2enb96R0IKDFEmSrQhjpoiLLFNwZ4JnrIUZc2XAyWZMF6bgKinBvpax5qxM2RhOuZAcPqFmRicGTOM9NKqbWu8jzKVkhUjGVGk1GStbiDEFfzWNjdGKcnOAku6L5kWoT2_bpJznf5PnASL9rAtfn-WG8bwTVh5sTG875oDAG2a-6mSbgwq2_6vJWjfrNk-s1UBT8LUPb7mbZ-jBcISeo9FqudYv0L3ix6pqly8DRH8BQwKsgQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+coyote+optimization+algorithm+for+solving+unit+commitment+problem+in+power+systems&rft.jtitle=Energy+%28Oxford%29&rft.au=Ali%2C+E.S.&rft.au=Elazim%2C+S.M.+Abd&rft.au=Balobaid%2C+A.S.&rft.date=2023-01-15&rft.issn=0360-5442&rft.volume=263&rft.spage=125697&rft_id=info:doi/10.1016%2Fj.energy.2022.125697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon