High-performance simulation of disease outbreaks in growing-finishing pig herds raised by the precision feeding method

•An advanced simulation model of the precision feeding system for pigs is presented.•A state machine behavior model is combined with a resilience and resistance model.•A disease outbreak model is integrated into the advanced precision feeding model.•A high-performance simulation program is created t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers and electronics in agriculture Ročník 225; s. 109335
Hlavní autoři: Pham, Linh Manh, Le, Duc-Toan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2024
Témata:
ISSN:0168-1699
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An advanced simulation model of the precision feeding system for pigs is presented.•A state machine behavior model is combined with a resilience and resistance model.•A disease outbreak model is integrated into the advanced precision feeding model.•A high-performance simulation program is created to run disease control scenarios. Perturbations always affect livestock during the breeding process, including harmful diseases. Researching the impact of disease outbreaks on pig herds is extremely important so that disease control measures can be applied early. However, conducting practical experiments on disease outbreaks is extremely expensive. Precision feeding systems (PFS) for pigs use data on the animal’s own feed intake to calculate the appropriate amount of feed for each individual. This helps increase productivity and product quality while contributing to reducing waste generation in the environment. Daily feed intake (DFI) and cumulative feed intake (CFI) data can be automatically collected and estimated from the PFS, which can help detect or predict disease outbreaks. In this article, we introduce an advanced simulation model of the PFS for pigs and the integration of disease outbreak models into this system. A disease outbreak simulation application within the pig herd raised by the precision feeding method is also developed for running high-performance experimental simulations. The results of the simulation scenarios are analyzed and compared with data from a real-world experiment to assess the accuracy of the application. The correlation coefficient values of DFI in all scenarios fall within the range of 0.25 to 0.5, suggesting almost no correlation between simulated DFI and actual DFI. The overall average correlation coefficient of CFI for all scenarios is 0.764, falling within the strong correlation range. It can be concluded that the simulation accurately represents CFI values compared to reality.
AbstractList Perturbations always affect livestock during the breeding process, including harmful diseases. Researching the impact of disease outbreaks on pig herds is extremely important so that disease control measures can be applied early. However, conducting practical experiments on disease outbreaks is extremely expensive. Precision feeding systems (PFS) for pigs use data on the animal’s own feed intake to calculate the appropriate amount of feed for each individual. This helps increase productivity and product quality while contributing to reducing waste generation in the environment. Daily feed intake (DFI) and cumulative feed intake (CFI) data can be automatically collected and estimated from the PFS, which can help detect or predict disease outbreaks. In this article, we introduce an advanced simulation model of the PFS for pigs and the integration of disease outbreak models into this system. A disease outbreak simulation application within the pig herd raised by the precision feeding method is also developed for running high-performance experimental simulations. The results of the simulation scenarios are analyzed and compared with data from a real-world experiment to assess the accuracy of the application. The correlation coefficient values of DFI in all scenarios fall within the range of 0.25 to 0.5, suggesting almost no correlation between simulated DFI and actual DFI. The overall average correlation coefficient of CFI for all scenarios is 0.764, falling within the strong correlation range. It can be concluded that the simulation accurately represents CFI values compared to reality.
•An advanced simulation model of the precision feeding system for pigs is presented.•A state machine behavior model is combined with a resilience and resistance model.•A disease outbreak model is integrated into the advanced precision feeding model.•A high-performance simulation program is created to run disease control scenarios. Perturbations always affect livestock during the breeding process, including harmful diseases. Researching the impact of disease outbreaks on pig herds is extremely important so that disease control measures can be applied early. However, conducting practical experiments on disease outbreaks is extremely expensive. Precision feeding systems (PFS) for pigs use data on the animal’s own feed intake to calculate the appropriate amount of feed for each individual. This helps increase productivity and product quality while contributing to reducing waste generation in the environment. Daily feed intake (DFI) and cumulative feed intake (CFI) data can be automatically collected and estimated from the PFS, which can help detect or predict disease outbreaks. In this article, we introduce an advanced simulation model of the PFS for pigs and the integration of disease outbreak models into this system. A disease outbreak simulation application within the pig herd raised by the precision feeding method is also developed for running high-performance experimental simulations. The results of the simulation scenarios are analyzed and compared with data from a real-world experiment to assess the accuracy of the application. The correlation coefficient values of DFI in all scenarios fall within the range of 0.25 to 0.5, suggesting almost no correlation between simulated DFI and actual DFI. The overall average correlation coefficient of CFI for all scenarios is 0.764, falling within the strong correlation range. It can be concluded that the simulation accurately represents CFI values compared to reality.
ArticleNumber 109335
Author Pham, Linh Manh
Le, Duc-Toan
Author_xml – sequence: 1
  givenname: Linh Manh
  surname: Pham
  fullname: Pham, Linh Manh
  email: linhmp@vnu.edu.vn
– sequence: 2
  givenname: Duc-Toan
  surname: Le
  fullname: Le, Duc-Toan
BookMark eNqFkb1u2zAUhTm4QH7fIAPHLnJFU3LMDgUKI40DBMiSzMQVeSldRxJVknaQtw8dderQTvw73wHuxwu2GP2IjN2IcilKsf62Xxo_TNAuV-WqyldKynrBzvPTphBrpc7YRYz7Mp_V5vacHXfUdsWEwfkwwGiQRxoOPSTyI_eOW4oIEbk_pCYgvEZOI2-Df6OxLRyNFLu84xO1vMNgIw-QCcubd5465FNAQ_HU5RDtKTlg6ry9Yl8c9BGv_6yX7OXX3fN2Vzw-3T9sfz4WRkqViso1AJt12UiFBqWSboPOAtbQ1LYRSoJzwriqEWVTGytWCkpnJQgFa6eUkZfs69w7Bf_7gDHpgaLBvocR_SFqKepqVYuqqnP0-xw1wccY0GlD6dNDyjP1WpT6JFjv9SxYnwTrWXCGq7_gKdAA4f1_2I8Zw-zgSBh0NIT5FyxlcUlbT_8u-AD9-J9s
CitedBy_id crossref_primary_10_3390_app15095208
Cites_doi 10.1016/j.physbeh.2014.09.012
10.3920/978-90-8686-712-7_36
10.1016/j.livsci.2021.104530
10.1109/ACCESS.2019.2955761
10.2527/1994.7261455x
10.1016/j.compag.2020.105826
10.3390/ani11092743
10.1007/978-3-030-89123-7_27-1
10.2527/jas.2014-7643
10.1109/KSE53942.2021.9648760
10.1017/S1751731108001766
10.1016/j.compag.2007.09.002
10.1590/S1516-35982009001300023
10.3390/ijerph192416440
10.3390/ani13040571
10.1017/S175173112000083X
10.1017/S1751731119001976
10.1016/j.animal.2021.100251
10.1016/j.livsci.2009.12.006
10.1016/j.iot.2023.100724
10.1007/s10707-018-00339-6
10.1017/S1751731117003159
10.1071/AN14521
10.1093/jas/skz167
10.1016/S0168-1591(98)00221-4
10.1787/19991142
10.3390/agronomy12030750
10.1073/pnas.082080899
10.2527/jas.2011-4252
10.3390/s22176541
10.2527/af.2017.0102
10.3109/03602530903125807
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2024.109335
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2024_109335
S0168169924007269
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-4fbaa860b39ece393f8efdae5ab5db193aff1cf4b10b5cd129a0fd3a19a6f99c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001298054000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Sun Sep 28 06:39:58 EDT 2025
Tue Nov 18 22:17:21 EST 2025
Sat Nov 29 03:17:22 EST 2025
Sat Sep 14 18:11:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Disease outbreak
Precision feeding system
Simulation
Swine
Agent-based model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-4fbaa860b39ece393f8efdae5ab5db193aff1cf4b10b5cd129a0fd3a19a6f99c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3154251445
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154251445
crossref_citationtrail_10_1016_j_compag_2024_109335
crossref_primary_10_1016_j_compag_2024_109335
elsevier_sciencedirect_doi_10_1016_j_compag_2024_109335
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nguyen-Ba, H., Taghipoor, M. & Milgen, J. v., 2020b. Modelling the feed intake response of growing pigs to diets contaminated with mycotoxins.
[Accessed 28 January 2024].
[Online] Available at
14(2), pp. 253-260.
14(Supplement 2), pp. s303-s312.
Wageningen: Wageningen Academic Publishers, p. 327–334.
Thornley, France (b0190) 2007
Brossard (b0035) 2014; 54
Linden, J., 2014.
Pham, Parlavantzas, Le, Bui (b0150) 2021; 11
Bangkok, Thailand, IEEE 13th International Conference on Knowledge and Systems Engineering (KSE), pp. 1-6.
Berckmans (b0020) 2008; 62
Salgado (b0175) 2021; 15
Berckmans (b0025) 2017; 7
García (b0045) 2020; 179
Pearson (b0140) 1895; 58
Gonyou (b0055) 2001
ILOSTAT, 2024.
Andretta (b0010) 2014; 92
Hacker, Ogilvie, Morrison, Kains (b0065) 1994; 72
Maselyne, Saeys, Nuffel (b0105) 2015; 138
Taillandier (b0185) 2018; 23
.
s.l.:Springer, Cham, pp. 1-7.
Gauthier (b0050) 2019; 97
Nguyen-Ba, H., Milgen, J. v. & Taghipoor, M., 2020a. A procedure to quantify the feed intake response of growing pigs to perturbations.
Pomar (b0155) 2009; 38
Andretta (b0015) 2018; 12
Pomar (b0160) 2014
Symeonaki (b0180) 2022; 12
Wu (b0215) 2010; 42
Wang (b0200) 2022; 22
Bonabeau (b0030) 2002; 99
Hayden (b0075) 2022; 19
OECD and FAO, 2023.
Quiniou, N., Vautier, B., Salaün, Y. & van Milgen, J. a. B. L., 2013.
Tzanidakis, Simitzis, Arvanitis, Panagakis (b0195) 2021; 249
World Animal Health Information Department, 2020.
s.l., s.n., pp. 155-160.
Wang (b0205) 2023; 210
Pomar, C. et al., 2011. Precision feeding can significantly reduce feeding cost and nutrient excretion in growing animals. In: D. Sauvant, J. Van Milgen, P. Faverdin & N. Friggens, eds.
Lewis, McGlone (b0095) 2008; 2
Niemi, Sevón-Aimonen, Pietola, Stalder (b0125) 2010; 129
Andresen, Redbo (b0005) 1999; 62
Le (b0085) 2023; 13
Hauschild, Lovatto, Pomar, Pomar (b0070) 2012; 90
Norton, T. & Berckmans, D., 2023. Precision Livestock Farming: Developing Useful Tools for Livestock Farmers. In: Q. Zhang, ed.
Hachung (b0060) 2023; 10
Universitat de Lleida, 2015.
Mishra, Sharma (b0110) 2023; 22
Lee (b0090) 2019; 7
Pham, L. M., Nguyen-Ba, H., Nguyen, H. S. & Le, H. -H., 2021a.
Hacker (10.1016/j.compag.2024.109335_b0065) 1994; 72
10.1016/j.compag.2024.109335_b0100
Salgado (10.1016/j.compag.2024.109335_b0175) 2021; 15
10.1016/j.compag.2024.109335_b0145
Hauschild (10.1016/j.compag.2024.109335_b0070) 2012; 90
Tzanidakis (10.1016/j.compag.2024.109335_b0195) 2021; 249
Andresen (10.1016/j.compag.2024.109335_b0005) 1999; 62
Andretta (10.1016/j.compag.2024.109335_b0010) 2014; 92
10.1016/j.compag.2024.109335_b0120
10.1016/j.compag.2024.109335_b0165
Brossard (10.1016/j.compag.2024.109335_b0035) 2014; 54
Mishra (10.1016/j.compag.2024.109335_b0110) 2023; 22
Pham (10.1016/j.compag.2024.109335_b0150) 2021; 11
Bonabeau (10.1016/j.compag.2024.109335_b0030) 2002; 99
Pearson (10.1016/j.compag.2024.109335_b0140) 1895; 58
Wang (10.1016/j.compag.2024.109335_b0200) 2022; 22
Pomar (10.1016/j.compag.2024.109335_b0155) 2009; 38
Wang (10.1016/j.compag.2024.109335_b0205) 2023; 210
Taillandier (10.1016/j.compag.2024.109335_b0185) 2018; 23
10.1016/j.compag.2024.109335_b0040
Hachung (10.1016/j.compag.2024.109335_b0060) 2023; 10
Niemi (10.1016/j.compag.2024.109335_b0125) 2010; 129
Le (10.1016/j.compag.2024.109335_b0085) 2023; 13
Gauthier (10.1016/j.compag.2024.109335_b0050) 2019; 97
Hayden (10.1016/j.compag.2024.109335_b0075) 2022; 19
10.1016/j.compag.2024.109335_b0080
Lee (10.1016/j.compag.2024.109335_b0090) 2019; 7
10.1016/j.compag.2024.109335_b0210
Berckmans (10.1016/j.compag.2024.109335_b0020) 2008; 62
10.1016/j.compag.2024.109335_b0135
10.1016/j.compag.2024.109335_b0130
Wu (10.1016/j.compag.2024.109335_b0215) 2010; 42
Andretta (10.1016/j.compag.2024.109335_b0015) 2018; 12
Lewis (10.1016/j.compag.2024.109335_b0095) 2008; 2
Maselyne (10.1016/j.compag.2024.109335_b0105) 2015; 138
10.1016/j.compag.2024.109335_b0115
Symeonaki (10.1016/j.compag.2024.109335_b0180) 2022; 12
Pomar (10.1016/j.compag.2024.109335_b0160) 2014
García (10.1016/j.compag.2024.109335_b0045) 2020; 179
10.1016/j.compag.2024.109335_b0170
Berckmans (10.1016/j.compag.2024.109335_b0025) 2017; 7
Gonyou (10.1016/j.compag.2024.109335_b0055) 2001
Thornley (10.1016/j.compag.2024.109335_b0190) 2007
References_xml – reference: Linden, J., 2014.
– reference: Norton, T. & Berckmans, D., 2023. Precision Livestock Farming: Developing Useful Tools for Livestock Farmers. In: Q. Zhang, ed.
– volume: 10
  year: 2023
  ident: b0060
  article-title: Estimating the time of infection for African swine fever in pig farms in Korea
  publication-title: Frontiers in Veterinary Science
– reference: [Online] Available at:
– reference: Nguyen-Ba, H., Milgen, J. v. & Taghipoor, M., 2020a. A procedure to quantify the feed intake response of growing pigs to perturbations.
– volume: 12
  start-page: 1990
  year: 2018
  end-page: 1998
  ident: b0015
  article-title: Environmental impacts of precision feeding programs applied in pig production
  publication-title: Animal
– reference: OECD and FAO, 2023.
– volume: 42
  start-page: 250
  year: 2010
  end-page: 267
  ident: b0215
  article-title: Metabolic pathways of trichothecenes
  publication-title: Drug Metab. Rev.
– reference: [Accessed 28 January 2024].
– volume: 22
  year: 2023
  ident: b0110
  article-title: Advanced contribution of IoT in agricultural production for the development of smart livestock environments
  publication-title: Internet of Things
– reference: Pomar, C. et al., 2011. Precision feeding can significantly reduce feeding cost and nutrient excretion in growing animals. In: D. Sauvant, J. Van Milgen, P. Faverdin & N. Friggens, eds.
– volume: 23
  start-page: 299
  year: 2018
  end-page: 322
  ident: b0185
  article-title: Building, composing and experimenting complex spatial models with the GAMA platform
  publication-title: GeoInformatica
– reference: Nguyen-Ba, H., Taghipoor, M. & Milgen, J. v., 2020b. Modelling the feed intake response of growing pigs to diets contaminated with mycotoxins.
– reference: 14(Supplement 2), pp. s303-s312.
– start-page: 147
  year: 2001
  end-page: 176
  ident: b0055
  article-title: The social behaviour of pigs
  publication-title: In:
– volume: 179
  year: 2020
  ident: b0045
  article-title: A systematic literature review on the use of machine learning in precision livestock farming
  publication-title: Comput. Electron. Agric.
– reference: Wageningen: Wageningen Academic Publishers, p. 327–334.
– volume: 92
  start-page: 3925
  year: 2014
  end-page: 3936
  ident: b0010
  article-title: The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition
  publication-title: J. Anim. Sci.
– volume: 58
  start-page: 240
  year: 1895
  end-page: 242
  ident: b0140
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
– volume: 72
  start-page: 1455
  year: 1994
  end-page: 1460
  ident: b0065
  article-title: Factors affecting excretory behavior of pigs
  publication-title: J. Anim. Sci.
– start-page: 157
  year: 2014
  end-page: 174
  ident: b0160
  article-title: Estimating real-time individual amino acid requirements in growing-finishing pigs: towards a new definition of nutrient requirements in growing-finishing pigs?
  publication-title: CABI
– volume: 22
  start-page: 6541
  year: 2022
  ident: b0200
  article-title: The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming
  publication-title: Sensors
– volume: 129
  start-page: 13
  year: 2010
  end-page: 23
  ident: b0125
  article-title: The value of precision feeding technologies for grow–finish swine
  publication-title: Livest. Sci.
– volume: 249
  year: 2021
  ident: b0195
  article-title: An overview of the current trends in precision pig farming technologies
  publication-title: Livest. Sci.
– volume: 97
  start-page: 2822
  year: 2019
  end-page: 2836
  ident: b0050
  article-title: Dynamic modeling of nutrient use and individual requirements of lactating sows
  publication-title: J. Anim. Sci.
– reference: Quiniou, N., Vautier, B., Salaün, Y. & van Milgen, J. a. B. L., 2013.
– volume: 38
  start-page: 226
  year: 2009
  end-page: 237
  ident: b0155
  article-title: Applying precision feeding techniques in growing-finsihing pig operations
  publication-title: Revista Brasileira De Zootechnia
– reference: ILOSTAT, 2024.
– reference: s.l.:Springer, Cham, pp. 1-7.
– volume: 15
  year: 2021
  ident: b0175
  article-title: A novel feeding behavior index integrating several components of the feeding behavior of finishing pigs
  publication-title: Animal
– reference: s.l., s.n., pp. 155-160.
– volume: 54
  start-page: 1939
  year: 2014
  end-page: 1945
  ident: b0035
  article-title: Comparison of in vivo and in silico growth performance and variability in pigs when applying a feeding strategy designed by simulation to control the variability of slaughter weight
  publication-title: Anim. Prod. Sci.
– reference: 14(2), pp. 253-260.
– volume: 7
  start-page: 6
  year: 2017
  end-page: 11
  ident: b0025
  article-title: General introduction to precision livestock farming
  publication-title: Anim. Front.
– volume: 138
  start-page: 37
  year: 2015
  end-page: 51
  ident: b0105
  article-title: Review: Quantifying animal feeding behaviour with a focus on pigs
  publication-title: Physiol. Behav.
– reference: World Animal Health Information Department, 2020.
– volume: 99
  start-page: 7280
  year: 2002
  end-page: 7287
  ident: b0030
  article-title: Agent-based modeling: Methods and techniques for simulating human systems
  publication-title: Proc. Natl. Acad. Sci.
– reference: Bangkok, Thailand, IEEE 13th International Conference on Knowledge and Systems Engineering (KSE), pp. 1-6.
– volume: 90
  start-page: 2255
  year: 2012
  end-page: 2263
  ident: b0070
  article-title: Development of sustainable precision farming systems for swine: Estimating real-time individual amino acid requirements in growing-finishing pigs
  publication-title: J. Anim. Sci.
– year: 2007
  ident: b0190
  article-title: Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences
– volume: 62
  start-page: 183
  year: 1999
  end-page: 197
  ident: b0005
  article-title: Foraging behaviour of growing pigs on grassland in relation to stocking rate and feed crude protein level
  publication-title: Appl. Anim. Behav. Sci.
– volume: 62
  start-page: 1
  year: 2008
  ident: b0020
  article-title: Precision livestock farming (PLF)
  publication-title: Comput. Electron. Agric.
– reference: .
– volume: 12
  start-page: 750
  year: 2022
  ident: b0180
  article-title: Ontology-Based IoT Middleware Approach for Smart Livestock Farming toward Agriculture 4.0: A Case Study for Controlling Thermal Environment in a Pig Facility
  publication-title: Agronomy
– volume: 210
  year: 2023
  ident: b0205
  article-title: A computer vision-based approach for respiration rate monitoring of group housed pigs
  publication-title: Comput. Electron. Agric.
– volume: 19
  start-page: 16440
  year: 2022
  ident: b0075
  article-title: Occupational Safety and Health with Technological Developments in Livestock Farms: A Literature Review
  publication-title: Int. J. Environ. Res. Public Health
– volume: 11
  start-page: 2743
  year: 2021
  ident: b0150
  article-title: Towards a framework for high-performance simulation of livestock disease outbreak: a case study of spread of African Swine Fever in Vietnam
  publication-title: Animals
– volume: 13
  start-page: 571
  year: 2023
  ident: b0085
  article-title: Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam
  publication-title: Animals
– volume: 2
  start-page: 600
  year: 2008
  end-page: 605
  ident: b0095
  article-title: Modelling feeding behaviour, rate of feed passage and daily feeding cycles, as possible causes of fatigued pigs
  publication-title: Animal
– reference: Universitat de Lleida, 2015.
– volume: 7
  start-page: 173796
  year: 2019
  end-page: 173810
  ident: b0090
  article-title: Practical Monitoring of Undergrown Pigs for IoT-Based Large-Scale Smart Farm
  publication-title: IEEE Access
– reference: Pham, L. M., Nguyen-Ba, H., Nguyen, H. S. & Le, H. -H., 2021a.
– year: 2007
  ident: 10.1016/j.compag.2024.109335_b0190
– volume: 138
  start-page: 37
  year: 2015
  ident: 10.1016/j.compag.2024.109335_b0105
  article-title: Review: Quantifying animal feeding behaviour with a focus on pigs
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2014.09.012
– ident: 10.1016/j.compag.2024.109335_b0165
  doi: 10.3920/978-90-8686-712-7_36
– volume: 249
  year: 2021
  ident: 10.1016/j.compag.2024.109335_b0195
  article-title: An overview of the current trends in precision pig farming technologies
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2021.104530
– volume: 7
  start-page: 173796
  year: 2019
  ident: 10.1016/j.compag.2024.109335_b0090
  article-title: Practical Monitoring of Undergrown Pigs for IoT-Based Large-Scale Smart Farm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955761
– volume: 72
  start-page: 1455
  issue: 6
  year: 1994
  ident: 10.1016/j.compag.2024.109335_b0065
  article-title: Factors affecting excretory behavior of pigs
  publication-title: J. Anim. Sci.
  doi: 10.2527/1994.7261455x
– volume: 179
  year: 2020
  ident: 10.1016/j.compag.2024.109335_b0045
  article-title: A systematic literature review on the use of machine learning in precision livestock farming
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105826
– start-page: 147
  year: 2001
  ident: 10.1016/j.compag.2024.109335_b0055
  article-title: The social behaviour of pigs
  publication-title: In: Social Behaviour in Farm. S.l.:cabi Publishing
– volume: 58
  start-page: 240
  year: 1895
  ident: 10.1016/j.compag.2024.109335_b0140
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
– volume: 11
  start-page: 2743
  issue: 9
  year: 2021
  ident: 10.1016/j.compag.2024.109335_b0150
  article-title: Towards a framework for high-performance simulation of livestock disease outbreak: a case study of spread of African Swine Fever in Vietnam
  publication-title: Animals
  doi: 10.3390/ani11092743
– ident: 10.1016/j.compag.2024.109335_b0130
  doi: 10.1007/978-3-030-89123-7_27-1
– volume: 92
  start-page: 3925
  issue: 9
  year: 2014
  ident: 10.1016/j.compag.2024.109335_b0010
  article-title: The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2014-7643
– ident: 10.1016/j.compag.2024.109335_b0145
  doi: 10.1109/KSE53942.2021.9648760
– volume: 2
  start-page: 600
  issue: 4
  year: 2008
  ident: 10.1016/j.compag.2024.109335_b0095
  article-title: Modelling feeding behaviour, rate of feed passage and daily feeding cycles, as possible causes of fatigued pigs
  publication-title: Animal
  doi: 10.1017/S1751731108001766
– volume: 62
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.compag.2024.109335_b0020
  article-title: Precision livestock farming (PLF)
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2007.09.002
– volume: 38
  start-page: 226
  issue: supl. especial
  year: 2009
  ident: 10.1016/j.compag.2024.109335_b0155
  article-title: Applying precision feeding techniques in growing-finsihing pig operations
  publication-title: Revista Brasileira De Zootechnia
  doi: 10.1590/S1516-35982009001300023
– start-page: 157
  year: 2014
  ident: 10.1016/j.compag.2024.109335_b0160
  article-title: Estimating real-time individual amino acid requirements in growing-finishing pigs: towards a new definition of nutrient requirements in growing-finishing pigs?
  publication-title: CABI
– ident: 10.1016/j.compag.2024.109335_b0040
– volume: 19
  start-page: 16440
  issue: 24
  year: 2022
  ident: 10.1016/j.compag.2024.109335_b0075
  article-title: Occupational Safety and Health with Technological Developments in Livestock Farms: A Literature Review
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph192416440
– ident: 10.1016/j.compag.2024.109335_b0210
– volume: 13
  start-page: 571
  issue: 4
  year: 2023
  ident: 10.1016/j.compag.2024.109335_b0085
  article-title: Estimation of a Within-Herd Transmission Rate for African Swine Fever in Vietnam
  publication-title: Animals
  doi: 10.3390/ani13040571
– ident: 10.1016/j.compag.2024.109335_b0120
  doi: 10.1017/S175173112000083X
– ident: 10.1016/j.compag.2024.109335_b0080
– ident: 10.1016/j.compag.2024.109335_b0115
  doi: 10.1017/S1751731119001976
– volume: 15
  issue: 7
  year: 2021
  ident: 10.1016/j.compag.2024.109335_b0175
  article-title: A novel feeding behavior index integrating several components of the feeding behavior of finishing pigs
  publication-title: Animal
  doi: 10.1016/j.animal.2021.100251
– volume: 129
  start-page: 13
  issue: 1–3
  year: 2010
  ident: 10.1016/j.compag.2024.109335_b0125
  article-title: The value of precision feeding technologies for grow–finish swine
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2009.12.006
– volume: 22
  year: 2023
  ident: 10.1016/j.compag.2024.109335_b0110
  article-title: Advanced contribution of IoT in agricultural production for the development of smart livestock environments
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2023.100724
– volume: 23
  start-page: 299
  issue: 2
  year: 2018
  ident: 10.1016/j.compag.2024.109335_b0185
  article-title: Building, composing and experimenting complex spatial models with the GAMA platform
  publication-title: GeoInformatica
  doi: 10.1007/s10707-018-00339-6
– volume: 12
  start-page: 1990
  issue: 9
  year: 2018
  ident: 10.1016/j.compag.2024.109335_b0015
  article-title: Environmental impacts of precision feeding programs applied in pig production
  publication-title: Animal
  doi: 10.1017/S1751731117003159
– ident: 10.1016/j.compag.2024.109335_b0170
– volume: 54
  start-page: 1939
  year: 2014
  ident: 10.1016/j.compag.2024.109335_b0035
  article-title: Comparison of in vivo and in silico growth performance and variability in pigs when applying a feeding strategy designed by simulation to control the variability of slaughter weight
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14521
– volume: 97
  start-page: 2822
  issue: 7
  year: 2019
  ident: 10.1016/j.compag.2024.109335_b0050
  article-title: Dynamic modeling of nutrient use and individual requirements of lactating sows
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/skz167
– volume: 62
  start-page: 183
  issue: 2–3
  year: 1999
  ident: 10.1016/j.compag.2024.109335_b0005
  article-title: Foraging behaviour of growing pigs on grassland in relation to stocking rate and feed crude protein level
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/S0168-1591(98)00221-4
– ident: 10.1016/j.compag.2024.109335_b0135
  doi: 10.1787/19991142
– volume: 12
  start-page: 750
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2024.109335_b0180
  article-title: Ontology-Based IoT Middleware Approach for Smart Livestock Farming toward Agriculture 4.0: A Case Study for Controlling Thermal Environment in a Pig Facility
  publication-title: Agronomy
  doi: 10.3390/agronomy12030750
– volume: 99
  start-page: 7280
  issue: suppl_3
  year: 2002
  ident: 10.1016/j.compag.2024.109335_b0030
  article-title: Agent-based modeling: Methods and techniques for simulating human systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.082080899
– volume: 90
  start-page: 2255
  issue: 7
  year: 2012
  ident: 10.1016/j.compag.2024.109335_b0070
  article-title: Development of sustainable precision farming systems for swine: Estimating real-time individual amino acid requirements in growing-finishing pigs
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2011-4252
– volume: 22
  start-page: 6541
  issue: 17
  year: 2022
  ident: 10.1016/j.compag.2024.109335_b0200
  article-title: The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming
  publication-title: Sensors
  doi: 10.3390/s22176541
– volume: 210
  issue: 107899
  year: 2023
  ident: 10.1016/j.compag.2024.109335_b0205
  article-title: A computer vision-based approach for respiration rate monitoring of group housed pigs
  publication-title: Comput. Electron. Agric.
– volume: 10
  year: 2023
  ident: 10.1016/j.compag.2024.109335_b0060
  article-title: Estimating the time of infection for African swine fever in pig farms in Korea
  publication-title: Frontiers in Veterinary Science
– ident: 10.1016/j.compag.2024.109335_b0100
– volume: 7
  start-page: 6
  issue: 1
  year: 2017
  ident: 10.1016/j.compag.2024.109335_b0025
  article-title: General introduction to precision livestock farming
  publication-title: Anim. Front.
  doi: 10.2527/af.2017.0102
– volume: 42
  start-page: 250
  issue: 2
  year: 2010
  ident: 10.1016/j.compag.2024.109335_b0215
  article-title: Metabolic pathways of trichothecenes
  publication-title: Drug Metab. Rev.
  doi: 10.3109/03602530903125807
SSID ssj0016987
Score 2.418207
Snippet •An advanced simulation model of the precision feeding system for pigs is presented.•A state machine behavior model is combined with a resilience and...
Perturbations always affect livestock during the breeding process, including harmful diseases. Researching the impact of disease outbreaks on pig herds is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109335
SubjectTerms Agent-based model
agriculture
disease control
Disease outbreak
disease outbreaks
electronics
feed intake
herds
Precision feeding system
product quality
Simulation
simulation models
Swine
Title High-performance simulation of disease outbreaks in growing-finishing pig herds raised by the precision feeding method
URI https://dx.doi.org/10.1016/j.compag.2024.109335
https://www.proquest.com/docview/3154251445
Volume 225
WOSCitedRecordID wos001298054000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016987
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLeg4wAHxFOMl4xEuVSe0jkvHzvUCVBVduhQb5bj2KUDkpC00_jv-fxIUm2gjQOXqIqdpMr3i_29fwi9zXQei0xSkoQ6IyHTOWFaC7B5UqGUhG_MthT6Mkvm83S5ZCfep9tYOoGkKNKLC1b9V1HDORC2KZ39B3F3N4UT8BuEDkcQOxxvJHiTuUGqnXqAZv3Dc3QZzdBHZEbldgPWsPhm82FXYIzDHka0aTRifVLVegVKZJ03o9oEl5yaaquqPCnPSLt9z3NQ7yq5LVOEa__cE-3YR4lV7dt9dJA68bXaYBd_Nfk4nYd6ZsP4EzNmlF4WDKfj4dHRcMLkaFHawaDY9Vschl0GXOfKjMF-jR09UrsWw-oyqmyLKxqRP67wztlwdmBT9FcH5s5-fr-jtVH8-Wd-fDqb8cV0uXhX_SSGa8zE5D3xym20d5hELB2gvcnH6fJTF32KWerK7P0_bEsubV7g1Qf_TaW5tLlbjWXxAN33pgaeOIg8RLdU8Qjdm_Tv_zE6vwwW3IMFlxp7sOAOLHhd4CtgwQAWbMGCHVhw9gsDWHAHFuzBgh1YnqDT4-ni_QfimTiIpJRtCHzHQqRxkFGmpKKM6lTpXKhIZFGegQ0gtB5LHWbjIItkDjqkCHROxZiJWDMm6VM0KMpCPUM4zGAsYGlKVRKCLs5yKlkSSW1D0ONwH9H2ZXLp29QbtpTvvM1HPONOBNyIgDsR7CPSXVW5Ni3XzE9aOXGvajoVkgPOrrnyTStWDiuxCa-JQpXbhlOwRsBaCMPo-Q3mvEB3-6_iJRps6q16he7I8826qV97RP4Gwi6uzw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+simulation+of+disease+outbreaks+in+growing-finishing+pig+herds+raised+by+the+precision+feeding+method&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Pham%2C+Linh+Manh&rft.au=L%C3%AA%2C+%C4%90%E1%BB%A9c+To%C3%A0n&rft.date=2024-10-01&rft.issn=0168-1699&rft.volume=225+p.109335-&rft_id=info:doi/10.1016%2Fj.compag.2024.109335&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon