Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization

The failure of rotating machinery can result in fatal damage and economic loss since rotating machinery plays an important role in the modern manufacturing industry. The development of a reliable and efficient intelligent fault diagnosis approach is an ongoing attempt. Support vector machine (SVM) i...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 167; pp. 260 - 279
Main Authors: Zhang, XiaoLi, Chen, Wei, Wang, BaoJian, Chen, XueFeng
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2015
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The failure of rotating machinery can result in fatal damage and economic loss since rotating machinery plays an important role in the modern manufacturing industry. The development of a reliable and efficient intelligent fault diagnosis approach is an ongoing attempt. Support vector machine (SVM) is a widely used machine learning method in intelligent fault diagnosis. But finding out good features that can discriminate different fault conditions and optimizing parameters for support vector machine can be regarded as the most two important problems that can highly affect the final diagnosis accuracy of support vector machine. Until now, the two issues of feature selection and parameter optimization are usually treated separately, weakening the effects of both efforts. Therefore, an ant colony algorithm for synchronous feature selection and parameter optimization for support vector machine in intelligent fault diagnosis of rotating machinery is presented. Comparing with other methods, the advantages of the proposed method are evaluated on an experiment of rotor system and an engineering application of locomotive roller bearings, which proves it can attain much better results.
AbstractList The failure of rotating machinery can result in fatal damage and economic loss since rotating machinery plays an important role in the modern manufacturing industry. The development of a reliable and efficient intelligent fault diagnosis approach is an ongoing attempt. Support vector machine (SVM) is a widely used machine learning method in intelligent fault diagnosis. But finding out good features that can discriminate different fault conditions and optimizing parameters for support vector machine can be regarded as the most two important problems that can highly affect the final diagnosis accuracy of support vector machine. Until now, the two issues of feature selection and parameter optimization are usually treated separately, weakening the effects of both efforts. Therefore, an ant colony algorithm for synchronous feature selection and parameter optimization for support vector machine in intelligent fault diagnosis of rotating machinery is presented. Comparing with other methods, the advantages of the proposed method are evaluated on an experiment of rotor system and an engineering application of locomotive roller bearings, which proves it can attain much better results.
Author Chen, Wei
Zhang, XiaoLi
Wang, BaoJian
Chen, XueFeng
Author_xml – sequence: 1
  givenname: XiaoLi
  surname: Zhang
  fullname: Zhang, XiaoLi
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi׳an Jiaotong University, Xi׳an 710049, PR China
– sequence: 2
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Air Force Engineering University, Xi׳an 710038, PR China
– sequence: 3
  givenname: BaoJian
  surname: Wang
  fullname: Wang, BaoJian
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi׳an Jiaotong University, Xi׳an 710049, PR China
– sequence: 4
  givenname: XueFeng
  surname: Chen
  fullname: Chen, XueFeng
  email: chenxf@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi׳an Jiaotong University, Xi׳an 710049, PR China
BookMark eNqFkMtO3DAUhq2KSh2GvkEXfoEEX3LtolKFgCIhsYG1dcY5nvEosSPbAQ3vw3uSdGDDAlaW_fv7dc53Sk6cd0jIL85yznh1vs8dTtoPuWC8zFmRs6r9Rla8qUXWiKY6ISvWijITkosf5DTGPWO85qJdkZcbl7Dv7RZdogamPtHOwtb5aCP1hgafIFm3pQPonXUYDnSKyz1O4-hDoo-okw_vMX2yaUdh7tK-9-5Aod_6ML8N1My_4sHpXfDOT5EahDQFpBH7ucJ6N2MdHSHAgAkD9WOyg32GJToj3w30EX--nWvycHV5f_Evu727vrn4e5tpKduUFU3XSsEaYwQaCbriDEEi1Katyw2WLdNQaW42fAMV6tpUklddUbLZl6ylkWtSHHt18DEGNGoMdoBwUJypRbXaq6NqtahWrFALuia_P2Dapv-DpwC2_wr-c4RxXuzRYlBRW3QaOxtmMarz9vOCV25Xpik
CitedBy_id crossref_primary_10_1016_j_asoc_2022_108519
crossref_primary_10_1155_2020_2495068
crossref_primary_10_3233_JIFS_161676
crossref_primary_10_1016_j_isatra_2019_08_069
crossref_primary_10_1007_s40430_020_02776_7
crossref_primary_10_21595_jve_2017_18052
crossref_primary_10_1007_s12206_020_0501_0
crossref_primary_10_1155_2017_7949507
crossref_primary_10_3390_computers5020012
crossref_primary_10_1007_s10033_017_0150_0
crossref_primary_10_1080_23744731_2020_1859933
crossref_primary_10_1016_j_measurement_2021_110099
crossref_primary_10_1109_TII_2018_2810226
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1016_j_neucom_2019_03_084
crossref_primary_10_1155_2020_1274380
crossref_primary_10_3390_molecules25215124
crossref_primary_10_3390_s22072579
crossref_primary_10_1016_j_compind_2018_04_002
crossref_primary_10_1186_s40064_016_3277_z
crossref_primary_10_1088_1361_6501_ac41a5
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_1007_s10586_018_1854_3
crossref_primary_10_1016_j_asoc_2018_11_001
crossref_primary_10_1155_2021_6627367
crossref_primary_10_1016_j_aei_2022_101797
crossref_primary_10_1111_coin_70071
crossref_primary_10_1155_2019_1518246
crossref_primary_10_1016_j_ymssp_2017_09_026
crossref_primary_10_1007_s12206_020_0306_1
crossref_primary_10_1109_TASE_2020_3048056
crossref_primary_10_3233_JCM_193821
crossref_primary_10_1155_2024_8296809
crossref_primary_10_1016_j_neucom_2018_05_021
crossref_primary_10_1007_s10044_021_00985_x
crossref_primary_10_1007_s10845_018_1456_1
crossref_primary_10_3390_s22155834
crossref_primary_10_1016_j_neucom_2015_11_022
crossref_primary_10_1016_j_eswa_2019_113172
crossref_primary_10_1016_j_isatra_2018_12_025
crossref_primary_10_1016_j_neucom_2020_10_039
crossref_primary_10_1109_TSMC_2023_3260100
crossref_primary_10_1007_s00521_019_04436_x
crossref_primary_10_1109_ACCESS_2019_2939876
crossref_primary_10_3390_s16010090
crossref_primary_10_3390_app10249145
crossref_primary_10_3390_healthcare10091759
crossref_primary_10_1155_2022_4835157
crossref_primary_10_1016_j_cja_2020_06_024
crossref_primary_10_1155_2016_5980802
crossref_primary_10_3233_IDA_216493
crossref_primary_10_1016_j_cja_2019_02_013
crossref_primary_10_1088_1757_899X_790_1_012066
crossref_primary_10_1155_2021_5539912
crossref_primary_10_1016_j_eswa_2021_114820
crossref_primary_10_1177_0954406219834966
crossref_primary_10_1007_s40435_021_00760_0
crossref_primary_10_1088_1361_6501_ac3627
crossref_primary_10_1109_TII_2020_2973731
crossref_primary_10_1109_TII_2019_2927590
crossref_primary_10_1016_j_measurement_2020_108565
crossref_primary_10_1109_TIM_2025_3551792
crossref_primary_10_1016_j_isatra_2020_07_039
crossref_primary_10_1088_1757_899X_575_1_012010
crossref_primary_10_1016_j_simpat_2019_101981
crossref_primary_10_1109_JIOT_2022_3222012
crossref_primary_10_1088_1361_6501_ad9766
crossref_primary_10_1109_TNNLS_2020_2979466
crossref_primary_10_1109_TIE_2017_2767540
crossref_primary_10_3901_CJME_2015_0706_087
crossref_primary_10_1016_j_seta_2020_100975
crossref_primary_10_1155_2019_6049316
crossref_primary_10_1016_j_fss_2016_12_017
crossref_primary_10_1109_TIE_2018_2868023
crossref_primary_10_1016_j_neucom_2018_06_028
crossref_primary_10_1177_0954406216675896
crossref_primary_10_1007_s42417_023_01014_3
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1007_s00170_019_03906_9
crossref_primary_10_1007_s00500_019_04516_z
crossref_primary_10_1016_j_ress_2019_106551
crossref_primary_10_1007_s00500_017_2940_9
crossref_primary_10_1109_TIM_2019_2900885
crossref_primary_10_1016_j_asoc_2021_107755
crossref_primary_10_1016_j_ifacol_2022_07_566
crossref_primary_10_1016_j_sigpro_2016_07_028
crossref_primary_10_1016_j_ymssp_2019_106426
crossref_primary_10_3390_app13031714
crossref_primary_10_1016_j_sigpro_2019_03_019
crossref_primary_10_3390_en14030697
crossref_primary_10_3390_su12114776
crossref_primary_10_1007_s42417_025_02035_w
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1155_2021_3456624
crossref_primary_10_1016_j_eswa_2016_07_039
crossref_primary_10_3390_en12081506
crossref_primary_10_1016_j_isatra_2021_01_060
crossref_primary_10_1007_s40430_019_1768_x
crossref_primary_10_1155_2016_5898052
crossref_primary_10_1088_1361_6501_ad15dc
crossref_primary_10_1155_2020_2569280
crossref_primary_10_1016_j_sigpro_2018_12_005
crossref_primary_10_1007_s00357_024_09488_w
crossref_primary_10_1109_TIM_2017_2759418
crossref_primary_10_1177_1550147717719057
crossref_primary_10_1016_j_jclepro_2023_137608
crossref_primary_10_3390_app122211691
crossref_primary_10_1177_14759217231226381
crossref_primary_10_1371_journal_pone_0164111
crossref_primary_10_1007_s12665_022_10578_4
crossref_primary_10_1155_2019_1201084
crossref_primary_10_1155_2020_4302184
crossref_primary_10_1016_j_neucom_2016_07_073
crossref_primary_10_1155_2021_6627305
crossref_primary_10_1109_ACCESS_2020_3021007
crossref_primary_10_3390_app122010617
crossref_primary_10_1016_j_neucom_2017_08_050
crossref_primary_10_1109_ACCESS_2019_2929094
crossref_primary_10_1109_TCST_2020_3015514
crossref_primary_10_1109_ACCESS_2020_3034305
crossref_primary_10_1016_j_optlaseng_2020_106137
crossref_primary_10_1155_2021_7383255
crossref_primary_10_1007_s10845_021_01771_6
crossref_primary_10_1016_j_neucom_2017_11_016
crossref_primary_10_1007_s42417_023_01020_5
Cites_doi 10.1023/A:1012450327387
10.5370/JEET.2013.8.5.1049
10.1109/TNNLS.2013.2280280
10.1016/j.epsr.2004.07.013
10.1109/TIE.2013.2261033
10.1016/j.eswa.2009.03.022
10.1016/j.measurement.2013.06.002
10.1016/j.eswa.2007.06.029
10.1016/j.neucom.2012.06.050
10.1016/j.asoc.2009.11.003
10.1016/j.ymssp.2013.09.002
10.1109/TAES.2012.6129655
10.1016/j.measurement.2006.10.010
10.1016/j.eswa.2008.02.026
10.1016/j.measurement.2013.09.006
10.1177/0954406213516305
10.1007/s00521-013-1370-6
10.1115/1.2890396
10.1016/j.amc.2007.08.087
10.1016/j.ymssp.2006.06.010
10.1016/j.amc.2005.09.043
10.1016/j.engappai.2012.03.017
10.1016/j.tcs.2005.05.020
10.1016/j.eswa.2010.03.067
10.1016/j.ymssp.2005.06.001
10.1016/j.ymssp.2005.09.012
10.1177/1077546310361858
10.1016/j.patrec.2012.01.019
10.1364/OE.20.000228
10.1016/j.eswa.2009.01.020
10.1109/MCI.2006.329691
10.1016/j.ymssp.2005.09.006
10.1016/j.eswa.2013.06.068
10.1016/j.ymssp.2010.01.008
10.1016/j.amc.2007.09.070
10.1016/j.measurement.2012.06.009
10.1016/j.ymssp.2006.11.003
10.1016/j.ymssp.2006.12.007
10.3390/s140100283
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2015.04.069
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 279
ExternalDocumentID 10_1016_j_neucom_2015_04_069
S092523121500538X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c339t-48d93208ff2ef3ac610ea3ea7f975be590ca6c1fb1ba6ec7f6316d450069373f3
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358808500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 03:02:32 EST 2025
Tue Nov 18 21:30:47 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Roller bearing
Support vector machine
Intelligent fault diagnosis
Rotating machinery
Rotor
Ant colony algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-48d93208ff2ef3ac610ea3ea7f975be590ca6c1fb1ba6ec7f6316d450069373f3
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_neucom_2015_04_069
crossref_citationtrail_10_1016_j_neucom_2015_04_069
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_04_069
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tang, Ma, Guan (bib34) 2013; 40
Tantawy, Koutsoukos, Biswas (bib5) 2012; 48
Yuan, Chu (bib4) 2006; 20
Jayaswal, Verma, Wadhwani (bib9) 2011; 17
Lei, He, Zi (bib42) 2007; 21
Shatnawi, Al-khassaweneh (bib10) 2014; 61
Kwak, Lee, Ahn (bib1) 2014; 14
Jiang, He, Duan (bib41) 2006; 20
Ma, Liang, Zhao (bib8) 2013; 26
Cristianini, Shawe-Taylor (bib21) 2000
Jardine, Lin, Banjevic (bib6) 2006; 20
Wu, Hsu (bib12) 2009; 36
Dorigo, Blum (bib39) 2005; 344
Sugumaran, Sabareesh, Ramachandran (bib18) 2008; 34
Shi, Chen, Vagapov (bib3) 2014; 42
Toksari (bib36) 2006; 176
Chen, Tang, Chen (bib29) 2013; 46
Fei, Zhang (bib23) 2009; 36
Jena, Sahoo, Panigrahi (bib2) 2014; 47
Yang, Yu, Cheng (bib22) 2007; 40
Ahmad, Hussain, Alghamdi (bib26) 2014; 24
Sun, Chen, Li (bib43) 2007; 21
Chaharsooghi, Kermani (bib33) 2008; 200
Dorigo, Birattari, Stutzle (bib38) 2006; 1
Winston, Saravanan (bib13) 2013; 8
Zhang, Chen, He (bib31) 2010; 37
Lei, He, Zi (bib7) 2008; 130
Liao, Li, Huang (bib16) 2014; 228
Lv, Cheng, Zhai (bib24) 2005; 75
Tayarani-Bathaie, Vanini, Khorasani (bib11) 2014; 125
Vapnik (bib20) 1999
Vapnik (bib40) 1998
Widodo, Yang (bib19) 2007; 21
Abdat, Amouroux, Guermeur (bib28) 2012; 20
Dorigo (bib32) 1992
Muralidharan, Sugumaran (bib14) 2013; 46
Seera, Lim (bib17) 2014; 25
Mullen, Monekosso, Barman (bib37) 2009; 36
Chapelle, Vapnik, Bousquet (bib25) 2002; 46
Aydin, Karakose, Akin (bib30) 2011; 11
Sakthivel, Sugumaran, Nair (bib15) 2010; 24
Tfaili, Siarry (bib35) 2008; 197
Lian (bib27) 2012; 33
Tang (10.1016/j.neucom.2015.04.069_bib34) 2013; 40
Sakthivel (10.1016/j.neucom.2015.04.069_bib15) 2010; 24
Dorigo (10.1016/j.neucom.2015.04.069_bib38) 2006; 1
Jiang (10.1016/j.neucom.2015.04.069_bib41) 2006; 20
Muralidharan (10.1016/j.neucom.2015.04.069_bib14) 2013; 46
Yuan (10.1016/j.neucom.2015.04.069_bib4) 2006; 20
Tantawy (10.1016/j.neucom.2015.04.069_bib5) 2012; 48
Yang (10.1016/j.neucom.2015.04.069_bib22) 2007; 40
Liao (10.1016/j.neucom.2015.04.069_bib16) 2014; 228
Dorigo (10.1016/j.neucom.2015.04.069_bib32) 1992
Jayaswal (10.1016/j.neucom.2015.04.069_bib9) 2011; 17
Seera (10.1016/j.neucom.2015.04.069_bib17) 2014; 25
Lian (10.1016/j.neucom.2015.04.069_bib27) 2012; 33
Cristianini (10.1016/j.neucom.2015.04.069_bib21) 2000
Dorigo (10.1016/j.neucom.2015.04.069_bib39) 2005; 344
Mullen (10.1016/j.neucom.2015.04.069_bib37) 2009; 36
Tfaili (10.1016/j.neucom.2015.04.069_bib35) 2008; 197
Ahmad (10.1016/j.neucom.2015.04.069_bib26) 2014; 24
Kwak (10.1016/j.neucom.2015.04.069_bib1) 2014; 14
Lei (10.1016/j.neucom.2015.04.069_bib7) 2008; 130
Tayarani-Bathaie (10.1016/j.neucom.2015.04.069_bib11) 2014; 125
Shatnawi (10.1016/j.neucom.2015.04.069_bib10) 2014; 61
Toksari (10.1016/j.neucom.2015.04.069_bib36) 2006; 176
Vapnik (10.1016/j.neucom.2015.04.069_bib40) 1998
Winston (10.1016/j.neucom.2015.04.069_bib13) 2013; 8
Fei (10.1016/j.neucom.2015.04.069_bib23) 2009; 36
Aydin (10.1016/j.neucom.2015.04.069_bib30) 2011; 11
Jena (10.1016/j.neucom.2015.04.069_bib2) 2014; 47
Abdat (10.1016/j.neucom.2015.04.069_bib28) 2012; 20
Lv (10.1016/j.neucom.2015.04.069_bib24) 2005; 75
Chaharsooghi (10.1016/j.neucom.2015.04.069_bib33) 2008; 200
Lei (10.1016/j.neucom.2015.04.069_bib42) 2007; 21
Widodo (10.1016/j.neucom.2015.04.069_bib19) 2007; 21
Vapnik (10.1016/j.neucom.2015.04.069_bib20) 1999
Sugumaran (10.1016/j.neucom.2015.04.069_bib18) 2008; 34
Chen (10.1016/j.neucom.2015.04.069_bib29) 2013; 46
Zhang (10.1016/j.neucom.2015.04.069_bib31) 2010; 37
Sun (10.1016/j.neucom.2015.04.069_bib43) 2007; 21
Wu (10.1016/j.neucom.2015.04.069_bib12) 2009; 36
Chapelle (10.1016/j.neucom.2015.04.069_bib25) 2002; 46
Ma (10.1016/j.neucom.2015.04.069_bib8) 2013; 26
Shi (10.1016/j.neucom.2015.04.069_bib3) 2014; 42
Jardine (10.1016/j.neucom.2015.04.069_bib6) 2006; 20
References_xml – volume: 36
  start-page: 3785
  year: 2009
  end-page: 3794
  ident: bib12
  article-title: Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference
  publication-title: Expert. Syst. Appl.
– volume: 130
  year: 2008
  ident: bib7
  article-title: Application of a novel hybrid intelligent method to compound fault diagnosis of locomotive roller bearings
  publication-title: J. Vib. Acoust. ASME
– year: 1999
  ident: bib20
  article-title: The Nature of Statistical Learning Theory
– volume: 11
  start-page: 120
  year: 2011
  end-page: 129
  ident: bib30
  article-title: A multi-objective artificial immune algorithm for parameter optimization in support vector machine
  publication-title: Appl. Soft Comput.
– volume: 46
  start-page: 131
  year: 2002
  end-page: 159
  ident: bib25
  article-title: Choosing multiple parameters for support vector machines
  publication-title: Mach. Learn.
– volume: 47
  start-page: 356
  year: 2014
  end-page: 372
  ident: bib2
  article-title: Gear fault diagnosis using active noise cancellation and adaptive wavelet transform
  publication-title: Measurement
– year: 2000
  ident: bib21
  article-title: An Introduction to Support Vector Machine: and Other Kernel Based Learning Methods
– volume: 40
  start-page: 7468
  year: 2013
  end-page: 7477
  ident: bib34
  article-title: A max–min ant system for the split delivery weighted vehicle routing problem
  publication-title: Expert. Syst. Appl.
– year: 1998
  ident: bib40
  article-title: Statistical Learning Theory
– volume: 17
  start-page: 1131
  year: 2011
  end-page: 1148
  ident: bib9
  article-title: Development of EBP-artificial neural network expert system for rolling element bearing fault diagnosis
  publication-title: J. Vib. Control
– volume: 36
  start-page: 9608
  year: 2009
  end-page: 9617
  ident: bib37
  article-title: A review of ant algorithms
  publication-title: Expert. Syst. Appl.
– volume: 21
  start-page: 2560
  year: 2007
  end-page: 2574
  ident: bib19
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 197
  start-page: 604
  year: 2008
  end-page: 613
  ident: bib35
  article-title: A new charged ant colony algorithm for continuous dynamic optimization
  publication-title: Appl. Math. Comput.
– volume: 48
  start-page: 552
  year: 2012
  end-page: 571
  ident: bib5
  article-title: Aircraft power generators: hybrid modeling and simulation for fault detection
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 34
  start-page: 3090
  year: 2008
  end-page: 3098
  ident: bib18
  article-title: Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
  publication-title: Expert. Syst. Appl.
– year: 1992
  ident: bib32
  article-title: Optimization, Learning and Natural Algorithms
– volume: 26
  start-page: 937
  year: 2013
  end-page: 944
  ident: bib8
  article-title: Multi-BP expert system for fault diagnosis of power system
  publication-title: Eng. Appl. Artif. Intell.
– volume: 37
  start-page: 6618
  year: 2010
  end-page: 6628
  ident: bib31
  article-title: An ACO-based algorithm for parameter optimization of support vector machines
  publication-title: Expert. Syst. Appl.
– volume: 228
  start-page: 2204
  year: 2014
  end-page: 2216
  ident: bib16
  article-title: Hybrid fault-feature extraction of rolling element bearing via customized-lifting multi-wavelet packet transform
  publication-title: Proc. Inst. Mech. Eng. Part C–J. Mech. Eng. Sci.
– volume: 21
  start-page: 2280
  year: 2007
  end-page: 2294
  ident: bib42
  article-title: Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAS
  publication-title: Mech. Syst. Signal Process.
– volume: 176
  start-page: 308
  year: 2006
  end-page: 316
  ident: bib36
  article-title: Ant colony optimization for finding the global minimum
  publication-title: Appl. Math. Comput.
– volume: 46
  start-page: 3057
  year: 2013
  end-page: 3063
  ident: bib14
  article-title: Rough set based rule learning and fuzzy classification of wavelet features for fault diagnosis of monoblock centrifugal pump
  publication-title: Measurement
– volume: 8
  start-page: 1049
  year: 2013
  end-page: 1055
  ident: bib13
  article-title: Single parameter fault identification technique for DC motor through wavelet analysis and fuzzy logic
  publication-title: J. Electr. Eng. Technol.
– volume: 21
  start-page: 1300
  year: 2007
  end-page: 1317
  ident: bib43
  article-title: Decision tree and PCA-based fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 42
  start-page: 388
  year: 2014
  end-page: 403
  ident: bib3
  article-title: A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor
  publication-title: Mech. Syst. Signal Process.
– volume: 33
  start-page: 1027
  year: 2012
  end-page: 1031
  ident: bib27
  article-title: On feature selection with principal component analysis for one-class SVM
  publication-title: Pattern Recognit. Lett.
– volume: 20
  start-page: 228
  year: 2012
  end-page: 244
  ident: bib28
  article-title: Hybrid feature selection and SVM-based classification for mouse skin precancerous stages diagnosis from bimodal spectroscopy
  publication-title: Opt. Express
– volume: 40
  start-page: 943
  year: 2007
  end-page: 950
  ident: bib22
  article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
  publication-title: Measurement
– volume: 25
  start-page: 806
  year: 2014
  end-page: 812
  ident: bib17
  article-title: Online motor fault detection and diagnosis using a hybrid FMM-CART model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 75
  start-page: 9
  year: 2005
  end-page: 15
  ident: bib24
  article-title: Fault diagnosis of power transformer based on multi-layer SVM classifier
  publication-title: Electr. Power Syst. Res.
– volume: 24
  start-page: 1671
  year: 2014
  end-page: 1682
  ident: bib26
  article-title: Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components
  publication-title: Neural Comput. Appl.
– volume: 125
  start-page: 153
  year: 2014
  end-page: 165
  ident: bib11
  article-title: Dynamic neural network-based fault diagnosis of gas turbine engines
  publication-title: Neurocomputing
– volume: 20
  start-page: 939
  year: 2006
  end-page: 952
  ident: bib4
  article-title: Support vector machines-based fault diagnosis for turbo-pump rotor
  publication-title: Mech. Syst. Signal Process.
– volume: 46
  start-page: 220
  year: 2013
  end-page: 232
  ident: bib29
  article-title: A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
  publication-title: Measurement
– volume: 20
  start-page: 1992
  year: 2006
  end-page: 2006
  ident: bib41
  article-title: Gearbox fault diagnosis using adaptive redundant lifting scheme
  publication-title: Mech. Syst. Signal Process.
– volume: 200
  start-page: 167
  year: 2008
  end-page: 177
  ident: bib33
  article-title: An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP)
  publication-title: Appl. Math. Comput.
– volume: 24
  start-page: 1887
  year: 2010
  end-page: 1906
  ident: bib15
  article-title: Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib6
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
– volume: 61
  start-page: 1434
  year: 2014
  end-page: 1443
  ident: bib10
  article-title: Fault diagnosis in internal combustion engines using extension neural network
  publication-title: IEEE Trans. Ind. Electron.
– volume: 36
  start-page: 11352
  year: 2009
  end-page: 11357
  ident: bib23
  article-title: Fault diagnosis of power transformer based on support vector machine with genetic algorithm
  publication-title: Expert. Syst. Appl.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: bib38
  article-title: Ant colony optimization – artificial ants as a computational intelligence technique
  publication-title: IEEE Comput. Intell. Mag.
– volume: 14
  start-page: 283
  year: 2014
  end-page: 298
  ident: bib1
  article-title: Fault detection of roller-bearings using signal processing and optimization algorithms
  publication-title: Sensors
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: bib39
  article-title: Ant colony optimization theory: a survey
  publication-title: Theor. Comput. Sci.
– year: 1999
  ident: 10.1016/j.neucom.2015.04.069_bib20
– year: 1992
  ident: 10.1016/j.neucom.2015.04.069_bib32
– volume: 46
  start-page: 131
  issue: 1–3
  year: 2002
  ident: 10.1016/j.neucom.2015.04.069_bib25
  article-title: Choosing multiple parameters for support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012450327387
– volume: 8
  start-page: 1049
  issue: 5
  year: 2013
  ident: 10.1016/j.neucom.2015.04.069_bib13
  article-title: Single parameter fault identification technique for DC motor through wavelet analysis and fuzzy logic
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2013.8.5.1049
– volume: 25
  start-page: 806
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib17
  article-title: Online motor fault detection and diagnosis using a hybrid FMM-CART model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2280280
– volume: 75
  start-page: 9
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2015.04.069_bib24
  article-title: Fault diagnosis of power transformer based on multi-layer SVM classifier
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2004.07.013
– volume: 61
  start-page: 1434
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib10
  article-title: Fault diagnosis in internal combustion engines using extension neural network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2261033
– volume: 36
  start-page: 11352
  issue: 8
  year: 2009
  ident: 10.1016/j.neucom.2015.04.069_bib23
  article-title: Fault diagnosis of power transformer based on support vector machine with genetic algorithm
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2009.03.022
– volume: 46
  start-page: 3057
  issue: 9
  year: 2013
  ident: 10.1016/j.neucom.2015.04.069_bib14
  article-title: Rough set based rule learning and fuzzy classification of wavelet features for fault diagnosis of monoblock centrifugal pump
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.06.002
– volume: 34
  start-page: 3090
  issue: 4
  year: 2008
  ident: 10.1016/j.neucom.2015.04.069_bib18
  article-title: Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2007.06.029
– volume: 125
  start-page: 153
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib11
  article-title: Dynamic neural network-based fault diagnosis of gas turbine engines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.050
– volume: 11
  start-page: 120
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2015.04.069_bib30
  article-title: A multi-objective artificial immune algorithm for parameter optimization in support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.003
– volume: 42
  start-page: 388
  issue: 1–2
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib3
  article-title: A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.09.002
– volume: 48
  start-page: 552
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2015.04.069_bib5
  article-title: Aircraft power generators: hybrid modeling and simulation for fault detection
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2012.6129655
– volume: 40
  start-page: 943
  issue: 9–10
  year: 2007
  ident: 10.1016/j.neucom.2015.04.069_bib22
  article-title: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.10.010
– volume: 36
  start-page: 3785
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2015.04.069_bib12
  article-title: Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.026
– year: 1998
  ident: 10.1016/j.neucom.2015.04.069_bib40
– volume: 47
  start-page: 356
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib2
  article-title: Gear fault diagnosis using active noise cancellation and adaptive wavelet transform
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.006
– volume: 228
  start-page: 2204
  issue: 12
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib16
  article-title: Hybrid fault-feature extraction of rolling element bearing via customized-lifting multi-wavelet packet transform
  publication-title: Proc. Inst. Mech. Eng. Part C–J. Mech. Eng. Sci.
  doi: 10.1177/0954406213516305
– volume: 24
  start-page: 1671
  issue: 7–8
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib26
  article-title: Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1370-6
– volume: 130
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2015.04.069_bib7
  article-title: Application of a novel hybrid intelligent method to compound fault diagnosis of locomotive roller bearings
  publication-title: J. Vib. Acoust. ASME
  doi: 10.1115/1.2890396
– volume: 197
  start-page: 604
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2015.04.069_bib35
  article-title: A new charged ant colony algorithm for continuous dynamic optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.08.087
– volume: 21
  start-page: 1300
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2015.04.069_bib43
  article-title: Decision tree and PCA-based fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.06.010
– volume: 176
  start-page: 308
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2015.04.069_bib36
  article-title: Ant colony optimization for finding the global minimum
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.09.043
– volume: 26
  start-page: 937
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2015.04.069_bib8
  article-title: Multi-BP expert system for fault diagnosis of power system
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.03.017
– volume: 344
  start-page: 243
  issue: 2–3
  year: 2005
  ident: 10.1016/j.neucom.2015.04.069_bib39
  article-title: Ant colony optimization theory: a survey
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– volume: 37
  start-page: 6618
  issue: 9
  year: 2010
  ident: 10.1016/j.neucom.2015.04.069_bib31
  article-title: An ACO-based algorithm for parameter optimization of support vector machines
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2010.03.067
– volume: 20
  start-page: 1992
  issue: 8
  year: 2006
  ident: 10.1016/j.neucom.2015.04.069_bib41
  article-title: Gearbox fault diagnosis using adaptive redundant lifting scheme
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.06.001
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.neucom.2015.04.069_bib6
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 17
  start-page: 1131
  issue: 8
  year: 2011
  ident: 10.1016/j.neucom.2015.04.069_bib9
  article-title: Development of EBP-artificial neural network expert system for rolling element bearing fault diagnosis
  publication-title: J. Vib. Control
  doi: 10.1177/1077546310361858
– year: 2000
  ident: 10.1016/j.neucom.2015.04.069_bib21
– volume: 33
  start-page: 1027
  issue: 9
  year: 2012
  ident: 10.1016/j.neucom.2015.04.069_bib27
  article-title: On feature selection with principal component analysis for one-class SVM
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.01.019
– volume: 20
  start-page: 228
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2015.04.069_bib28
  article-title: Hybrid feature selection and SVM-based classification for mouse skin precancerous stages diagnosis from bimodal spectroscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.20.000228
– volume: 36
  start-page: 9608
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2015.04.069_bib37
  article-title: A review of ant algorithms
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2009.01.020
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2015.04.069_bib38
  article-title: Ant colony optimization – artificial ants as a computational intelligence technique
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 20
  start-page: 939
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2015.04.069_bib4
  article-title: Support vector machines-based fault diagnosis for turbo-pump rotor
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.006
– volume: 40
  start-page: 7468
  issue: 18
  year: 2013
  ident: 10.1016/j.neucom.2015.04.069_bib34
  article-title: A max–min ant system for the split delivery weighted vehicle routing problem
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.068
– volume: 24
  start-page: 1887
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2015.04.069_bib15
  article-title: Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.01.008
– volume: 200
  start-page: 167
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2015.04.069_bib33
  article-title: An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP)
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.09.070
– volume: 46
  start-page: 220
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2015.04.069_bib29
  article-title: A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.06.009
– volume: 21
  start-page: 2280
  issue: 5
  year: 2007
  ident: 10.1016/j.neucom.2015.04.069_bib42
  article-title: Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAS
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.11.003
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  ident: 10.1016/j.neucom.2015.04.069_bib19
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.007
– volume: 14
  start-page: 283
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2015.04.069_bib1
  article-title: Fault detection of roller-bearings using signal processing and optimization algorithms
  publication-title: Sensors
  doi: 10.3390/s140100283
SSID ssj0017129
Score 2.5207088
Snippet The failure of rotating machinery can result in fatal damage and economic loss since rotating machinery plays an important role in the modern manufacturing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 260
SubjectTerms Ant colony algorithm
Intelligent fault diagnosis
Roller bearing
Rotating machinery
Rotor
Support vector machine
Title Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
URI https://dx.doi.org/10.1016/j.neucom.2015.04.069
Volume 167
WOSCitedRecordID wos000358808500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65Tg-99F0lfWkPvSEqYMELR7dK1URRVKlpww0tsGs5ssGywYp_UH9U_01nn6F11ZfUC7YWFlaez7Mzw8w3CL0KKREJY7Ef1KLy4zRLfVaX4LjGgkeC1Emleix9PqPn52meZx9Go6-2Fma7oE2TXl9nq_8qahgDYcvS2b8Qt7spDMB3EDocQexw_CPBnziSzc4TrF90Mr4q0-k088i6lS_fm5m3VGmUfL3zehUv2PQraYt7WxXHt6dt8VvnSXrrZuexxaxdw9hSJShudk0l6XVlIq3giiTU26jWOjbNWXKLL2XOjdeCdlqass-hTaz4QSrVXcLELaZLSd9QS6y6OIWLbOdz1p7Nb9IStN685G7o0lz4hrWnA_DbK_Oeg7xmw3BHmJi6PxeD26vD0cHMKPHBUtV6nWtVntJIFcl_p-t17w-rrXUrA7PxR7qrzd6eosMbV68b3ssEI7koxY6rW8z8wNb9US5FrgQMbdBvaX4LHUQ0ydIxOpieHOen7hUXDSNNBGmWbus6VfLh_rN-bjcNbKGL--iucWLwVIPvARrx5iG6ZxuEYLNfPEJfBljECovYYRG3AlssYodFrLCIDRaxxqI9jSUWMWARayxih0UMWMQDLGKDReywCNNq7LCIh1h8jD69O754-943fUH8ipCsA41Sg9cRpEJEXBBWgQfAGeGMiowmJU-yoGKTKhRlWLIJr6iYkHBSx4lk5Sagm8gTNG7ahh8iHJbg4ZRJAj7mJA7AWA9pkFIiP3gZE36EiP3Vi8qQ5sveLYvCZkdeFVpWhZRVEcQFPOQI-W7WSpPG_OZ6agVaGMNXG7QFYPCXM5_-88xn6M7N3-s5Gnfrnr9At6ttN9-sXxqwfgObAN-z
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+fault+diagnosis+of+rotating+machinery+using+support+vector+machine+with+ant+colony+algorithm+for+synchronous+feature+selection+and+parameter+optimization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+XiaoLi&rft.au=Chen%2C+Wei&rft.au=Wang%2C+BaoJian&rft.au=Chen%2C+XueFeng&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=167&rft.spage=260&rft.epage=279&rft_id=info:doi/10.1016%2Fj.neucom.2015.04.069&rft.externalDocID=S092523121500538X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon