Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks
The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of m...
Saved in:
| Published in: | Energy (Oxford) Vol. 261; p. 125240 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.12.2022
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of multi-energy storage systems in the RIES. A RIES model including renewable wind power, power distribution network, district heating network, multi-energy storage system, and heat pump to convert electricity to heat is constructed. An optimization method combining a mixed-integer nonlinear programming optimization model is proposed to minimize the comprehensive cost of RIES. The second-order cone relaxation method performs convex relaxation of the power flow constraints, and the district heat network is operated under a constant-flow-variable-temperature strategy. The original optimization model is transformed into a mixed-integer second-order cone programming problem to solve. Three solution methods, including enumeration method, improved enumeration method and genetic algorithm, are employed to determine the optimum installation locations, and they are compared in computation time and efficiency. The results demonstrate that the distributed hybrid integration of electricity and thermal energy storages improves the RIES economy by collaborating the power and heat balances and reducing the purchased electricity from the grid. By integrating the hybrid storage system, the curtailed wind is reduced by 53.9%, and the economy is improved by 13.4%.
•A two-stage optimization model of multi-energy storage configuration is developed.•The sites and capacities of hybrid energy storages in power and thermal networks are optimized.•Three methods to determine the installation locations are compared.•The economics performances at different configuration strategies are compared.•The hybridization reduces curtailed wind power by 53.9% and improves economic performance by 13.4%. |
|---|---|
| AbstractList | The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of multi-energy storage systems in the RIES. A RIES model including renewable wind power, power distribution network, district heating network, multi-energy storage system, and heat pump to convert electricity to heat is constructed. An optimization method combining a mixed-integer nonlinear programming optimization model is proposed to minimize the comprehensive cost of RIES. The second-order cone relaxation method performs convex relaxation of the power flow constraints, and the district heat network is operated under a constant-flow-variable-temperature strategy. The original optimization model is transformed into a mixed-integer second-order cone programming problem to solve. Three solution methods, including enumeration method, improved enumeration method and genetic algorithm, are employed to determine the optimum installation locations, and they are compared in computation time and efficiency. The results demonstrate that the distributed hybrid integration of electricity and thermal energy storages improves the RIES economy by collaborating the power and heat balances and reducing the purchased electricity from the grid. By integrating the hybrid storage system, the curtailed wind is reduced by 53.9%, and the economy is improved by 13.4%. The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of multi-energy storage systems in the RIES. A RIES model including renewable wind power, power distribution network, district heating network, multi-energy storage system, and heat pump to convert electricity to heat is constructed. An optimization method combining a mixed-integer nonlinear programming optimization model is proposed to minimize the comprehensive cost of RIES. The second-order cone relaxation method performs convex relaxation of the power flow constraints, and the district heat network is operated under a constant-flow-variable-temperature strategy. The original optimization model is transformed into a mixed-integer second-order cone programming problem to solve. Three solution methods, including enumeration method, improved enumeration method and genetic algorithm, are employed to determine the optimum installation locations, and they are compared in computation time and efficiency. The results demonstrate that the distributed hybrid integration of electricity and thermal energy storages improves the RIES economy by collaborating the power and heat balances and reducing the purchased electricity from the grid. By integrating the hybrid storage system, the curtailed wind is reduced by 53.9%, and the economy is improved by 13.4%. •A two-stage optimization model of multi-energy storage configuration is developed.•The sites and capacities of hybrid energy storages in power and thermal networks are optimized.•Three methods to determine the installation locations are compared.•The economics performances at different configuration strategies are compared.•The hybridization reduces curtailed wind power by 53.9% and improves economic performance by 13.4%. |
| ArticleNumber | 125240 |
| Author | Wang, Jiangjiang Deng, Hongda Qi, Xiaoling |
| Author_xml | – sequence: 1 givenname: Jiangjiang surname: Wang fullname: Wang, Jiangjiang email: wangjj@ncepu.edu.cn – sequence: 2 givenname: Hongda surname: Deng fullname: Deng, Hongda – sequence: 3 givenname: Xiaoling surname: Qi fullname: Qi, Xiaoling |
| BookMark | eNqFkD1vFDEQhl0kEkngH1C4TLMXfx67KZDQKSRIkWigtibe8eFj1z48vqDj1-OwqSiSyhrrfd7RPOfsJOWEjL2XYiWFXF_tVpiwbI8rJZRaSWWVESfsTOi16Kwx6g07J9oJIWw_DGeMNplq9wCEI6dYkUMauYc9-FiPPO9rnOMfqDEnngOfD1ON3bKAU80FtsjpSBVnHhOvP5AX3LYwTG2uuC1QW_EzkLD-zuUnvWWnASbCd8_vBfv--ebb5q67_3r7ZfPpvvNaD7UzSukHA2glrIMM3go9ql4rYc0IFgbp9ToIMwYFov32wYQ-oB2sEFKqAfUFu1x69yX_OiBVN0fyOE2QMB_IqQ-y131L2xY1S9SXTFQwuH2JM5Sjk8I9eXU7t1zhnry6xWvDrv_DmrZ_tmqBOL0Gf1xgbA4eIxZHPmLyOMaCvroxx5cL_gKIg5w1 |
| CitedBy_id | crossref_primary_10_3390_en17246325 crossref_primary_10_1016_j_rineng_2024_102107 crossref_primary_10_1016_j_energy_2025_136117 crossref_primary_10_23919_PCMP_2024_000297 crossref_primary_10_1007_s40866_025_00287_9 crossref_primary_10_3390_en16186424 crossref_primary_10_1016_j_energy_2025_137423 crossref_primary_10_3390_en16217312 crossref_primary_10_1016_j_energy_2024_130974 crossref_primary_10_1016_j_energy_2024_131106 crossref_primary_10_1016_j_ijhydene_2025_05_191 crossref_primary_10_1016_j_energy_2023_127680 crossref_primary_10_1016_j_energy_2025_136160 crossref_primary_10_1016_j_est_2024_112497 crossref_primary_10_1016_j_renene_2024_120956 crossref_primary_10_3389_fenrg_2024_1340580 crossref_primary_10_3390_en17194792 crossref_primary_10_1016_j_apenergy_2024_123935 crossref_primary_10_1016_j_energy_2024_134065 crossref_primary_10_1016_j_energy_2023_130181 crossref_primary_10_3390_su16208930 crossref_primary_10_3390_pr12102079 crossref_primary_10_1063_5_0267372 crossref_primary_10_1016_j_est_2023_110406 crossref_primary_10_1016_j_scs_2023_104622 crossref_primary_10_1016_j_enconman_2022_116640 crossref_primary_10_1016_j_enconman_2023_117334 crossref_primary_10_1016_j_sftr_2025_100656 crossref_primary_10_1016_j_energy_2024_133855 crossref_primary_10_1016_j_est_2025_117846 crossref_primary_10_3390_en16062593 crossref_primary_10_1016_j_est_2024_111276 crossref_primary_10_1016_j_est_2025_117709 crossref_primary_10_1016_j_energy_2022_126411 crossref_primary_10_1016_j_renene_2024_120502 crossref_primary_10_3390_en16237791 crossref_primary_10_3390_su16125016 crossref_primary_10_1016_j_apenergy_2023_121701 crossref_primary_10_1016_j_est_2023_109015 crossref_primary_10_1016_j_energy_2025_137321 crossref_primary_10_1016_j_energy_2023_127729 crossref_primary_10_3390_en18061320 |
| Cites_doi | 10.1016/j.apenergy.2014.07.095 10.1016/j.enconman.2021.114096 10.1016/B978-0-08-100311-4.00014-5 10.1016/j.applthermaleng.2021.116860 10.1109/TPWRS.2019.2914276 10.1016/j.energy.2015.05.063 10.1016/j.eiar.2020.106429 10.1016/j.energy.2021.121601 10.1016/j.energy.2018.03.010 10.1016/j.energy.2021.120522 10.1016/j.apenergy.2017.07.142 10.1016/j.jclepro.2020.125357 10.1016/j.apenergy.2020.115052 10.1016/j.apenergy.2021.116971 10.1016/j.est.2020.101866 10.1016/j.energy.2020.117689 10.1109/TSTE.2011.2163176 10.1016/j.ijepes.2021.106810 10.1016/j.est.2021.102539 10.1016/j.egypro.2017.12.502 10.1016/j.energy.2022.123553 10.1016/j.rser.2016.02.025 10.1109/TPWRS.2007.901459 10.1016/j.energy.2020.117313 10.1016/j.egyr.2021.01.051 10.1016/j.egyr.2020.11.137 10.1109/TSTE.2015.2467383 10.1049/iet-rpg.2015.0440 10.1038/nchem.2085 10.1016/j.apenergy.2015.01.102 10.1016/j.energy.2022.123226 10.3390/en12203964 10.1016/j.enbuild.2021.110741 10.1016/j.energy.2017.05.123 10.1007/s40565-016-0241-4 10.1109/TPWRS.2010.2045663 10.1016/j.rser.2020.109922 10.1002/etep.1696 10.1016/j.energy.2013.11.065 10.1016/j.energy.2018.08.206 10.1016/j.ijepes.2020.106376 10.1016/j.energy.2022.123248 10.1016/j.energy.2020.118139 10.1109/TPWRS.2015.2404533 10.1016/j.energy.2020.118093 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.125240 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2022_125240 S0360544222021284 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-4223b4ae51a6f1fc503d2832054da5a91c36f04df2a03208f4f8fe595001129e3 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863312000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 05:50:47 EDT 2025 Tue Nov 18 22:36:41 EST 2025 Sat Nov 29 07:24:52 EST 2025 Fri Feb 23 02:38:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Capacity optimization Multi-energy storage system Siting optimization Power and heat networks Regional integrated energy systems (RIES) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-4223b4ae51a6f1fc503d2832054da5a91c36f04df2a03208f4f8fe595001129e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2718380015 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2718380015 crossref_primary_10_1016_j_energy_2022_125240 crossref_citationtrail_10_1016_j_energy_2022_125240 elsevier_sciencedirect_doi_10_1016_j_energy_2022_125240 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-15 |
| PublicationDateYYYYMMDD | 2022-12-15 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | He, Guo, Zhou, Song, Kurban, Wang (bib32) 2022; 245 Li, Feng, Wang, Sun (bib36) 2022; 245 Yan, Zhang, Liang, Jin (bib31) 2020; 207 Lund, Østergaard, Connolly, Mathiesen (bib6) 2017; 137 Larcher, Tarascon (bib24) 2015; 7 Ding, Xu, Yang (bib29) 2020; 6 Li, Chen, Yuan, Li (bib49) 2016; 4 Wang, Geng, Jiang (bib22) 2019; 34 Gabrielli, Gazzani, Martelli, Mazzotti (bib39) 2018; 219 Underwood (bib40) 2016 Ding, Xu, Xia, Zhao, Yuan, Yin (bib5) 2021; 129 He, Shahidehpour, Li, Guo, Zhu (bib44) 2017 Guo, Zhang, Wang, Zeng, Li (bib8) 2021; 191 Wang, Qi, Ren, Zhang, Wang (bib50) 2021; 281 Lund (bib26) 2018; 151 Oudalov, Chartouni, Ohler (bib15) 2007; 22 Sedghi, Ahmadian, Aliakbar-Golkar (bib35) 2015; 31 Luo, Shao, Jiao, Zhang (bib11) 2021; 125 Jebamalai, Marlein, Laverge (bib33) 2020; 202 Li, Wu, Shahidehpour, Wang, Zhang (bib45) 2016; 7 Yue, Zhang, Ping, Qiang, Qian, Fu (bib12) 2014; 24 Shabanpour-Haghighi, Seifi (bib34) 2015; 88 Yan, Wang, Lu, Ma, Zhou, Zhang, Cheng (bib51) 2021; 235 Tolmasquim, Senra, Gouvêa, Pereira, Alves, Moszkowicz (bib1) 2020; 84 Liu, Li, Fan, Wu, Guo, Jin, Zhang, Yang (bib30) 2022; 247 Wang, Wang, Jia, Zhi, Liu, Fan, Lin (bib4) 2017; 142 Awad, Chaudry, Wu, Jenkins (bib46) 2009 Atwa, El-Saadany (bib19) 2010; 25 Bose, Gayme, Topcu, Chandy (bib37) 2012 Xuan, Shen, Guo, Sun (bib7) 2021; 294 Chen, Zhang, Zhang, Lin, Jiang, Li (bib14) 2021; 237 Ippolito, Di Silvestre, Riva Sanseverino, Zizzo, Graditi (bib18) 2014; 64 Leou (bib23) 2008 Li, Cui, Wan (bib48) 2015; 35 Jiang, Kang, Liu (bib16) 2020; 206 Solomon, Kammen, Callaway (bib20) 2014; 134 Hartmann, Dan (bib10) 2011; 3 Wang, Liu, Ren, Lu (bib43) 2020; 197 Nazir, Abdalla, Wang, Chu, Jie, Tian, Jiang, Khan, Sanjeevikumar, Tang (bib21) 2020; 32 Zhang, Ren, Ma, Tang, He (bib28) 2019; 12 Liu, Wu, Jenkins, Bagdanavicius (bib47) 2016; 162 Hou, Xu, Wu, Wang, Tang, Chen (bib17) 2020; 271 Li, Zhang, Sun (bib27) 2021; 227 Deeba, Sharma, Saha, Chakraborty, Thomas (bib38) 2016; 10 Capone, Guelpa, Mancò, Verda (bib13) 2021; 237 Gong, Yang, Xu, Chen, Zhao, Liu, Lin, Yang, Qian, Ke (bib9) 2021; 7 Lund, Østergaard, Chang, Werner, Svendsen, Sorknæs, Thorsen, Hvelplund, Mortensen, Mathiesen, Bojesen, Duic, Zhang, Möller (bib25) 2018; 164 Tan, Geng, Tan, Wang, Pu, Guo (bib3) 2021; 38 Thellufsen, Lund, Sorknæs, Østergaard, Chang, Drysdale, Nielsen, Djørup, Sperling (bib41) 2020; 129 Al-Ghussain, Darwish Ahmad, Abubaker, Mohamed (bib2) 2021; 46 Connolly, Lund, Mathiesen (bib42) 2016; 60 Nazir (10.1016/j.energy.2022.125240_bib21) 2020; 32 Wang (10.1016/j.energy.2022.125240_bib50) 2021; 281 Solomon (10.1016/j.energy.2022.125240_bib20) 2014; 134 Wang (10.1016/j.energy.2022.125240_bib43) 2020; 197 Lund (10.1016/j.energy.2022.125240_bib6) 2017; 137 Li (10.1016/j.energy.2022.125240_bib36) 2022; 245 Yue (10.1016/j.energy.2022.125240_bib12) 2014; 24 Hou (10.1016/j.energy.2022.125240_bib17) 2020; 271 Al-Ghussain (10.1016/j.energy.2022.125240_bib2) 2021; 46 Li (10.1016/j.energy.2022.125240_bib49) 2016; 4 Li (10.1016/j.energy.2022.125240_bib27) 2021; 227 Li (10.1016/j.energy.2022.125240_bib48) 2015; 35 Bose (10.1016/j.energy.2022.125240_bib37) 2012 Yan (10.1016/j.energy.2022.125240_bib31) 2020; 207 Deeba (10.1016/j.energy.2022.125240_bib38) 2016; 10 Liu (10.1016/j.energy.2022.125240_bib47) 2016; 162 Larcher (10.1016/j.energy.2022.125240_bib24) 2015; 7 Gabrielli (10.1016/j.energy.2022.125240_bib39) 2018; 219 Ippolito (10.1016/j.energy.2022.125240_bib18) 2014; 64 Ding (10.1016/j.energy.2022.125240_bib29) 2020; 6 Leou (10.1016/j.energy.2022.125240_bib23) 2008 Wang (10.1016/j.energy.2022.125240_bib4) 2017; 142 Shabanpour-Haghighi (10.1016/j.energy.2022.125240_bib34) 2015; 88 Ding (10.1016/j.energy.2022.125240_bib5) 2021; 129 He (10.1016/j.energy.2022.125240_bib32) 2022; 245 Jebamalai (10.1016/j.energy.2022.125240_bib33) 2020; 202 Underwood (10.1016/j.energy.2022.125240_bib40) 2016 Atwa (10.1016/j.energy.2022.125240_bib19) 2010; 25 Guo (10.1016/j.energy.2022.125240_bib8) 2021; 191 Oudalov (10.1016/j.energy.2022.125240_bib15) 2007; 22 Liu (10.1016/j.energy.2022.125240_bib30) 2022; 247 Tan (10.1016/j.energy.2022.125240_bib3) 2021; 38 Sedghi (10.1016/j.energy.2022.125240_bib35) 2015; 31 Capone (10.1016/j.energy.2022.125240_bib13) 2021; 237 Wang (10.1016/j.energy.2022.125240_bib22) 2019; 34 Connolly (10.1016/j.energy.2022.125240_bib42) 2016; 60 Awad (10.1016/j.energy.2022.125240_bib46) 2009 Luo (10.1016/j.energy.2022.125240_bib11) 2021; 125 Tolmasquim (10.1016/j.energy.2022.125240_bib1) 2020; 84 Lund (10.1016/j.energy.2022.125240_bib26) 2018; 151 Zhang (10.1016/j.energy.2022.125240_bib28) 2019; 12 Xuan (10.1016/j.energy.2022.125240_bib7) 2021; 294 Gong (10.1016/j.energy.2022.125240_bib9) 2021; 7 Jiang (10.1016/j.energy.2022.125240_bib16) 2020; 206 Hartmann (10.1016/j.energy.2022.125240_bib10) 2011; 3 He (10.1016/j.energy.2022.125240_bib44) 2017 Yan (10.1016/j.energy.2022.125240_bib51) 2021; 235 Lund (10.1016/j.energy.2022.125240_bib25) 2018; 164 Thellufsen (10.1016/j.energy.2022.125240_bib41) 2020; 129 Chen (10.1016/j.energy.2022.125240_bib14) 2021; 237 Li (10.1016/j.energy.2022.125240_bib45) 2016; 7 |
| References_xml | – volume: 245 year: 2022 ident: bib36 article-title: Joint planning of distributed generations and energy storage in active distribution networks: a Bi-Level programming approach publication-title: Energy – volume: 237 year: 2021 ident: bib13 article-title: Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems publication-title: Energy – volume: 219 start-page: 408 year: 2018 end-page: 424 ident: bib39 article-title: Optimal design of multi-energy systems with seasonal storage publication-title: Appl Energy – volume: 151 start-page: 94 year: 2018 end-page: 102 ident: bib26 article-title: Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach publication-title: Energy – volume: 129 year: 2020 ident: bib41 article-title: Smart energy cities in a 100% renewable energy context publication-title: Renew Sustain Energy Rev – volume: 24 start-page: 264 year: 2014 end-page: 280 ident: bib12 article-title: Determination of economic dispatch of wind farm-battery energy storage system using Genetic Algorithm publication-title: Int. Transact. Electric. Energy Syst. – volume: 247 year: 2022 ident: bib30 article-title: Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios publication-title: Energy – volume: 25 start-page: 1815 year: 2010 end-page: 1822 ident: bib19 article-title: Optimal allocation of ESS in distribution systems with a high penetration of wind energy publication-title: IEEE Trans Power Syst – volume: 271 year: 2020 ident: bib17 article-title: Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system publication-title: Appl Energy – volume: 10 start-page: 1149 year: 2016 end-page: 1160 ident: bib38 article-title: Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks publication-title: IET Renew Power Gener – volume: 64 start-page: 648 year: 2014 end-page: 662 ident: bib18 article-title: Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios publication-title: Energy – volume: 245 year: 2022 ident: bib32 article-title: The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system publication-title: Energy – volume: 125 year: 2021 ident: bib11 article-title: Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment publication-title: Int J Electr Power Energy Syst – volume: 3 start-page: 49 year: 2011 end-page: 56 ident: bib10 article-title: Cooperation of a grid-connected wind farm and an energy storage unit—demonstration of a simulation tool publication-title: IEEE Trans Sustain Energy – volume: 7 start-page: 419 year: 2021 end-page: 425 ident: bib9 article-title: Optimal operation of integrated energy system considering virtual heating energy storage publication-title: Energy Rep – volume: 134 start-page: 75 year: 2014 end-page: 89 ident: bib20 article-title: The role of large-scale energy storage design and dispatch in the power grid: a study of very high grid penetration of variable renewable resources publication-title: Appl Energy – volume: 6 start-page: 739 year: 2020 end-page: 744 ident: bib29 article-title: Optimal configuration of hybrid energy storage in integrated energy system publication-title: Energy Rep – start-page: 387 year: 2016 end-page: 421 ident: bib40 article-title: Heat pump modelling publication-title: Adv. Ground Source Heat Pump Syst. – volume: 227 year: 2021 ident: bib27 article-title: Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages publication-title: Energy – year: 2012 ident: bib37 article-title: Optimal placement of energy storage in the grid – volume: 46 year: 2021 ident: bib2 article-title: An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses publication-title: Sustain Energy Technol Assessments – volume: 197 year: 2020 ident: bib43 article-title: Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility publication-title: Energy – volume: 7 start-page: 19 year: 2015 end-page: 29 ident: bib24 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat Chem – volume: 191 year: 2021 ident: bib8 article-title: Optimal operation of regional integrated energy system considering demand response publication-title: Appl Therm Eng – volume: 294 year: 2021 ident: bib7 article-title: A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables publication-title: Appl Energy – volume: 202 year: 2020 ident: bib33 article-title: Influence of centralized and distributed thermal energy storage on district heating network design publication-title: Energy – volume: 38 year: 2021 ident: bib3 article-title: Integrated energy system–Hydrogen natural gas hybrid energy storage system optimization model based on cooperative game under carbon neutrality publication-title: J Energy Storage – volume: 142 start-page: 3270 year: 2017 end-page: 3275 ident: bib4 article-title: Economic dispatch of generalized multi-source energy storage in regional integrated energy systems publication-title: Energy Proc – volume: 164 start-page: 147 year: 2018 end-page: 159 ident: bib25 article-title: The status of 4th generation district heating: research and results publication-title: Energy – volume: 88 start-page: 430 year: 2015 end-page: 442 ident: bib34 article-title: Multi-objective operation management of a multi-carrier energy system publication-title: Energy – volume: 235 year: 2021 ident: bib51 article-title: Multi-objective two-stage adaptive robust planning method for an integrated energy system considering load uncertainty publication-title: Energy Build – volume: 84 year: 2020 ident: bib1 article-title: Strategies of electricity distributors in the context of distributed energy resources diffusion publication-title: Environ Impact Assess Rev – volume: 129 year: 2021 ident: bib5 article-title: Optimal dispatching strategy for user-side integrated energy system considering multiservice of energy storage publication-title: Int J Electr Power Energy Syst – volume: 207 year: 2020 ident: bib31 article-title: An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning publication-title: Energy – volume: 22 start-page: 1259 year: 2007 end-page: 1266 ident: bib15 article-title: Optimizing a battery energy storage system for primary frequency control publication-title: IEEE Trans Power Syst – volume: 7 start-page: 12 year: 2016 end-page: 22 ident: bib45 article-title: Combined heat and power dispatch considering pipeline energy storage of district heating network publication-title: IEEE Trans Sustain Energy – volume: 237 year: 2021 ident: bib14 article-title: Privacy-preserving distributed optimal scheduling of regional integrated energy system considering different heating modes of buildings publication-title: Energy Convers Manag – volume: 32 year: 2020 ident: bib21 article-title: Optimization configuration of energy storage capacity based on the microgrid reliable output power publication-title: J Energy Storage – volume: 281 year: 2021 ident: bib50 article-title: Optimal design of hybrid combined cooling, heating and power systems considering the uncertainties of load demands and renewable energy sources publication-title: J Clean Prod – volume: 206 year: 2020 ident: bib16 article-title: Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics publication-title: Energy – start-page: 744 year: 2008 end-page: 749 ident: bib23 article-title: An economic analysis model for the energy storage systems in a deregulated market publication-title: IEEE international conference on sustainable energy technologies. 2008 – volume: 4 start-page: 566 year: 2016 end-page: 580 ident: bib49 article-title: Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system publication-title: J Modern Power Syst Clean Energy – year: 2009 ident: bib46 article-title: Integrated optimal power flow for electric power and heat in a MicroGrid publication-title: The 20th international conference and exhibition on electricity distribution – volume: 34 start-page: 4728 year: 2019 end-page: 4738 ident: bib22 article-title: Robust co-planning of energy storage and transmission line with mixed integer recourse publication-title: IEEE Trans Power Syst – volume: 31 start-page: 304 year: 2015 end-page: 316 ident: bib35 article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation publication-title: IEEE Trans Power Syst – volume: 12 year: 2019 ident: bib28 article-title: Research on double-layer optimized configuration of multi-energy storage in regional integrated energy system with connected distributed wind power publication-title: Energies – volume: 162 start-page: 1238 year: 2016 end-page: 1250 ident: bib47 article-title: Combined analysis of electricity and heat networks publication-title: Appl Energy – volume: 35 start-page: 4674 year: 2015 end-page: 4681 ident: bib48 article-title: Distribution network reconfiguration based on second-order conic programming considering EV charging strategy publication-title: Proc CSEE – volume: 137 start-page: 556 year: 2017 end-page: 565 ident: bib6 article-title: Smart energy and smart energy systems publication-title: Energy – volume: 60 start-page: 1634 year: 2016 end-page: 1653 ident: bib42 article-title: Smart Energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union publication-title: Renew Sustain Energy Rev – start-page: 1061 year: 2017 end-page: 1071 ident: bib44 article-title: Robust constrained operation of integrated electricity- natural gas system considering distributed natural gas storage publication-title: IEEE Trans Sustain Energy – volume: 134 start-page: 75 year: 2014 ident: 10.1016/j.energy.2022.125240_bib20 article-title: The role of large-scale energy storage design and dispatch in the power grid: a study of very high grid penetration of variable renewable resources publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.095 – start-page: 1061 year: 2017 ident: 10.1016/j.energy.2022.125240_bib44 article-title: Robust constrained operation of integrated electricity- natural gas system considering distributed natural gas storage publication-title: IEEE Trans Sustain Energy – volume: 237 year: 2021 ident: 10.1016/j.energy.2022.125240_bib14 article-title: Privacy-preserving distributed optimal scheduling of regional integrated energy system considering different heating modes of buildings publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114096 – start-page: 387 year: 2016 ident: 10.1016/j.energy.2022.125240_bib40 article-title: Heat pump modelling publication-title: Adv. Ground Source Heat Pump Syst. doi: 10.1016/B978-0-08-100311-4.00014-5 – volume: 191 year: 2021 ident: 10.1016/j.energy.2022.125240_bib8 article-title: Optimal operation of regional integrated energy system considering demand response publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.116860 – volume: 34 start-page: 4728 issue: 6 year: 2019 ident: 10.1016/j.energy.2022.125240_bib22 article-title: Robust co-planning of energy storage and transmission line with mixed integer recourse publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2914276 – volume: 88 start-page: 430 year: 2015 ident: 10.1016/j.energy.2022.125240_bib34 article-title: Multi-objective operation management of a multi-carrier energy system publication-title: Energy doi: 10.1016/j.energy.2015.05.063 – volume: 84 year: 2020 ident: 10.1016/j.energy.2022.125240_bib1 article-title: Strategies of electricity distributors in the context of distributed energy resources diffusion publication-title: Environ Impact Assess Rev doi: 10.1016/j.eiar.2020.106429 – volume: 237 year: 2021 ident: 10.1016/j.energy.2022.125240_bib13 article-title: Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems publication-title: Energy doi: 10.1016/j.energy.2021.121601 – volume: 151 start-page: 94 year: 2018 ident: 10.1016/j.energy.2022.125240_bib26 article-title: Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach publication-title: Energy doi: 10.1016/j.energy.2018.03.010 – volume: 227 year: 2021 ident: 10.1016/j.energy.2022.125240_bib27 article-title: Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages publication-title: Energy doi: 10.1016/j.energy.2021.120522 – volume: 219 start-page: 408 year: 2018 ident: 10.1016/j.energy.2022.125240_bib39 article-title: Optimal design of multi-energy systems with seasonal storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.07.142 – volume: 281 year: 2021 ident: 10.1016/j.energy.2022.125240_bib50 article-title: Optimal design of hybrid combined cooling, heating and power systems considering the uncertainties of load demands and renewable energy sources publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125357 – volume: 271 year: 2020 ident: 10.1016/j.energy.2022.125240_bib17 article-title: Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115052 – year: 2009 ident: 10.1016/j.energy.2022.125240_bib46 article-title: Integrated optimal power flow for electric power and heat in a MicroGrid – volume: 294 year: 2021 ident: 10.1016/j.energy.2022.125240_bib7 article-title: A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116971 – volume: 35 start-page: 4674 issue: 18 year: 2015 ident: 10.1016/j.energy.2022.125240_bib48 article-title: Distribution network reconfiguration based on second-order conic programming considering EV charging strategy publication-title: Proc CSEE – volume: 32 year: 2020 ident: 10.1016/j.energy.2022.125240_bib21 article-title: Optimization configuration of energy storage capacity based on the microgrid reliable output power publication-title: J Energy Storage doi: 10.1016/j.est.2020.101866 – volume: 202 year: 2020 ident: 10.1016/j.energy.2022.125240_bib33 article-title: Influence of centralized and distributed thermal energy storage on district heating network design publication-title: Energy doi: 10.1016/j.energy.2020.117689 – volume: 3 start-page: 49 issue: 1 year: 2011 ident: 10.1016/j.energy.2022.125240_bib10 article-title: Cooperation of a grid-connected wind farm and an energy storage unit—demonstration of a simulation tool publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2011.2163176 – volume: 129 year: 2021 ident: 10.1016/j.energy.2022.125240_bib5 article-title: Optimal dispatching strategy for user-side integrated energy system considering multiservice of energy storage publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.106810 – volume: 38 year: 2021 ident: 10.1016/j.energy.2022.125240_bib3 article-title: Integrated energy system–Hydrogen natural gas hybrid energy storage system optimization model based on cooperative game under carbon neutrality publication-title: J Energy Storage doi: 10.1016/j.est.2021.102539 – volume: 142 start-page: 3270 year: 2017 ident: 10.1016/j.energy.2022.125240_bib4 article-title: Economic dispatch of generalized multi-source energy storage in regional integrated energy systems publication-title: Energy Proc doi: 10.1016/j.egypro.2017.12.502 – volume: 247 year: 2022 ident: 10.1016/j.energy.2022.125240_bib30 article-title: Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios publication-title: Energy doi: 10.1016/j.energy.2022.123553 – volume: 60 start-page: 1634 year: 2016 ident: 10.1016/j.energy.2022.125240_bib42 article-title: Smart Energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.02.025 – volume: 22 start-page: 1259 issue: 3 year: 2007 ident: 10.1016/j.energy.2022.125240_bib15 article-title: Optimizing a battery energy storage system for primary frequency control publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.901459 – year: 2012 ident: 10.1016/j.energy.2022.125240_bib37 – volume: 197 year: 2020 ident: 10.1016/j.energy.2022.125240_bib43 article-title: Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility publication-title: Energy doi: 10.1016/j.energy.2020.117313 – volume: 7 start-page: 419 year: 2021 ident: 10.1016/j.energy.2022.125240_bib9 article-title: Optimal operation of integrated energy system considering virtual heating energy storage publication-title: Energy Rep doi: 10.1016/j.egyr.2021.01.051 – volume: 6 start-page: 739 year: 2020 ident: 10.1016/j.energy.2022.125240_bib29 article-title: Optimal configuration of hybrid energy storage in integrated energy system publication-title: Energy Rep doi: 10.1016/j.egyr.2020.11.137 – volume: 7 start-page: 12 issue: 1 year: 2016 ident: 10.1016/j.energy.2022.125240_bib45 article-title: Combined heat and power dispatch considering pipeline energy storage of district heating network publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2467383 – volume: 10 start-page: 1149 issue: 8 year: 2016 ident: 10.1016/j.energy.2022.125240_bib38 article-title: Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2015.0440 – volume: 7 start-page: 19 issue: 1 year: 2015 ident: 10.1016/j.energy.2022.125240_bib24 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat Chem doi: 10.1038/nchem.2085 – volume: 162 start-page: 1238 year: 2016 ident: 10.1016/j.energy.2022.125240_bib47 article-title: Combined analysis of electricity and heat networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.102 – volume: 245 year: 2022 ident: 10.1016/j.energy.2022.125240_bib36 article-title: Joint planning of distributed generations and energy storage in active distribution networks: a Bi-Level programming approach publication-title: Energy doi: 10.1016/j.energy.2022.123226 – volume: 12 issue: 20 year: 2019 ident: 10.1016/j.energy.2022.125240_bib28 article-title: Research on double-layer optimized configuration of multi-energy storage in regional integrated energy system with connected distributed wind power publication-title: Energies doi: 10.3390/en12203964 – volume: 235 year: 2021 ident: 10.1016/j.energy.2022.125240_bib51 article-title: Multi-objective two-stage adaptive robust planning method for an integrated energy system considering load uncertainty publication-title: Energy Build doi: 10.1016/j.enbuild.2021.110741 – volume: 137 start-page: 556 year: 2017 ident: 10.1016/j.energy.2022.125240_bib6 article-title: Smart energy and smart energy systems publication-title: Energy doi: 10.1016/j.energy.2017.05.123 – volume: 4 start-page: 566 issue: 4 year: 2016 ident: 10.1016/j.energy.2022.125240_bib49 article-title: Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system publication-title: J Modern Power Syst Clean Energy doi: 10.1007/s40565-016-0241-4 – volume: 25 start-page: 1815 issue: 4 year: 2010 ident: 10.1016/j.energy.2022.125240_bib19 article-title: Optimal allocation of ESS in distribution systems with a high penetration of wind energy publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2045663 – volume: 46 year: 2021 ident: 10.1016/j.energy.2022.125240_bib2 article-title: An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses publication-title: Sustain Energy Technol Assessments – volume: 129 year: 2020 ident: 10.1016/j.energy.2022.125240_bib41 article-title: Smart energy cities in a 100% renewable energy context publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109922 – volume: 24 start-page: 264 issue: 2 year: 2014 ident: 10.1016/j.energy.2022.125240_bib12 article-title: Determination of economic dispatch of wind farm-battery energy storage system using Genetic Algorithm publication-title: Int. Transact. Electric. Energy Syst. doi: 10.1002/etep.1696 – volume: 64 start-page: 648 year: 2014 ident: 10.1016/j.energy.2022.125240_bib18 article-title: Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios publication-title: Energy doi: 10.1016/j.energy.2013.11.065 – volume: 164 start-page: 147 year: 2018 ident: 10.1016/j.energy.2022.125240_bib25 article-title: The status of 4th generation district heating: research and results publication-title: Energy doi: 10.1016/j.energy.2018.08.206 – volume: 125 year: 2021 ident: 10.1016/j.energy.2022.125240_bib11 article-title: Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106376 – start-page: 744 year: 2008 ident: 10.1016/j.energy.2022.125240_bib23 article-title: An economic analysis model for the energy storage systems in a deregulated market – volume: 245 year: 2022 ident: 10.1016/j.energy.2022.125240_bib32 article-title: The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system publication-title: Energy doi: 10.1016/j.energy.2022.123248 – volume: 207 year: 2020 ident: 10.1016/j.energy.2022.125240_bib31 article-title: An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning publication-title: Energy doi: 10.1016/j.energy.2020.118139 – volume: 31 start-page: 304 issue: 1 year: 2015 ident: 10.1016/j.energy.2022.125240_bib35 article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2404533 – volume: 206 year: 2020 ident: 10.1016/j.energy.2022.125240_bib16 article-title: Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics publication-title: Energy doi: 10.1016/j.energy.2020.118093 |
| SSID | ssj0005899 |
| Score | 2.5765219 |
| Snippet | The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125240 |
| SubjectTerms | algorithms batteries Capacity optimization electricity heat heat pumps Multi-energy storage system Power and heat networks Regional integrated energy systems (RIES) Siting optimization system optimization thermal energy wind wind power |
| Title | Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks |
| URI | https://dx.doi.org/10.1016/j.energy.2022.125240 https://www.proquest.com/docview/2718380015 |
| Volume | 261 |
| WOSCitedRecordID | wos000863312000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhwQvEwwmxgAZibfJVWrny4_TVDT2MIE0RN-i1LGrVlsyLd3UP587fyTtJhh74CWqEttxe7-ez-ff3RHyRXFUcjxjRpmIxaLMmCwrydQ4r-QMqx7llS02kZ2f59Op_D4YrEMszN1lVtf5ei2v_6uo4R4IG0NnnyDublC4AZ9B6HAFscP1nwR_0rQrhotTdYQnwy5wDZZEZckXoCGufOilPVpHPiHTLgAQiZJI4XHZnQMDEks3WHdhl1miOvIdaschb7fc--4RZjFdO-J852r45X3TZwDJ-RIvnRmt3ZPTpp73LoIflmkwXZRYWGi-6Z_gtlSKi9Ds4rIilsTxls7lLgO715pgZHGXtOmBQne-heXIfa8RvmDUN9_On31vXevYhoHItizcKAWOUrhRnpEdniUyH5Kd42-T6VlPD8pt7dFu9iHs0nIDH87mT2bNvQXeWi0Xr8iu327QYweT12Sg6z3yIkSjt3tkf9JHOkJDr-rbN6TtcUQRRxRwRAOO6CaOaGPoJo6oxxF1OKKLmgKOaMAR7XFEfYeAo7fk59fJxckp8xU6mBJCrlgMxuUsLnUyLlMzNiqJRIW1r2AfUJVJKcdKpCaKK8PLCO7mJja50YlMcCfCpRb7ZFg3tX5HKOcmg62_0SLR0CGdicykKkmlErACp-kBEeEHLpRPX49VVC6Lv4n3gLCu17VL3_JI-yzIrvAmqDMtCwDkIz0_B1EXoKHx2K2sdXPbFhzMP5Hj5uT9E2dzSF72_6gPZLi6udUfyXN1t1q0N588Yn8DeMy5CQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-based+site+and+capacity+optimization+of+multi-energy+storage+system+in+the+regional+integrated+energy+networks&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Jiangjiang&rft.au=Deng%2C+Hongda&rft.au=Qi%2C+Xiaoling&rft.date=2022-12-15&rft.issn=0360-5442&rft.volume=261&rft.spage=125240&rft_id=info:doi/10.1016%2Fj.energy.2022.125240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125240 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |