Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks

The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 261; s. 125240
Hlavní autoři: Wang, Jiangjiang, Deng, Hongda, Qi, Xiaoling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.12.2022
Témata:
ISSN:0360-5442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of multi-energy storage systems in the RIES. A RIES model including renewable wind power, power distribution network, district heating network, multi-energy storage system, and heat pump to convert electricity to heat is constructed. An optimization method combining a mixed-integer nonlinear programming optimization model is proposed to minimize the comprehensive cost of RIES. The second-order cone relaxation method performs convex relaxation of the power flow constraints, and the district heat network is operated under a constant-flow-variable-temperature strategy. The original optimization model is transformed into a mixed-integer second-order cone programming problem to solve. Three solution methods, including enumeration method, improved enumeration method and genetic algorithm, are employed to determine the optimum installation locations, and they are compared in computation time and efficiency. The results demonstrate that the distributed hybrid integration of electricity and thermal energy storages improves the RIES economy by collaborating the power and heat balances and reducing the purchased electricity from the grid. By integrating the hybrid storage system, the curtailed wind is reduced by 53.9%, and the economy is improved by 13.4%. •A two-stage optimization model of multi-energy storage configuration is developed.•The sites and capacities of hybrid energy storages in power and thermal networks are optimized.•Three methods to determine the installation locations are compared.•The economics performances at different configuration strategies are compared.•The hybridization reduces curtailed wind power by 53.9% and improves economic performance by 13.4%.
AbstractList The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of multi-energy storage systems in the RIES. A RIES model including renewable wind power, power distribution network, district heating network, multi-energy storage system, and heat pump to convert electricity to heat is constructed. An optimization method combining a mixed-integer nonlinear programming optimization model is proposed to minimize the comprehensive cost of RIES. The second-order cone relaxation method performs convex relaxation of the power flow constraints, and the district heat network is operated under a constant-flow-variable-temperature strategy. The original optimization model is transformed into a mixed-integer second-order cone programming problem to solve. Three solution methods, including enumeration method, improved enumeration method and genetic algorithm, are employed to determine the optimum installation locations, and they are compared in computation time and efficiency. The results demonstrate that the distributed hybrid integration of electricity and thermal energy storages improves the RIES economy by collaborating the power and heat balances and reducing the purchased electricity from the grid. By integrating the hybrid storage system, the curtailed wind is reduced by 53.9%, and the economy is improved by 13.4%.
The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which the multi-energy storage system with battery and heat tank is necessarily integrated. This paper aims to optimize the sites and capacities of multi-energy storage systems in the RIES. A RIES model including renewable wind power, power distribution network, district heating network, multi-energy storage system, and heat pump to convert electricity to heat is constructed. An optimization method combining a mixed-integer nonlinear programming optimization model is proposed to minimize the comprehensive cost of RIES. The second-order cone relaxation method performs convex relaxation of the power flow constraints, and the district heat network is operated under a constant-flow-variable-temperature strategy. The original optimization model is transformed into a mixed-integer second-order cone programming problem to solve. Three solution methods, including enumeration method, improved enumeration method and genetic algorithm, are employed to determine the optimum installation locations, and they are compared in computation time and efficiency. The results demonstrate that the distributed hybrid integration of electricity and thermal energy storages improves the RIES economy by collaborating the power and heat balances and reducing the purchased electricity from the grid. By integrating the hybrid storage system, the curtailed wind is reduced by 53.9%, and the economy is improved by 13.4%. •A two-stage optimization model of multi-energy storage configuration is developed.•The sites and capacities of hybrid energy storages in power and thermal networks are optimized.•Three methods to determine the installation locations are compared.•The economics performances at different configuration strategies are compared.•The hybridization reduces curtailed wind power by 53.9% and improves economic performance by 13.4%.
ArticleNumber 125240
Author Wang, Jiangjiang
Deng, Hongda
Qi, Xiaoling
Author_xml – sequence: 1
  givenname: Jiangjiang
  surname: Wang
  fullname: Wang, Jiangjiang
  email: wangjj@ncepu.edu.cn
– sequence: 2
  givenname: Hongda
  surname: Deng
  fullname: Deng, Hongda
– sequence: 3
  givenname: Xiaoling
  surname: Qi
  fullname: Qi, Xiaoling
BookMark eNqFkD1vFDEQhl0kEkngH1C4TLMXfx67KZDQKSRIkWigtibe8eFj1z48vqDj1-OwqSiSyhrrfd7RPOfsJOWEjL2XYiWFXF_tVpiwbI8rJZRaSWWVESfsTOi16Kwx6g07J9oJIWw_DGeMNplq9wCEI6dYkUMauYc9-FiPPO9rnOMfqDEnngOfD1ON3bKAU80FtsjpSBVnHhOvP5AX3LYwTG2uuC1QW_EzkLD-zuUnvWWnASbCd8_vBfv--ebb5q67_3r7ZfPpvvNaD7UzSukHA2glrIMM3go9ql4rYc0IFgbp9ToIMwYFov32wYQ-oB2sEFKqAfUFu1x69yX_OiBVN0fyOE2QMB_IqQ-y131L2xY1S9SXTFQwuH2JM5Sjk8I9eXU7t1zhnry6xWvDrv_DmrZ_tmqBOL0Gf1xgbA4eIxZHPmLyOMaCvroxx5cL_gKIg5w1
CitedBy_id crossref_primary_10_3390_en17246325
crossref_primary_10_1016_j_rineng_2024_102107
crossref_primary_10_1016_j_energy_2025_136117
crossref_primary_10_23919_PCMP_2024_000297
crossref_primary_10_1007_s40866_025_00287_9
crossref_primary_10_3390_en16186424
crossref_primary_10_1016_j_energy_2025_137423
crossref_primary_10_3390_en16217312
crossref_primary_10_1016_j_energy_2024_130974
crossref_primary_10_1016_j_energy_2024_131106
crossref_primary_10_1016_j_ijhydene_2025_05_191
crossref_primary_10_1016_j_energy_2023_127680
crossref_primary_10_1016_j_energy_2025_136160
crossref_primary_10_1016_j_est_2024_112497
crossref_primary_10_1016_j_renene_2024_120956
crossref_primary_10_3389_fenrg_2024_1340580
crossref_primary_10_3390_en17194792
crossref_primary_10_1016_j_apenergy_2024_123935
crossref_primary_10_1016_j_energy_2024_134065
crossref_primary_10_1016_j_energy_2023_130181
crossref_primary_10_3390_su16208930
crossref_primary_10_3390_pr12102079
crossref_primary_10_1063_5_0267372
crossref_primary_10_1016_j_est_2023_110406
crossref_primary_10_1016_j_scs_2023_104622
crossref_primary_10_1016_j_enconman_2022_116640
crossref_primary_10_1016_j_enconman_2023_117334
crossref_primary_10_1016_j_sftr_2025_100656
crossref_primary_10_1016_j_energy_2024_133855
crossref_primary_10_1016_j_est_2025_117846
crossref_primary_10_3390_en16062593
crossref_primary_10_1016_j_est_2024_111276
crossref_primary_10_1016_j_est_2025_117709
crossref_primary_10_1016_j_energy_2022_126411
crossref_primary_10_1016_j_renene_2024_120502
crossref_primary_10_3390_en16237791
crossref_primary_10_3390_su16125016
crossref_primary_10_1016_j_apenergy_2023_121701
crossref_primary_10_1016_j_est_2023_109015
crossref_primary_10_1016_j_energy_2025_137321
crossref_primary_10_1016_j_energy_2023_127729
crossref_primary_10_3390_en18061320
Cites_doi 10.1016/j.apenergy.2014.07.095
10.1016/j.enconman.2021.114096
10.1016/B978-0-08-100311-4.00014-5
10.1016/j.applthermaleng.2021.116860
10.1109/TPWRS.2019.2914276
10.1016/j.energy.2015.05.063
10.1016/j.eiar.2020.106429
10.1016/j.energy.2021.121601
10.1016/j.energy.2018.03.010
10.1016/j.energy.2021.120522
10.1016/j.apenergy.2017.07.142
10.1016/j.jclepro.2020.125357
10.1016/j.apenergy.2020.115052
10.1016/j.apenergy.2021.116971
10.1016/j.est.2020.101866
10.1016/j.energy.2020.117689
10.1109/TSTE.2011.2163176
10.1016/j.ijepes.2021.106810
10.1016/j.est.2021.102539
10.1016/j.egypro.2017.12.502
10.1016/j.energy.2022.123553
10.1016/j.rser.2016.02.025
10.1109/TPWRS.2007.901459
10.1016/j.energy.2020.117313
10.1016/j.egyr.2021.01.051
10.1016/j.egyr.2020.11.137
10.1109/TSTE.2015.2467383
10.1049/iet-rpg.2015.0440
10.1038/nchem.2085
10.1016/j.apenergy.2015.01.102
10.1016/j.energy.2022.123226
10.3390/en12203964
10.1016/j.enbuild.2021.110741
10.1016/j.energy.2017.05.123
10.1007/s40565-016-0241-4
10.1109/TPWRS.2010.2045663
10.1016/j.rser.2020.109922
10.1002/etep.1696
10.1016/j.energy.2013.11.065
10.1016/j.energy.2018.08.206
10.1016/j.ijepes.2020.106376
10.1016/j.energy.2022.123248
10.1016/j.energy.2020.118139
10.1109/TPWRS.2015.2404533
10.1016/j.energy.2020.118093
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125240
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125240
S0360544222021284
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-4223b4ae51a6f1fc503d2832054da5a91c36f04df2a03208f4f8fe595001129e3
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863312000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 05:50:47 EDT 2025
Tue Nov 18 22:36:41 EST 2025
Sat Nov 29 07:24:52 EST 2025
Fri Feb 23 02:38:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Capacity optimization
Multi-energy storage system
Siting optimization
Power and heat networks
Regional integrated energy systems (RIES)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-4223b4ae51a6f1fc503d2832054da5a91c36f04df2a03208f4f8fe595001129e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718380015
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718380015
crossref_primary_10_1016_j_energy_2022_125240
crossref_citationtrail_10_1016_j_energy_2022_125240
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125240
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Guo, Zhou, Song, Kurban, Wang (bib32) 2022; 245
Li, Feng, Wang, Sun (bib36) 2022; 245
Yan, Zhang, Liang, Jin (bib31) 2020; 207
Lund, Østergaard, Connolly, Mathiesen (bib6) 2017; 137
Larcher, Tarascon (bib24) 2015; 7
Ding, Xu, Yang (bib29) 2020; 6
Li, Chen, Yuan, Li (bib49) 2016; 4
Wang, Geng, Jiang (bib22) 2019; 34
Gabrielli, Gazzani, Martelli, Mazzotti (bib39) 2018; 219
Underwood (bib40) 2016
Ding, Xu, Xia, Zhao, Yuan, Yin (bib5) 2021; 129
He, Shahidehpour, Li, Guo, Zhu (bib44) 2017
Guo, Zhang, Wang, Zeng, Li (bib8) 2021; 191
Wang, Qi, Ren, Zhang, Wang (bib50) 2021; 281
Lund (bib26) 2018; 151
Oudalov, Chartouni, Ohler (bib15) 2007; 22
Sedghi, Ahmadian, Aliakbar-Golkar (bib35) 2015; 31
Luo, Shao, Jiao, Zhang (bib11) 2021; 125
Jebamalai, Marlein, Laverge (bib33) 2020; 202
Li, Wu, Shahidehpour, Wang, Zhang (bib45) 2016; 7
Yue, Zhang, Ping, Qiang, Qian, Fu (bib12) 2014; 24
Shabanpour-Haghighi, Seifi (bib34) 2015; 88
Yan, Wang, Lu, Ma, Zhou, Zhang, Cheng (bib51) 2021; 235
Tolmasquim, Senra, Gouvêa, Pereira, Alves, Moszkowicz (bib1) 2020; 84
Liu, Li, Fan, Wu, Guo, Jin, Zhang, Yang (bib30) 2022; 247
Wang, Wang, Jia, Zhi, Liu, Fan, Lin (bib4) 2017; 142
Awad, Chaudry, Wu, Jenkins (bib46) 2009
Atwa, El-Saadany (bib19) 2010; 25
Bose, Gayme, Topcu, Chandy (bib37) 2012
Xuan, Shen, Guo, Sun (bib7) 2021; 294
Chen, Zhang, Zhang, Lin, Jiang, Li (bib14) 2021; 237
Ippolito, Di Silvestre, Riva Sanseverino, Zizzo, Graditi (bib18) 2014; 64
Leou (bib23) 2008
Li, Cui, Wan (bib48) 2015; 35
Jiang, Kang, Liu (bib16) 2020; 206
Solomon, Kammen, Callaway (bib20) 2014; 134
Hartmann, Dan (bib10) 2011; 3
Wang, Liu, Ren, Lu (bib43) 2020; 197
Nazir, Abdalla, Wang, Chu, Jie, Tian, Jiang, Khan, Sanjeevikumar, Tang (bib21) 2020; 32
Zhang, Ren, Ma, Tang, He (bib28) 2019; 12
Liu, Wu, Jenkins, Bagdanavicius (bib47) 2016; 162
Hou, Xu, Wu, Wang, Tang, Chen (bib17) 2020; 271
Li, Zhang, Sun (bib27) 2021; 227
Deeba, Sharma, Saha, Chakraborty, Thomas (bib38) 2016; 10
Capone, Guelpa, Mancò, Verda (bib13) 2021; 237
Gong, Yang, Xu, Chen, Zhao, Liu, Lin, Yang, Qian, Ke (bib9) 2021; 7
Lund, Østergaard, Chang, Werner, Svendsen, Sorknæs, Thorsen, Hvelplund, Mortensen, Mathiesen, Bojesen, Duic, Zhang, Möller (bib25) 2018; 164
Tan, Geng, Tan, Wang, Pu, Guo (bib3) 2021; 38
Thellufsen, Lund, Sorknæs, Østergaard, Chang, Drysdale, Nielsen, Djørup, Sperling (bib41) 2020; 129
Al-Ghussain, Darwish Ahmad, Abubaker, Mohamed (bib2) 2021; 46
Connolly, Lund, Mathiesen (bib42) 2016; 60
Nazir (10.1016/j.energy.2022.125240_bib21) 2020; 32
Wang (10.1016/j.energy.2022.125240_bib50) 2021; 281
Solomon (10.1016/j.energy.2022.125240_bib20) 2014; 134
Wang (10.1016/j.energy.2022.125240_bib43) 2020; 197
Lund (10.1016/j.energy.2022.125240_bib6) 2017; 137
Li (10.1016/j.energy.2022.125240_bib36) 2022; 245
Yue (10.1016/j.energy.2022.125240_bib12) 2014; 24
Hou (10.1016/j.energy.2022.125240_bib17) 2020; 271
Al-Ghussain (10.1016/j.energy.2022.125240_bib2) 2021; 46
Li (10.1016/j.energy.2022.125240_bib49) 2016; 4
Li (10.1016/j.energy.2022.125240_bib27) 2021; 227
Li (10.1016/j.energy.2022.125240_bib48) 2015; 35
Bose (10.1016/j.energy.2022.125240_bib37) 2012
Yan (10.1016/j.energy.2022.125240_bib31) 2020; 207
Deeba (10.1016/j.energy.2022.125240_bib38) 2016; 10
Liu (10.1016/j.energy.2022.125240_bib47) 2016; 162
Larcher (10.1016/j.energy.2022.125240_bib24) 2015; 7
Gabrielli (10.1016/j.energy.2022.125240_bib39) 2018; 219
Ippolito (10.1016/j.energy.2022.125240_bib18) 2014; 64
Ding (10.1016/j.energy.2022.125240_bib29) 2020; 6
Leou (10.1016/j.energy.2022.125240_bib23) 2008
Wang (10.1016/j.energy.2022.125240_bib4) 2017; 142
Shabanpour-Haghighi (10.1016/j.energy.2022.125240_bib34) 2015; 88
Ding (10.1016/j.energy.2022.125240_bib5) 2021; 129
He (10.1016/j.energy.2022.125240_bib32) 2022; 245
Jebamalai (10.1016/j.energy.2022.125240_bib33) 2020; 202
Underwood (10.1016/j.energy.2022.125240_bib40) 2016
Atwa (10.1016/j.energy.2022.125240_bib19) 2010; 25
Guo (10.1016/j.energy.2022.125240_bib8) 2021; 191
Oudalov (10.1016/j.energy.2022.125240_bib15) 2007; 22
Liu (10.1016/j.energy.2022.125240_bib30) 2022; 247
Tan (10.1016/j.energy.2022.125240_bib3) 2021; 38
Sedghi (10.1016/j.energy.2022.125240_bib35) 2015; 31
Capone (10.1016/j.energy.2022.125240_bib13) 2021; 237
Wang (10.1016/j.energy.2022.125240_bib22) 2019; 34
Connolly (10.1016/j.energy.2022.125240_bib42) 2016; 60
Awad (10.1016/j.energy.2022.125240_bib46) 2009
Luo (10.1016/j.energy.2022.125240_bib11) 2021; 125
Tolmasquim (10.1016/j.energy.2022.125240_bib1) 2020; 84
Lund (10.1016/j.energy.2022.125240_bib26) 2018; 151
Zhang (10.1016/j.energy.2022.125240_bib28) 2019; 12
Xuan (10.1016/j.energy.2022.125240_bib7) 2021; 294
Gong (10.1016/j.energy.2022.125240_bib9) 2021; 7
Jiang (10.1016/j.energy.2022.125240_bib16) 2020; 206
Hartmann (10.1016/j.energy.2022.125240_bib10) 2011; 3
He (10.1016/j.energy.2022.125240_bib44) 2017
Yan (10.1016/j.energy.2022.125240_bib51) 2021; 235
Lund (10.1016/j.energy.2022.125240_bib25) 2018; 164
Thellufsen (10.1016/j.energy.2022.125240_bib41) 2020; 129
Chen (10.1016/j.energy.2022.125240_bib14) 2021; 237
Li (10.1016/j.energy.2022.125240_bib45) 2016; 7
References_xml – volume: 245
  year: 2022
  ident: bib36
  article-title: Joint planning of distributed generations and energy storage in active distribution networks: a Bi-Level programming approach
  publication-title: Energy
– volume: 237
  year: 2021
  ident: bib13
  article-title: Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems
  publication-title: Energy
– volume: 219
  start-page: 408
  year: 2018
  end-page: 424
  ident: bib39
  article-title: Optimal design of multi-energy systems with seasonal storage
  publication-title: Appl Energy
– volume: 151
  start-page: 94
  year: 2018
  end-page: 102
  ident: bib26
  article-title: Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach
  publication-title: Energy
– volume: 129
  year: 2020
  ident: bib41
  article-title: Smart energy cities in a 100% renewable energy context
  publication-title: Renew Sustain Energy Rev
– volume: 24
  start-page: 264
  year: 2014
  end-page: 280
  ident: bib12
  article-title: Determination of economic dispatch of wind farm-battery energy storage system using Genetic Algorithm
  publication-title: Int. Transact. Electric. Energy Syst.
– volume: 247
  year: 2022
  ident: bib30
  article-title: Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios
  publication-title: Energy
– volume: 25
  start-page: 1815
  year: 2010
  end-page: 1822
  ident: bib19
  article-title: Optimal allocation of ESS in distribution systems with a high penetration of wind energy
  publication-title: IEEE Trans Power Syst
– volume: 271
  year: 2020
  ident: bib17
  article-title: Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system
  publication-title: Appl Energy
– volume: 10
  start-page: 1149
  year: 2016
  end-page: 1160
  ident: bib38
  article-title: Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks
  publication-title: IET Renew Power Gener
– volume: 64
  start-page: 648
  year: 2014
  end-page: 662
  ident: bib18
  article-title: Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios
  publication-title: Energy
– volume: 245
  year: 2022
  ident: bib32
  article-title: The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system
  publication-title: Energy
– volume: 125
  year: 2021
  ident: bib11
  article-title: Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment
  publication-title: Int J Electr Power Energy Syst
– volume: 3
  start-page: 49
  year: 2011
  end-page: 56
  ident: bib10
  article-title: Cooperation of a grid-connected wind farm and an energy storage unit—demonstration of a simulation tool
  publication-title: IEEE Trans Sustain Energy
– volume: 7
  start-page: 419
  year: 2021
  end-page: 425
  ident: bib9
  article-title: Optimal operation of integrated energy system considering virtual heating energy storage
  publication-title: Energy Rep
– volume: 134
  start-page: 75
  year: 2014
  end-page: 89
  ident: bib20
  article-title: The role of large-scale energy storage design and dispatch in the power grid: a study of very high grid penetration of variable renewable resources
  publication-title: Appl Energy
– volume: 6
  start-page: 739
  year: 2020
  end-page: 744
  ident: bib29
  article-title: Optimal configuration of hybrid energy storage in integrated energy system
  publication-title: Energy Rep
– start-page: 387
  year: 2016
  end-page: 421
  ident: bib40
  article-title: Heat pump modelling
  publication-title: Adv. Ground Source Heat Pump Syst.
– volume: 227
  year: 2021
  ident: bib27
  article-title: Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages
  publication-title: Energy
– year: 2012
  ident: bib37
  article-title: Optimal placement of energy storage in the grid
– volume: 46
  year: 2021
  ident: bib2
  article-title: An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses
  publication-title: Sustain Energy Technol Assessments
– volume: 197
  year: 2020
  ident: bib43
  article-title: Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility
  publication-title: Energy
– volume: 7
  start-page: 19
  year: 2015
  end-page: 29
  ident: bib24
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat Chem
– volume: 191
  year: 2021
  ident: bib8
  article-title: Optimal operation of regional integrated energy system considering demand response
  publication-title: Appl Therm Eng
– volume: 294
  year: 2021
  ident: bib7
  article-title: A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables
  publication-title: Appl Energy
– volume: 202
  year: 2020
  ident: bib33
  article-title: Influence of centralized and distributed thermal energy storage on district heating network design
  publication-title: Energy
– volume: 38
  year: 2021
  ident: bib3
  article-title: Integrated energy system–Hydrogen natural gas hybrid energy storage system optimization model based on cooperative game under carbon neutrality
  publication-title: J Energy Storage
– volume: 142
  start-page: 3270
  year: 2017
  end-page: 3275
  ident: bib4
  article-title: Economic dispatch of generalized multi-source energy storage in regional integrated energy systems
  publication-title: Energy Proc
– volume: 164
  start-page: 147
  year: 2018
  end-page: 159
  ident: bib25
  article-title: The status of 4th generation district heating: research and results
  publication-title: Energy
– volume: 88
  start-page: 430
  year: 2015
  end-page: 442
  ident: bib34
  article-title: Multi-objective operation management of a multi-carrier energy system
  publication-title: Energy
– volume: 235
  year: 2021
  ident: bib51
  article-title: Multi-objective two-stage adaptive robust planning method for an integrated energy system considering load uncertainty
  publication-title: Energy Build
– volume: 84
  year: 2020
  ident: bib1
  article-title: Strategies of electricity distributors in the context of distributed energy resources diffusion
  publication-title: Environ Impact Assess Rev
– volume: 129
  year: 2021
  ident: bib5
  article-title: Optimal dispatching strategy for user-side integrated energy system considering multiservice of energy storage
  publication-title: Int J Electr Power Energy Syst
– volume: 207
  year: 2020
  ident: bib31
  article-title: An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning
  publication-title: Energy
– volume: 22
  start-page: 1259
  year: 2007
  end-page: 1266
  ident: bib15
  article-title: Optimizing a battery energy storage system for primary frequency control
  publication-title: IEEE Trans Power Syst
– volume: 7
  start-page: 12
  year: 2016
  end-page: 22
  ident: bib45
  article-title: Combined heat and power dispatch considering pipeline energy storage of district heating network
  publication-title: IEEE Trans Sustain Energy
– volume: 237
  year: 2021
  ident: bib14
  article-title: Privacy-preserving distributed optimal scheduling of regional integrated energy system considering different heating modes of buildings
  publication-title: Energy Convers Manag
– volume: 32
  year: 2020
  ident: bib21
  article-title: Optimization configuration of energy storage capacity based on the microgrid reliable output power
  publication-title: J Energy Storage
– volume: 281
  year: 2021
  ident: bib50
  article-title: Optimal design of hybrid combined cooling, heating and power systems considering the uncertainties of load demands and renewable energy sources
  publication-title: J Clean Prod
– volume: 206
  year: 2020
  ident: bib16
  article-title: Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics
  publication-title: Energy
– start-page: 744
  year: 2008
  end-page: 749
  ident: bib23
  article-title: An economic analysis model for the energy storage systems in a deregulated market
  publication-title: IEEE international conference on sustainable energy technologies. 2008
– volume: 4
  start-page: 566
  year: 2016
  end-page: 580
  ident: bib49
  article-title: Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system
  publication-title: J Modern Power Syst Clean Energy
– year: 2009
  ident: bib46
  article-title: Integrated optimal power flow for electric power and heat in a MicroGrid
  publication-title: The 20th international conference and exhibition on electricity distribution
– volume: 34
  start-page: 4728
  year: 2019
  end-page: 4738
  ident: bib22
  article-title: Robust co-planning of energy storage and transmission line with mixed integer recourse
  publication-title: IEEE Trans Power Syst
– volume: 31
  start-page: 304
  year: 2015
  end-page: 316
  ident: bib35
  article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation
  publication-title: IEEE Trans Power Syst
– volume: 12
  year: 2019
  ident: bib28
  article-title: Research on double-layer optimized configuration of multi-energy storage in regional integrated energy system with connected distributed wind power
  publication-title: Energies
– volume: 162
  start-page: 1238
  year: 2016
  end-page: 1250
  ident: bib47
  article-title: Combined analysis of electricity and heat networks
  publication-title: Appl Energy
– volume: 35
  start-page: 4674
  year: 2015
  end-page: 4681
  ident: bib48
  article-title: Distribution network reconfiguration based on second-order conic programming considering EV charging strategy
  publication-title: Proc CSEE
– volume: 137
  start-page: 556
  year: 2017
  end-page: 565
  ident: bib6
  article-title: Smart energy and smart energy systems
  publication-title: Energy
– volume: 60
  start-page: 1634
  year: 2016
  end-page: 1653
  ident: bib42
  article-title: Smart Energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union
  publication-title: Renew Sustain Energy Rev
– start-page: 1061
  year: 2017
  end-page: 1071
  ident: bib44
  article-title: Robust constrained operation of integrated electricity- natural gas system considering distributed natural gas storage
  publication-title: IEEE Trans Sustain Energy
– volume: 134
  start-page: 75
  year: 2014
  ident: 10.1016/j.energy.2022.125240_bib20
  article-title: The role of large-scale energy storage design and dispatch in the power grid: a study of very high grid penetration of variable renewable resources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.095
– start-page: 1061
  year: 2017
  ident: 10.1016/j.energy.2022.125240_bib44
  article-title: Robust constrained operation of integrated electricity- natural gas system considering distributed natural gas storage
  publication-title: IEEE Trans Sustain Energy
– volume: 237
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib14
  article-title: Privacy-preserving distributed optimal scheduling of regional integrated energy system considering different heating modes of buildings
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114096
– start-page: 387
  year: 2016
  ident: 10.1016/j.energy.2022.125240_bib40
  article-title: Heat pump modelling
  publication-title: Adv. Ground Source Heat Pump Syst.
  doi: 10.1016/B978-0-08-100311-4.00014-5
– volume: 191
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib8
  article-title: Optimal operation of regional integrated energy system considering demand response
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.116860
– volume: 34
  start-page: 4728
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2022.125240_bib22
  article-title: Robust co-planning of energy storage and transmission line with mixed integer recourse
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2914276
– volume: 88
  start-page: 430
  year: 2015
  ident: 10.1016/j.energy.2022.125240_bib34
  article-title: Multi-objective operation management of a multi-carrier energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.063
– volume: 84
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib1
  article-title: Strategies of electricity distributors in the context of distributed energy resources diffusion
  publication-title: Environ Impact Assess Rev
  doi: 10.1016/j.eiar.2020.106429
– volume: 237
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib13
  article-title: Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121601
– volume: 151
  start-page: 94
  year: 2018
  ident: 10.1016/j.energy.2022.125240_bib26
  article-title: Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.010
– volume: 227
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib27
  article-title: Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120522
– volume: 219
  start-page: 408
  year: 2018
  ident: 10.1016/j.energy.2022.125240_bib39
  article-title: Optimal design of multi-energy systems with seasonal storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.07.142
– volume: 281
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib50
  article-title: Optimal design of hybrid combined cooling, heating and power systems considering the uncertainties of load demands and renewable energy sources
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125357
– volume: 271
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib17
  article-title: Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115052
– year: 2009
  ident: 10.1016/j.energy.2022.125240_bib46
  article-title: Integrated optimal power flow for electric power and heat in a MicroGrid
– volume: 294
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib7
  article-title: A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116971
– volume: 35
  start-page: 4674
  issue: 18
  year: 2015
  ident: 10.1016/j.energy.2022.125240_bib48
  article-title: Distribution network reconfiguration based on second-order conic programming considering EV charging strategy
  publication-title: Proc CSEE
– volume: 32
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib21
  article-title: Optimization configuration of energy storage capacity based on the microgrid reliable output power
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101866
– volume: 202
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib33
  article-title: Influence of centralized and distributed thermal energy storage on district heating network design
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117689
– volume: 3
  start-page: 49
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2022.125240_bib10
  article-title: Cooperation of a grid-connected wind farm and an energy storage unit—demonstration of a simulation tool
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2011.2163176
– volume: 129
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib5
  article-title: Optimal dispatching strategy for user-side integrated energy system considering multiservice of energy storage
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.106810
– volume: 38
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib3
  article-title: Integrated energy system–Hydrogen natural gas hybrid energy storage system optimization model based on cooperative game under carbon neutrality
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102539
– volume: 142
  start-page: 3270
  year: 2017
  ident: 10.1016/j.energy.2022.125240_bib4
  article-title: Economic dispatch of generalized multi-source energy storage in regional integrated energy systems
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.12.502
– volume: 247
  year: 2022
  ident: 10.1016/j.energy.2022.125240_bib30
  article-title: Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123553
– volume: 60
  start-page: 1634
  year: 2016
  ident: 10.1016/j.energy.2022.125240_bib42
  article-title: Smart Energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.02.025
– volume: 22
  start-page: 1259
  issue: 3
  year: 2007
  ident: 10.1016/j.energy.2022.125240_bib15
  article-title: Optimizing a battery energy storage system for primary frequency control
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.901459
– year: 2012
  ident: 10.1016/j.energy.2022.125240_bib37
– volume: 197
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib43
  article-title: Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117313
– volume: 7
  start-page: 419
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib9
  article-title: Optimal operation of integrated energy system considering virtual heating energy storage
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.01.051
– volume: 6
  start-page: 739
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib29
  article-title: Optimal configuration of hybrid energy storage in integrated energy system
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.11.137
– volume: 7
  start-page: 12
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2022.125240_bib45
  article-title: Combined heat and power dispatch considering pipeline energy storage of district heating network
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2467383
– volume: 10
  start-page: 1149
  issue: 8
  year: 2016
  ident: 10.1016/j.energy.2022.125240_bib38
  article-title: Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2015.0440
– volume: 7
  start-page: 19
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2022.125240_bib24
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat Chem
  doi: 10.1038/nchem.2085
– volume: 162
  start-page: 1238
  year: 2016
  ident: 10.1016/j.energy.2022.125240_bib47
  article-title: Combined analysis of electricity and heat networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.102
– volume: 245
  year: 2022
  ident: 10.1016/j.energy.2022.125240_bib36
  article-title: Joint planning of distributed generations and energy storage in active distribution networks: a Bi-Level programming approach
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123226
– volume: 12
  issue: 20
  year: 2019
  ident: 10.1016/j.energy.2022.125240_bib28
  article-title: Research on double-layer optimized configuration of multi-energy storage in regional integrated energy system with connected distributed wind power
  publication-title: Energies
  doi: 10.3390/en12203964
– volume: 235
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib51
  article-title: Multi-objective two-stage adaptive robust planning method for an integrated energy system considering load uncertainty
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.110741
– volume: 137
  start-page: 556
  year: 2017
  ident: 10.1016/j.energy.2022.125240_bib6
  article-title: Smart energy and smart energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.123
– volume: 4
  start-page: 566
  issue: 4
  year: 2016
  ident: 10.1016/j.energy.2022.125240_bib49
  article-title: Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system
  publication-title: J Modern Power Syst Clean Energy
  doi: 10.1007/s40565-016-0241-4
– volume: 25
  start-page: 1815
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2022.125240_bib19
  article-title: Optimal allocation of ESS in distribution systems with a high penetration of wind energy
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2045663
– volume: 46
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib2
  article-title: An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses
  publication-title: Sustain Energy Technol Assessments
– volume: 129
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib41
  article-title: Smart energy cities in a 100% renewable energy context
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109922
– volume: 24
  start-page: 264
  issue: 2
  year: 2014
  ident: 10.1016/j.energy.2022.125240_bib12
  article-title: Determination of economic dispatch of wind farm-battery energy storage system using Genetic Algorithm
  publication-title: Int. Transact. Electric. Energy Syst.
  doi: 10.1002/etep.1696
– volume: 64
  start-page: 648
  year: 2014
  ident: 10.1016/j.energy.2022.125240_bib18
  article-title: Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.065
– volume: 164
  start-page: 147
  year: 2018
  ident: 10.1016/j.energy.2022.125240_bib25
  article-title: The status of 4th generation district heating: research and results
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.206
– volume: 125
  year: 2021
  ident: 10.1016/j.energy.2022.125240_bib11
  article-title: Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106376
– start-page: 744
  year: 2008
  ident: 10.1016/j.energy.2022.125240_bib23
  article-title: An economic analysis model for the energy storage systems in a deregulated market
– volume: 245
  year: 2022
  ident: 10.1016/j.energy.2022.125240_bib32
  article-title: The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123248
– volume: 207
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib31
  article-title: An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118139
– volume: 31
  start-page: 304
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2022.125240_bib35
  article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2404533
– volume: 206
  year: 2020
  ident: 10.1016/j.energy.2022.125240_bib16
  article-title: Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118093
SSID ssj0005899
Score 2.5765219
Snippet The unbalance between the renewable energy sources and user loads reduces the performance improvement of regional integrated energy systems (RIES), in which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125240
SubjectTerms algorithms
batteries
Capacity optimization
electricity
heat
heat pumps
Multi-energy storage system
Power and heat networks
Regional integrated energy systems (RIES)
Siting optimization
system optimization
thermal energy
wind
wind power
Title Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks
URI https://dx.doi.org/10.1016/j.energy.2022.125240
https://www.proquest.com/docview/2718380015
Volume 261
WOSCitedRecordID wos000863312000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZOthextatrPtCg70VBX9ItvxYSkZXRtmg2_JmZFsKCa1c6rTkz9_py05atq4PexFBtmQn98vpdPrdHUKfqiQF1Vs3JKMNI7RiknAeZwSwU4O1oBS1B-0_v-anp3w2K76NRusQC3NznmvN1-vi8r-KGvpA2CZ09gHi7ieFDvgMQocWxA7tPwn-qO1WxCxOzYE5GXaBa7Ak1pZ8ARriwode2qN1wyck0gUAGqKkofC47M6BAWlKN1h3YZ9ZojnwA7TjkHdb7n13yWQxXTvifO9q-OV90ycAyfnSNL0ZLd2V41bPBxfBd8s0mC2EKSw03_RPJLZUiovQ7OOyIsIo3dK5icvA7rUmGFmJS9p0R6E738Jy4r7XxDxgMty-nT_71rrWsw0DkW1ZullKM0vpZnmEdpKcFXyMdg6_TGcnAz2I29qj_duHsEvLDbz7Nn8ya24t8NZqOXuOnvntBj50MHmBRlLvoichGr3bRXvTIdIRbvSqvnuJugFH2OAIA45wwBHexBFuFd7EEfY4wg5HeKEx4AgHHOEBR9gPCDh6hX58np4dHRNfoYPUaVqsCAXjsqJCslhkKlY1i9LG1L6CfUAjmCjiOs1URBuViAh6uaKKK8kKZnYiSSHTPTTWrZavEYZ1IWpYIkQmI5pHHAbkimeyygUXVUz3URp-4LL26etNFZXz8m_i3UekH3Xp0rfcc38eZFd6E9SZliUA8p6RH4OoS9DQ5thNaNled2UC5l_KzebkzQPf5i16Ovyj3qHx6upavkeP65vVorv64BH7G6CCuKQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-based+site+and+capacity+optimization+of+multi-energy+storage+system+in+the+regional+integrated+energy+networks&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Jiangjiang&rft.au=Deng%2C+Hongda&rft.au=Qi%2C+Xiaoling&rft.date=2022-12-15&rft.issn=0360-5442&rft.volume=261&rft.spage=125240&rft_id=info:doi/10.1016%2Fj.energy.2022.125240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon