A data-driven method for the estimation of shallow landslide runout
Rainfall-induced shallow landslides cause damages and casualties. Estimating the development of the runout is essential, however, the methods which are traditionally employed to predict the runout distance are either reliable but complex and applicable at a local scale or applicable at a larger scal...
Uložené v:
| Vydané v: | Catena (Giessen) Ročník 234; s. 107573 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.01.2024
|
| Predmet: | |
| ISSN: | 0341-8162 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Rainfall-induced shallow landslides cause damages and casualties. Estimating the development of the runout is essential, however, the methods which are traditionally employed to predict the runout distance are either reliable but complex and applicable at a local scale or applicable at a larger scale but highly simplified. The present work aims to develop a method based on data-driven algorithms for predicting the runout of shallow landslides at a large scale, taking into account geological, geomorphological, and land use heterogeneities. The model, which was tested in the Oltrepò Pavese (Italy), a hilly area of over 1000 km², requires as inputs a set of predictors collected from geological maps, land use maps and freely available satellite images. Different algorithms were tested, identifying the Random Forest algorithm as the best performing, with a Coefficient of Determination of 0.94 and Mean Absolute Error of 4–5.8 m. The size of the source area strongly influences runout estimation, as do land use, lithology, and slope angle. The model provides a probable runout length, which can be estimated, based on past observations in the test area, to propagate along the line of the greatest slope. The main novelties of this work include: a) the development of a methodology to study the previously overlooked runout dynamics, b) the exploitation of remotely-derived, freely available input data, c) the application at a large scale in a heterogenous area, d) the adaptability of the model different study areas and e) the dependency of the model on land use, which allows for land use change scenarios to be made. If coupled with a susceptibility assessment tool to identify where a landslide might develop, it could be used to give a fast yet accurate assessment of the probable runout length and to identify which targets could potentially be affected by the landslide. |
|---|---|
| AbstractList | Rainfall-induced shallow landslides cause damages and casualties. Estimating the development of the runout is essential, however, the methods which are traditionally employed to predict the runout distance are either reliable but complex and applicable at a local scale or applicable at a larger scale but highly simplified. The present work aims to develop a method based on data-driven algorithms for predicting the runout of shallow landslides at a large scale, taking into account geological, geomorphological, and land use heterogeneities. The model, which was tested in the Oltrepò Pavese (Italy), a hilly area of over 1000 km², requires as inputs a set of predictors collected from geological maps, land use maps and freely available satellite images. Different algorithms were tested, identifying the Random Forest algorithm as the best performing, with a Coefficient of Determination of 0.94 and Mean Absolute Error of 4–5.8 m. The size of the source area strongly influences runout estimation, as do land use, lithology, and slope angle. The model provides a probable runout length, which can be estimated, based on past observations in the test area, to propagate along the line of the greatest slope. The main novelties of this work include: a) the development of a methodology to study the previously overlooked runout dynamics, b) the exploitation of remotely-derived, freely available input data, c) the application at a large scale in a heterogenous area, d) the adaptability of the model different study areas and e) the dependency of the model on land use, which allows for land use change scenarios to be made. If coupled with a susceptibility assessment tool to identify where a landslide might develop, it could be used to give a fast yet accurate assessment of the probable runout length and to identify which targets could potentially be affected by the landslide. |
| ArticleNumber | 107573 |
| Author | Giarola, Alessia Galve, Jorge Pedro Meisina, Claudia Bordoni, Massimiliano Tarolli, Paolo Zucca, Francesco |
| Author_xml | – sequence: 1 givenname: Alessia surname: Giarola fullname: Giarola, Alessia – sequence: 2 givenname: Claudia orcidid: 0000-0003-3673-3794 surname: Meisina fullname: Meisina, Claudia – sequence: 3 givenname: Paolo orcidid: 0000-0003-0043-5226 surname: Tarolli fullname: Tarolli, Paolo – sequence: 4 givenname: Francesco orcidid: 0000-0003-4119-5484 surname: Zucca fullname: Zucca, Francesco – sequence: 5 givenname: Jorge Pedro surname: Galve fullname: Galve, Jorge Pedro – sequence: 6 givenname: Massimiliano orcidid: 0000-0001-6483-3544 surname: Bordoni fullname: Bordoni, Massimiliano |
| BookMark | eNp9kD1PwzAQhj0UiRb4BwweWVL8GSdsVcWXVIkFZsu1z2oqNy62A-LfkxImBqaTTu9zeu9ZoFkfe0DompIlJbS-3S-tKdCbJSOMjyslFZ-hOeGCVg2t2Tla5LwnhAgl6RytV9iZYiqXug_o8QHKLjrsY8JlBxhy6Q6mdLHH0eO8MyHETxxM73LoHOA09HEol-jMm5Dh6ndeoLeH-9f1U7V5eXxerzaV5bwtlWDEcuEFaRQ0rW-YpExwqA2ArZVnfEu3TrRK8bZ2xjsmwUDr2lZ54bbK8At0M909pvg-jN30ocsWwtgH4pA1p5JL2QhKxujdFLUp5pzAa9uVn0dKMl3QlOiTLb3Xky19sqUnWyMs_sDHNGpIX_9j313wdQc |
| CitedBy_id | crossref_primary_10_1016_j_earscirev_2025_105225 crossref_primary_10_1016_j_scitotenv_2024_173557 crossref_primary_10_1016_j_renene_2025_123408 crossref_primary_10_1016_j_ijdrr_2025_105715 crossref_primary_10_1016_j_enggeo_2025_108373 crossref_primary_10_3390_ijgi13030084 |
| Cites_doi | 10.1111/j.2041-210x.2012.00261.x 10.1029/2019GL082351 10.1016/j.epsl.2020.116203 10.1080/19475705.2022.2097451 10.1016/j.geomorph.2009.06.032 10.1007/BF01301796 10.1007/s10346-012-0348-2 10.3390/w12092555 10.1016/j.enggeo.2008.01.011 10.1007/s10346-014-0478-9 10.5194/nhess-18-1735-2018 10.1139/cgj-2016-0104 10.1029/97RG00426 10.1680/jgeot.15.P.222 10.1016/j.catena.2017.05.026 10.1007/s10064-013-0544-x 10.5194/nhess-13-2815-2013 10.1016/j.geomorph.2012.05.007 10.1007/s10346-020-01392-9 10.1016/j.jhydrol.2019.123932 10.2307/2986296 10.1073/pnas.2021855118 10.1007/s11069-019-03795-x 10.1109/5.784219 10.1080/17445647.2019.1604438 10.1080/21580103.2018.1446367 10.1007/s10346-014-0533-6 10.1007/s11629-021-7254-9 10.5194/nhess-13-559-2013 10.1016/j.geomorph.2014.02.031 10.1007/978-3-030-60227-7_16 10.1007/s10346-020-01485-5 10.5194/hess-23-4603-2019 10.1214/009053607000000505 10.1002/ieam.4132 10.1016/j.catena.2020.104805 10.1029/2006JF000495 10.1016/j.quaint.2010.11.020 10.1016/j.geomorph.2005.08.013 10.1007/s10706-017-0241-9 10.3390/w13040488 10.1002/esp.1064 10.1016/j.geomorph.2014.11.030 10.1016/j.enggeo.2004.10.004 10.3354/cr030079 10.1016/j.geomorph.2021.107921 10.1007/s10346-020-01592-3 10.1007/s12517-012-0807-z 10.1016/j.enggeo.2016.09.002 10.3390/w11122653 10.1016/j.enggeo.2016.10.011 10.1007/s11749-016-0481-7 10.1016/j.geomorph.2011.03.001 10.1139/t96-005 10.1016/j.geomorph.2008.07.009 10.1007/s12303-017-0034-4 10.1680/geot.7.00121 10.1016/j.catena.2019.04.010 10.1007/s10064-018-1328-0 10.1144/1470-9236/03-044 10.1007/s10346-015-0557-6 10.1016/j.catena.2017.09.025 10.1007/s10346-017-0809-8 10.3390/geosciences10050198 10.1007/s10346-014-0484-y 10.1007/s10064-017-1176-3 10.1007/s10064-004-0244-7 10.1016/j.catena.2020.104630 10.1002/wics.182 10.1109/TSMCC.2004.829279 10.5194/nhess-15-1025-2015 10.1016/j.enggeo.2006.09.010 10.1007/s10661-012-2855-y 10.1016/j.enggeo.2004.06.001 10.5194/isprs-archives-XLII-1-W1-83-2017 10.1016/j.epsl.2012.10.029 10.1007/s11069-013-0671-5 10.1016/0006-3207(89)90005-0 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.catena.2023.107573 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Sciences (General) |
| ExternalDocumentID | 10_1016_j_catena_2023_107573 |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9DU 9JM 9JN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABUFD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-420c34f4087e89f8251243e6aeec67f23b1bd4977396dafd25eae9d997f4db7a3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001092570700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0341-8162 |
| IngestDate | Thu Oct 02 21:42:02 EDT 2025 Sat Nov 29 07:18:30 EST 2025 Tue Nov 18 22:42:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-420c34f4087e89f8251243e6aeec67f23b1bd4977396dafd25eae9d997f4db7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3673-3794 0000-0003-0043-5226 0000-0001-6483-3544 0000-0003-4119-5484 |
| PQID | 3153558410 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153558410 crossref_citationtrail_10_1016_j_catena_2023_107573 crossref_primary_10_1016_j_catena_2023_107573 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Catena (Giessen) |
| PublicationYear | 2024 |
| References | 10.1016/j.catena.2023.107573_b0240 Hattanji (10.1016/j.catena.2023.107573_b0225) 2009; 103 Koch (10.1016/j.catena.2023.107573_b0275) 2019; 23 10.1016/j.catena.2023.107573_b0165 10.1016/j.catena.2023.107573_b0040 Cascini (10.1016/j.catena.2023.107573_b0080) 2014; 214 Meisina (10.1016/j.catena.2023.107573_b0335) 2006; 88 Qiu (10.1016/j.catena.2023.107573_b0395) 2017; 157 Di Napoli (10.1016/j.catena.2023.107573_b0150) 2020; 17 Roda-Boluda (10.1016/j.catena.2023.107573_b0415) 2018; 43 Pham (10.1016/j.catena.2023.107573_b0380) 2020; 195 Bellugi (10.1016/j.catena.2023.107573_b0015) 2012 Zizioli (10.1016/j.catena.2023.107573_b0480) 2015 Nakagawa (10.1016/j.catena.2023.107573_b0345) 2013; 4 Chen (10.1016/j.catena.2023.107573_b0110) 2013; 185 Medwedeff (10.1016/j.catena.2023.107573_b0325) 2020; 539 Kass (10.1016/j.catena.2023.107573_b0270) 1980; 29 Lima (10.1016/j.catena.2023.107573_b0295) 2022; 19 Nicholls (10.1016/j.catena.2023.107573_b0350) 1989; 50 Zhang (10.1016/j.catena.2023.107573_b0470) 2004; 34 Huang (10.1016/j.catena.2023.107573_b0235) 2013; 68 Scheidegger (10.1016/j.catena.2023.107573_b0425) 1973; 5 Tofani (10.1016/j.catena.2023.107573_b0445) 2017; 14 McDougall (10.1016/j.catena.2023.107573_b0320) 2017; 54 10.1016/j.catena.2023.107573_b0035 Gunn (10.1016/j.catena.2023.107573_b0215) 1998; 14 Domej (10.1016/j.catena.2023.107573_b0160) 2020; 10 Cevasco (10.1016/j.catena.2023.107573_b0095) 2014; 73 Ozturk (10.1016/j.catena.2023.107573_b0355) 2021; 18 10.1016/j.catena.2023.107573_bib482 An (10.1016/j.catena.2023.107573_b0010) 2016; 66 Corominas (10.1016/j.catena.2023.107573_b0125) 2014; 73 Galve (10.1016/j.catena.2023.107573_b0200) 2015; 12 Bosino (10.1016/j.catena.2023.107573_b0065) 2019; 15 Catani (10.1016/j.catena.2023.107573_b0085) 2013; 13 Bordoni (10.1016/j.catena.2023.107573_b0055) 2020; 193 Manenti (10.1016/j.catena.2023.107573_b0310) 2020; 12 Watakabe (10.1016/j.catena.2023.107573_b0450) 2019; 180 Budetta (10.1016/j.catena.2023.107573_b0075) 2004; 63 10.1016/j.catena.2023.107573_b0100 10.1016/j.catena.2023.107573_b0265 Regmi (10.1016/j.catena.2023.107573_b0410) 2014; 7 Nahayo (10.1016/j.catena.2023.107573_b0340) 2019; 15 10.1016/j.catena.2023.107573_b0465 10.1016/j.catena.2023.107573_b0020 De Vita (10.1016/j.catena.2023.107573_b0145) 2013; 10 Willmott (10.1016/j.catena.2023.107573_b0455) 2005; 30 Di Napoli (10.1016/j.catena.2023.107573_b0155) 2021; 13 10.1016/j.catena.2023.107573_b0180 Pawłuszek (10.1016/j.catena.2023.107573_b0365) 2017; 42 Cavalli (10.1016/j.catena.2023.107573_b0090) 2013; 188 Goetz (10.1016/j.catena.2023.107573_b0205) 2011; 129 Iverson (10.1016/j.catena.2023.107573_b0250) 1997; 35 Bordoni (10.1016/j.catena.2023.107573_b0060) 2021; 18 Weiss (10.1016/j.catena.2023.107573_bib483) 2001; Vol. Meisina (10.1016/j.catena.2023.107573_b0330) 2004; 37 Galve (10.1016/j.catena.2023.107573_b0195) 2006; 213 Gomez (10.1016/j.catena.2023.107573_b0210) 2005; 78 Friedman (10.1016/j.catena.2023.107573_b0185) 1991; 19 Prochaska (10.1016/j.catena.2023.107573_b0385) 2008; 98 Xu (10.1016/j.catena.2023.107573_b0460) 2019; 78 Bordoni (10.1016/j.catena.2023.107573_b0050) 2018; 18 Magidson (10.1016/j.catena.2023.107573_b0300) 1993; 1 10.1016/j.catena.2023.107573_b0255 Persichillo (10.1016/j.catena.2023.107573_b0370) 2017; 8 Tien Bui (10.1016/j.catena.2023.107573_b0440) 2016; 13 10.1016/j.catena.2023.107573_b0130 Jakob (10.1016/j.catena.2023.107573_b0260) 2005; 305–324 10.1016/j.catena.2023.107573_b0175 D'Agostino (10.1016/j.catena.2023.107573_b0135) 2010; 115 Gabet (10.1016/j.catena.2023.107573_b0190) 2006; 74 Breiman (10.1016/j.catena.2023.107573_b0070) 1984 Persichillo (10.1016/j.catena.2023.107573_b0375) 2018; 160 Malamud (10.1016/j.catena.2023.107573_b0305) 2004; 29 Bellugi (10.1016/j.catena.2023.107573_bib485) 2015; 120 Tang (10.1016/j.catena.2023.107573_b0435) 2012; 250 Bordoni (10.1016/j.catena.2023.107573_b0045) 2015; 15 Qi (10.1016/j.catena.2023.107573_b0390) 2012 de Oliveira (10.1016/j.catena.2023.107573_b0140) 2019; 99 Székely (10.1016/j.catena.2023.107573_b0430) 2007; 35 Zizioli (10.1016/j.catena.2023.107573_b0475) 2013; 13 Pastor (10.1016/j.catena.2023.107573_b0360) 2014; 11 10.1016/j.catena.2023.107573_b0405 Chae (10.1016/j.catena.2023.107573_b0105) 2017; 21 Kritikos (10.1016/j.catena.2023.107573_b0280) 2015; 12 10.1016/j.catena.2023.107573_b0005 Qiu (10.1016/j.catena.2023.107573_b0400) 2018; 77 Zhou (10.1016/j.catena.2023.107573_bib481) 2019; 577 Biau (10.1016/j.catena.2023.107573_b0025) 2016; 25 Bordoni (10.1016/j.catena.2023.107573_b0030) 2019; 11 Corominas (10.1016/j.catena.2023.107573_b0120) 1996; 33 Hesterberg (10.1016/j.catena.2023.107573_b0230) 2011; 3 10.1016/j.catena.2023.107573_b0245 Martinović (10.1016/j.catena.2023.107573_b0315) 2016; 215 |
| References_xml | – volume: 73 start-page: 209 year: 2014 ident: 10.1016/j.catena.2023.107573_b0125 article-title: Recommendations for the quantitative analysis of landslide risk publication-title: Bull. Eng. Geol. Environ. – volume: 4 start-page: 133 issue: 2 year: 2013 ident: 10.1016/j.catena.2023.107573_b0345 article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210x.2012.00261.x – ident: 10.1016/j.catena.2023.107573_b0265 doi: 10.1029/2019GL082351 – volume: 539 year: 2020 ident: 10.1016/j.catena.2023.107573_b0325 article-title: Characteristic landslide distributions: An investigation of landscape controls on landslide size publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2020.116203 – ident: 10.1016/j.catena.2023.107573_b0405 doi: 10.1080/19475705.2022.2097451 – year: 2012 ident: 10.1016/j.catena.2023.107573_b0015 – volume: 115 start-page: 294 issue: 3–4 year: 2010 ident: 10.1016/j.catena.2023.107573_b0135 article-title: Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps) publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.06.032 – volume: 305–324 year: 2005 ident: 10.1016/j.catena.2023.107573_b0260 article-title: Runout prediction methods publication-title: Debris-Flow Hazards Related Phenomena – volume: 5 start-page: 231 issue: 4 year: 1973 ident: 10.1016/j.catena.2023.107573_b0425 article-title: On the prediction of the reach and velocity of catastrophic landslides publication-title: Rock Mech. doi: 10.1007/BF01301796 – volume: 10 start-page: 713 year: 2013 ident: 10.1016/j.catena.2023.107573_b0145 article-title: Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy publication-title: Landslides doi: 10.1007/s10346-012-0348-2 – volume: 12 start-page: 2555 issue: 9 year: 2020 ident: 10.1016/j.catena.2023.107573_b0310 article-title: Post-failure dynamics of rainfall-induced landslide in oltrepò pavese publication-title: Water doi: 10.3390/w12092555 – volume: 98 start-page: 29 year: 2008 ident: 10.1016/j.catena.2023.107573_b0385 article-title: Debris-flow runout predictions based on the average channel slope (ACS) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.01.011 – volume: 12 start-page: 101 year: 2015 ident: 10.1016/j.catena.2023.107573_b0200 article-title: Assessment of Shallow landslide risk mitigation measures based on land use planning through probabilistic modelling publication-title: Landslides doi: 10.1007/s10346-014-0478-9 – volume: 18 start-page: 1735 issue: 6 year: 2018 ident: 10.1016/j.catena.2023.107573_b0050 article-title: Estimation of the susceptibility of a road network to shallow landslides with the integration of the sediment connectivity publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-18-1735-2018 – start-page: 405 year: 2015 ident: 10.1016/j.catena.2023.107573_b0480 article-title: Evaluation of Pleiades Images for Rainfall-Triggered Shallow Landslides Mapping – volume: 54 start-page: 605 issue: 5 year: 2017 ident: 10.1016/j.catena.2023.107573_b0320 article-title: Canadian Geotechnical Colloquium: Landslide runout analysis—current practice and challenges publication-title: Can. Geotech. J. doi: 10.1139/cgj-2016-0104 – volume: 35 start-page: 245 year: 1997 ident: 10.1016/j.catena.2023.107573_b0250 article-title: The physics of debris flows publication-title: Rev. Geophys. doi: 10.1029/97RG00426 – volume: 66 start-page: 670 issue: 8 year: 2016 ident: 10.1016/j.catena.2023.107573_b0010 article-title: Three-dimensional smoothed-particle hydrodynamics simulation of deformation characteristics in slope failure publication-title: Géotechnique doi: 10.1680/jgeot.15.P.222 – volume: 157 start-page: 180 year: 2017 ident: 10.1016/j.catena.2023.107573_b0395 article-title: Influence of topography and volume on mobility of loess slides within different slip surfaces publication-title: Catena doi: 10.1016/j.catena.2017.05.026 – volume: 73 start-page: 859 year: 2014 ident: 10.1016/j.catena.2023.107573_b0095 article-title: The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-013-0544-x – volume: 120 start-page: 2552 issue: 12 year: 2015 ident: 10.1016/j.catena.2023.107573_bib485 article-title: Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm publication-title: JGR: Earth Surface – volume: 13 start-page: 2815 issue: 11 year: 2013 ident: 10.1016/j.catena.2023.107573_b0085 article-title: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-13-2815-2013 – volume: Vol. year: 2001 ident: 10.1016/j.catena.2023.107573_bib483 article-title: Topographic position and landforms analysis publication-title: Poster presentation, ESRI user conference – year: 1984 ident: 10.1016/j.catena.2023.107573_b0070 – volume: 188 start-page: 31 year: 2013 ident: 10.1016/j.catena.2023.107573_b0090 article-title: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.05.007 – volume: 17 start-page: 1897 issue: 8 year: 2020 ident: 10.1016/j.catena.2023.107573_b0150 article-title: Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability publication-title: Landslides doi: 10.1007/s10346-020-01392-9 – volume: 1 start-page: 29 year: 1993 ident: 10.1016/j.catena.2023.107573_b0300 article-title: The use of the new ordinal algorithm in CHAID to target profitable segments publication-title: J. Database Market. – volume: 577 start-page: 123932 year: 2019 ident: 10.1016/j.catena.2023.107573_bib481 article-title: Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan earthquake zone publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.123932 – volume: 29 start-page: 199 year: 1980 ident: 10.1016/j.catena.2023.107573_b0270 article-title: An exploratory technique for investigating large quantities of categorical data publication-title: Appl. Stat. doi: 10.2307/2986296 – ident: 10.1016/j.catena.2023.107573_b0020 doi: 10.1073/pnas.2021855118 – volume: 99 start-page: 1049 year: 2019 ident: 10.1016/j.catena.2023.107573_b0140 article-title: Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil publication-title: Nat. Hazards doi: 10.1007/s11069-019-03795-x – ident: 10.1016/j.catena.2023.107573_b0465 doi: 10.1109/5.784219 – volume: 15 start-page: 382 issue: 2 year: 2019 ident: 10.1016/j.catena.2023.107573_b0065 article-title: Litho-structure of the Oltrepo Pavese, Northern Apennines (Italy) publication-title: J. Maps doi: 10.1080/17445647.2019.1604438 – ident: 10.1016/j.catena.2023.107573_b0100 doi: 10.1080/21580103.2018.1446367 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.catena.2023.107573_b0185 article-title: Multivariate adaptive regression splines publication-title: The Annals of Statistics – volume: 12 start-page: 1051 year: 2015 ident: 10.1016/j.catena.2023.107573_b0280 article-title: Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western Southern Alps of New Zealand publication-title: Landslides doi: 10.1007/s10346-014-0533-6 – volume: 19 start-page: 1670 issue: 6 year: 2022 ident: 10.1016/j.catena.2023.107573_b0295 article-title: Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility publication-title: J. Mt. Sci. doi: 10.1007/s11629-021-7254-9 – volume: 13 start-page: 559 issue: 3 year: 2013 ident: 10.1016/j.catena.2023.107573_b0475 article-title: Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-13-559-2013 – volume: 214 start-page: 502 year: 2014 ident: 10.1016/j.catena.2023.107573_b0080 article-title: SPH run-out modelling of channelised landslides of the flow type publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.02.031 – ident: 10.1016/j.catena.2023.107573_b0040 doi: 10.1007/978-3-030-60227-7_16 – volume: 18 start-page: 681 issue: 2 year: 2021 ident: 10.1016/j.catena.2023.107573_b0355 article-title: How robust are landslide susceptibility estimates? publication-title: Landslides doi: 10.1007/s10346-020-01485-5 – volume: 23 start-page: 4603 issue: 11 year: 2019 ident: 10.1016/j.catena.2023.107573_b0275 article-title: Modelling of the shallow water table at high spatial resolution using random forests publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-4603-2019 – volume: 35 start-page: 2769 issue: 6 year: 2007 ident: 10.1016/j.catena.2023.107573_b0430 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Statist. doi: 10.1214/009053607000000505 – volume: 15 start-page: 364 issue: 3 year: 2019 ident: 10.1016/j.catena.2023.107573_b0340 article-title: Estimating landslides vulnerability in Rwanda using analytic hierarchy process and geographic information system publication-title: Integr. Environ. Assess. Manag. doi: 10.1002/ieam.4132 – volume: 43 start-page: 956 issue: 5 year: 2018 ident: 10.1016/j.catena.2023.107573_b0415 article-title: Lithological controls on hillslope sediment supply: insights from landslide activity and grain size distributions publication-title: ESPL. – volume: 195 year: 2020 ident: 10.1016/j.catena.2023.107573_b0380 article-title: Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2020.104805 – ident: 10.1016/j.catena.2023.107573_b0245 doi: 10.1029/2006JF000495 – volume: 250 start-page: 63 year: 2012 ident: 10.1016/j.catena.2023.107573_b0435 article-title: An empirical-statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area publication-title: Quat. Int. doi: 10.1016/j.quaint.2010.11.020 – volume: 74 start-page: 207 issue: 1–4 year: 2006 ident: 10.1016/j.catena.2023.107573_b0190 article-title: The mobilization of debris flows from shallow landslides publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.08.013 – ident: 10.1016/j.catena.2023.107573_b0175 doi: 10.1007/s10706-017-0241-9 – volume: 13 start-page: 488 issue: 4 year: 2021 ident: 10.1016/j.catena.2023.107573_b0155 article-title: Rainfall-induced shallow landslide detachment, transit and runout susceptibility mapping by integrating machine learning techniques and GIS-based approaches publication-title: Water doi: 10.3390/w13040488 – volume: 29 start-page: 687 issue: 6 year: 2004 ident: 10.1016/j.catena.2023.107573_b0305 article-title: Landslide inventories and their statistical properties publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.1064 – volume: 8 start-page: 748 issue: 2 year: 2017 ident: 10.1016/j.catena.2023.107573_b0370 article-title: Shallow landslides susceptibility assessment in different environments Geomatics Nat Hazards publication-title: Risk – ident: 10.1016/j.catena.2023.107573_b0005 – ident: 10.1016/j.catena.2023.107573_b0240 doi: 10.1016/j.geomorph.2014.11.030 – ident: 10.1016/j.catena.2023.107573_b0130 – volume: 78 start-page: 11 issue: 1–2 year: 2005 ident: 10.1016/j.catena.2023.107573_b0210 article-title: Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River basin, Venezuela publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2004.10.004 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.catena.2023.107573_b0455 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Climate Res. doi: 10.3354/cr030079 – ident: 10.1016/j.catena.2023.107573_b0255 doi: 10.1016/j.geomorph.2021.107921 – volume: 18 start-page: 1209 issue: 4 year: 2021 ident: 10.1016/j.catena.2023.107573_b0060 article-title: Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale publication-title: Landslides doi: 10.1007/s10346-020-01592-3 – volume: 7 start-page: 725 issue: 2 year: 2014 ident: 10.1016/j.catena.2023.107573_b0410 article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0807-z – volume: 213 start-page: 142 year: 2006 ident: 10.1016/j.catena.2023.107573_b0195 article-title: Cost-Based analysis of mitigation measures for shallow-landslide risk reduction strategies publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.09.002 – volume: 11 start-page: 2653 year: 2019 ident: 10.1016/j.catena.2023.107573_b0030 article-title: Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of Northern Italian Apennines publication-title: Water doi: 10.3390/w11122653 – volume: 215 start-page: 1 year: 2016 ident: 10.1016/j.catena.2023.107573_b0315 article-title: Development of a landslide susceptibility assessment for a rail network publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.10.011 – volume: 25 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.catena.2023.107573_b0025 article-title: A random forest guided tour publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 129 start-page: 376 issue: 3–4 year: 2011 ident: 10.1016/j.catena.2023.107573_b0205 article-title: Integrating physical and empirical landslide susceptibility models using generalized additive models publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.03.001 – volume: 33 start-page: 260 issue: 2 year: 1996 ident: 10.1016/j.catena.2023.107573_b0120 article-title: The angle of reach as a mobility index for small and large landslides publication-title: Can. Geotech. J. doi: 10.1139/t96-005 – volume: 103 start-page: 447 issue: 3 year: 2009 ident: 10.1016/j.catena.2023.107573_b0225 article-title: Morphometric analysis of relic landslides using detailed landslide distribution maps: implications for forecasting travel distance of future landslides publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.07.009 – volume: 21 start-page: 1033 year: 2017 ident: 10.1016/j.catena.2023.107573_b0105 article-title: Landslide prediction, monitoring and early warning: a concise review of state-of-the-art publication-title: Geosci. J. doi: 10.1007/s12303-017-0034-4 – ident: 10.1016/j.catena.2023.107573_bib482 doi: 10.1680/geot.7.00121 – volume: 180 start-page: 55 year: 2019 ident: 10.1016/j.catena.2023.107573_b0450 article-title: Lithological controls on hydrological processes that trigger shallow landslides: Observations from granite and hornfels hillslopes in Hiroshima, Japan publication-title: Catena doi: 10.1016/j.catena.2019.04.010 – volume: 77 start-page: 1299 issue: 4 year: 2018 ident: 10.1016/j.catena.2023.107573_b0400 article-title: Developing empirical relationships to predict loess slide travel distances: a case study on the Loess Plateau in China publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1328-0 – volume: 37 start-page: 77 year: 2004 ident: 10.1016/j.catena.2023.107573_b0330 article-title: Swelling-shrinking properties of weathered clayey soils associated with shallow landslides publication-title: Q. J. Eng. Geol. Hydrogeol. doi: 10.1144/1470-9236/03-044 – volume: 13 start-page: 361 year: 2016 ident: 10.1016/j.catena.2023.107573_b0440 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 160 start-page: 261 year: 2018 ident: 10.1016/j.catena.2023.107573_b0375 article-title: The role of human activities on sediment connectivity of shallow landslides publication-title: Catena doi: 10.1016/j.catena.2017.09.025 – volume: 14 start-page: 755 year: 2017 ident: 10.1016/j.catena.2023.107573_b0445 article-title: Soil characterization for shallow landslides modeling: a case study in the Northern Apennines (Central Italy) publication-title: Landslides doi: 10.1007/s10346-017-0809-8 – volume: 10 start-page: 198 issue: 5 year: 2020 ident: 10.1016/j.catena.2023.107573_b0160 article-title: Shape and Dimension Estimations of Landslide Rupture Zones via Correlations of Characteristic Parameters publication-title: Geosciences doi: 10.3390/geosciences10050198 – volume: 11 start-page: 793 year: 2014 ident: 10.1016/j.catena.2023.107573_b0360 article-title: Application of a SPH depth-integrated model to landslide run-out analysis publication-title: Landslides doi: 10.1007/s10346-014-0484-y – volume: 78 start-page: 1281 issue: 2 year: 2019 ident: 10.1016/j.catena.2023.107573_b0460 article-title: Comparison of data-driven models of loess landslide runout distance estimation publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1176-3 – volume: 63 start-page: 293 issue: 4 year: 2004 ident: 10.1016/j.catena.2023.107573_b0075 article-title: The mobility of some debris flows in pyroclastic deposits of the northwestern Campanian region (southern Italy) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-004-0244-7 – volume: 193 year: 2020 ident: 10.1016/j.catena.2023.107573_b0055 article-title: The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models publication-title: Catena doi: 10.1016/j.catena.2020.104630 – volume: 3 start-page: 497 issue: 6 year: 2011 ident: 10.1016/j.catena.2023.107573_b0230 article-title: Bootstrap publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.182 – volume: 34 start-page: 513 issue: 4 year: 2004 ident: 10.1016/j.catena.2023.107573_b0470 article-title: Discovering golden nuggets: data mining in financial application publication-title: IEEE Trans. Syst., Man, Cybernet., Part C (Appl. Rev.) doi: 10.1109/TSMCC.2004.829279 – volume: 14 start-page: 5 issue: 1 year: 1998 ident: 10.1016/j.catena.2023.107573_b0215 article-title: Support vector machines for classification and regression publication-title: ISIS Technical Report – volume: 15 start-page: 1025 issue: 5 year: 2015 ident: 10.1016/j.catena.2023.107573_b0045 article-title: Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-15-1025-2015 – volume: 88 start-page: 240 year: 2006 ident: 10.1016/j.catena.2023.107573_b0335 article-title: Ground deformation monitoring by using the permanent scatterers technique: The example of the Oltrepò Pavese (Lombardia, Italy) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2006.09.010 – ident: 10.1016/j.catena.2023.107573_b0035 doi: 10.1016/j.catena.2020.104630 – volume: 185 start-page: 4125 year: 2013 ident: 10.1016/j.catena.2023.107573_b0110 article-title: Land use change and landslide characteristics analysis for community-based disaster mitigation publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-012-2855-y – ident: 10.1016/j.catena.2023.107573_b0165 doi: 10.1016/j.enggeo.2004.06.001 – volume: 42 start-page: 83 year: 2017 ident: 10.1016/j.catena.2023.107573_b0365 article-title: Towards the optimal pixel size of DEM for automatic mapping of landslide areas publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-1-W1-83-2017 – ident: 10.1016/j.catena.2023.107573_b0180 doi: 10.1016/j.epsl.2012.10.029 – volume: 68 start-page: 1021 year: 2013 ident: 10.1016/j.catena.2023.107573_b0235 article-title: Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China publication-title: Nat. Hazards doi: 10.1007/s11069-013-0671-5 – volume: 50 start-page: 51 issue: 1–4 year: 1989 ident: 10.1016/j.catena.2023.107573_b0350 article-title: How to make biological surveys go further with generalised linear models publication-title: Biol. Conserv. doi: 10.1016/0006-3207(89)90005-0 – year: 2012 ident: 10.1016/j.catena.2023.107573_b0390 article-title: Random forest for bioinformatics In Ensemble machine learning (pp 307–323) publication-title: Springer, Boston, MA. |
| SSID | ssj0004751 |
| Score | 2.4511123 |
| Snippet | Rainfall-induced shallow landslides cause damages and casualties. Estimating the development of the runout is essential, however, the methods which are... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 107573 |
| SubjectTerms | algorithms catenas geomorphology Italy land use change landslides lithology satellites |
| Title | A data-driven method for the estimation of shallow landslide runout |
| URI | https://www.proquest.com/docview/3153558410 |
| Volume | 234 |
| WOSCitedRecordID | wos001092570700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0341-8162 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004751 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagBcGlaguI8qiMxAG0SrWJnbV9XK3aAoKKw4L2Fjm2o6Zakmqzacu_Zxw7yYZKQA9coiiPUZL58nk8ngdCb1Ws1YQpGcQ6jQNKMh2kkQJDjmvAkMzkuAnG_P6ZnZ3xxUK0K7pV006AFQW_uRGX_1XVcAyUbVNn76DuTigcgH1QOmxB7bD9J8VPRzbqM9Ary2O-Q3QXTGhravzorMTKdlIpr0dNvu8y12a0qouyHrjrZ2CMFrLxJuS2znix4Ts4zW24iPSJMvB3dRz_xeRV7tLNZktZ6_7M3N7icrK_SmDeznNdg5ZbUxrIS5WbDomIbjgkfCIWDQMeDkk28i5LR5Mw54xdB5NbDO6cCRe2fie83ZHt7n7UXz4smP3bQNaFF7aRaxeJk5JYKYmTch9tRywWQInb04_Hi099Ei1renV2T9_mWTbBgLefZmjHDIfxxjaZ76IdP6nAUweGPXTPFPvoke9vf_5zHz08bRo4w96eJ_MKv_MVx98_QbMp3sAMdpjBgBkMmME9ZnCZYY8Z3GEGO8w8Rd9OjuezD4HvrhEoQsQ6oNFYEZrRMWeGi8ymMEeUmIk0Bv7eLCJpmGoK0wMiJlpmOoqNNEILwTKqUybJM7RVlIV5jrBdvOMpU0JSsPi44DFnijKtYDphZKgPEGm_VaJ86XnbAWWZ_ElTByjo7rp0pVf-cv2bVg0JcKRd-JKFKesqITCsx2Bph-MXd5T5Ej3uIf4Kba1XtXmNHqirdV6tDj2EfgGVwok0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+for+the+estimation+of+shallow+landslide+runout&rft.jtitle=Catena+%28Giessen%29&rft.au=Giarola%2C+Alessia&rft.au=Meisina%2C+Claudia&rft.au=Tarolli%2C+Paolo&rft.au=Zucca%2C+Francesco&rft.date=2024-01-01&rft.issn=0341-8162&rft.volume=234&rft.spage=107573&rft_id=info:doi/10.1016%2Fj.catena.2023.107573&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_catena_2023_107573 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |