Representation learning via a semi-supervised stacked distance autoencoder for image classification

Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reducti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers of information technology & electronic engineering Ročník 21; číslo 7; s. 1005 - 1018
Hlavní autoři: Hou, Liang, Luo, Xiao-yi, Wang, Zi-yang, Liang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hangzhou Zhejiang University Press 01.07.2020
Springer Nature B.V
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Témata:
ISSN:2095-9184, 2095-9230
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the “distance” information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.
AbstractList TP391.9; Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional auto-encoder, incorporating the "distance" information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.
Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the “distance” information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.
Author Hou, Liang
Wang, Zi-yang
Luo, Xiao-yi
Liang, Jun
AuthorAffiliation College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
AuthorAffiliation_xml – name: College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0003-0887-627X
  surname: Hou
  fullname: Hou, Liang
  organization: College of Control Science and Engineering, Zhejiang University
– sequence: 2
  givenname: Xiao-yi
  surname: Luo
  fullname: Luo, Xiao-yi
  organization: College of Control Science and Engineering, Zhejiang University
– sequence: 3
  givenname: Zi-yang
  surname: Wang
  fullname: Wang, Zi-yang
  organization: College of Control Science and Engineering, Zhejiang University
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-1115-0824
  surname: Liang
  fullname: Liang, Jun
  email: jliang@zju.edu.cn
  organization: College of Control Science and Engineering, Zhejiang University
BookMark eNp1kE1LAzEQhoMoqLVH7wFvwtbJfmQ3RylVCwVB9LzMZmdLaputybZ-_HpjtyKInmYIz_smeU7ZoW0tMXYuYCRkIq5upo-TyUgoACHkATuJQWWRihM4_N5FkR6zofcLCIwUKlfFCdMPtHbkyXbYmdbyJaGzxs751iBH7mllIr9Zk9saTzX3HernMGsTNquJ46Zryeq2Jseb1nGzwjlxvUTvTWP0rvSMHTW49DTczwF7upk8ju-i2f3tdHw9i3SSqC5KBRaJzopUSYGZprwgpVWqQdakRA4a8wIQIJzGVVqlWSKFAMoxrWIpZZUM2GXf-4q2QTsvF-3G2XBj-bGo394qXVIMMUAOkAX4oofXrn3ZkO9-6DioyuNgqAhU1FPatd47asq1C19076WA8st7ufNe7r0HPvnFa9Ob7Rya5b-pUZ_yod3Oyf285e_AJ1ISlwM
CitedBy_id crossref_primary_10_1049_ipr2_13213
crossref_primary_10_1109_JSEN_2024_3506937
crossref_primary_10_1016_j_jii_2022_100392
crossref_primary_10_1016_j_ecofro_2024_11_009
crossref_primary_10_1109_JSEN_2021_3092432
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1088_1361_6501_ad5c8e
crossref_primary_10_1631_FITEE_2000695
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1177_01423312231197363
crossref_primary_10_1007_s00521_024_10539_x
crossref_primary_10_1029_2024JH000566
crossref_primary_10_1016_j_engstruct_2025_120603
Cites_doi 10.1109/TNNLS.2018.2881143
10.1016/j.dsp.2018.06.004
10.1109/TPAMI.2013.50
10.1109/TIP.2015.2421443
10.1007/s11063-018-9828-2
10.1007/s11263-019-01176-2
10.1016/j.neucom.2018.05.117
10.1109/TCSVT.2018.2834480
10.1561/2200000006
10.1109/TPAMI.2012.193
10.1007/s00521-016-2790-x
10.1126/science.1127647
10.1117/1.JEI.27.5.051221
10.1016/j.tics.2007.09.004
10.1109/TIP.2017.2774041
10.1109/TSMC.1973.4309314
10.1016/j.neucom.2018.09.040
10.1109/ijcnn.2017.7965877
10.1109/acii.2013.90
10.1109/ijcnn.2016.7727620
10.1109/cvprw.2014.79
10.1109/acc.2016.7525420
10.1109/ijcnn.2013.6707028
ClassificationCodes TP391.9
ContentType Journal Article
Copyright Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1631/FITEE.1900116
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2095-9230
EndPage 1018
ExternalDocumentID zjdxxbc_e202007005
10_1631_FITEE_1900116
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: (. U1664264 and U1509203)
GroupedDBID -EM
-SI
-S~
0R~
2KG
4.4
406
5VR
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAXDM
AAYIU
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARAPS
AXYYD
BENPR
BGLVJ
BGNMA
CAJEI
CCEZO
CCPQU
CHBEP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
HCIFZ
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PT4
PTHSS
Q--
R-I
RLLFE
ROL
RSV
S..
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TCJ
TGT
TSG
U1G
U5S
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
2B.
4A8
92I
93N
PMFND
PSX
ID FETCH-LOGICAL-c339t-41a83c584961a5ce78e9c94c06de9170ca780a00e9c2b4b4536110e7a4b2666b3
IEDL.DBID M7S
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554736900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-9184
IngestDate Thu May 29 04:06:16 EDT 2025
Wed Nov 05 04:13:10 EST 2025
Tue Nov 18 20:41:50 EST 2025
Sat Nov 29 04:33:23 EST 2025
Fri Feb 21 02:35:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords TP391.9
Neural network
Autoencoder
Semi-supervised learning
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-41a83c584961a5ce78e9c94c06de9170ca780a00e9c2b4b4536110e7a4b2666b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0887-627X
0000-0003-1115-0824
PQID 2918726198
PQPubID 2044401
PageCount 14
ParticipantIDs wanfang_journals_zjdxxbc_e202007005
proquest_journals_2918726198
crossref_primary_10_1631_FITEE_1900116
crossref_citationtrail_10_1631_FITEE_1900116
springer_journals_10_1631_FITEE_1900116
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
– name: Heidelberg
PublicationTitle Frontiers of information technology & electronic engineering
PublicationTitleAbbrev Front Inform Technol Electron Eng
PublicationTitle_FL Frontiers of Information Technology & Electronic Engineering
PublicationYear 2020
Publisher Zhejiang University Press
Springer Nature B.V
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Publisher_xml – name: Zhejiang University Press
– name: Springer Nature B.V
– name: College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
References Vincent, Larochelle, Lajoie (CR26) 2010; 11
Sun, Xue, Zhang (CR22) 2017; 30
Du, Zhang, Ji (CR5) 2018; 49
CR19
Gong, Lazebnik, Gordo (CR8) 2013; 35
CR16
CR14
Feng, Duarte (CR6) 2018; 312
Taherkhani, Cosma, Mcginnity (CR23) 2018; 322
CR30
Bianco, Buzzelli, Schettini (CR3) 2018; 27
Hinton (CR12) 2007; 11
Peng, He, Zhao (CR17) 2018; 27
He, Peng, Zhao (CR11) 2019; 127
Glorot, Bengio (CR7) 2010; 9
Rahmani, Almasganj, Ali (CR18) 2018; 82
Hinton, Salakhutdinov (CR13) 2006; 313
CR4
CR29
CR28
CR27
CR25
Tang, Li, Wang (CR24) 2015; 24
CR21
CR20
Bengio, Courville, Vincent (CR2) 2013; 35
Meng, Ding, Zhang (CR15) 2018; 30
Bengio (CR1) 2009; 2
Haralick, Shanmugam, Dinstein (CR9) 1973; SMC-3
He, Peng, Zhao (CR10) 2018; 29
S Bianco (1551_CR3) 2018; 27
YN Sun (1551_CR22) 2017; 30
Y Bengio (1551_CR2) 2013; 35
1551_CR25
1551_CR27
XT He (1551_CR11) 2019; 127
1551_CR29
YX Peng (1551_CR17) 2018; 27
1551_CR28
F Du (1551_CR5) 2018; 49
RM Haralick (1551_CR9) 1973; SMC-3
JH Tang (1551_CR24) 2015; 24
1551_CR21
YC Gong (1551_CR8) 2013; 35
1551_CR20
SW Feng (1551_CR6) 2018; 312
XT He (1551_CR10) 2018; 29
GE Hinton (1551_CR13) 2006; 313
Y Bengio (1551_CR1) 2009; 2
MH Rahmani (1551_CR18) 2018; 82
1551_CR14
1551_CR16
A Taherkhani (1551_CR23) 2018; 322
1551_CR19
1551_CR30
P Vincent (1551_CR26) 2010; 11
1551_CR4
LH Meng (1551_CR15) 2018; 30
GE Hinton (1551_CR12) 2007; 11
X Glorot (1551_CR7) 2010; 9
References_xml – volume: 30
  start-page: 2295
  issue: 8
  year: 2017
  end-page: 2309
  ident: CR22
  article-title: A particle swarm optimization-based flexible convolutional autoencoder for image classification
  publication-title: IEEE Trans Neur Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2881143
– volume: 82
  start-page: 54
  issue: 5
  year: 2018
  end-page: 63
  ident: CR18
  article-title: Audiovisual feature fusion via deep neural networks for automatic speech recognition
  publication-title: Dig Signal Process
  doi: 10.1016/j.dsp.2018.06.004
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  ident: CR2
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Patt Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume: 24
  start-page: 2827
  issue: 9
  year: 2015
  end-page: 2840
  ident: CR24
  article-title: Neighborhood discriminant hashing for large-scale image retrieval
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2421443
– volume: 49
  start-page: 507
  issue: 2
  year: 2018
  end-page: 520
  ident: CR5
  article-title: Discriminative representation learning with supervised auto-encoder
  publication-title: Neur Process Lett
  doi: 10.1007/s11063-018-9828-2
– volume: 127
  start-page: 1235
  issue: 9
  year: 2019
  end-page: 1255
  ident: CR11
  article-title: Which and how many regions to gaze: focus discriminative regions for finegrained visual categorization
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-019-01176-2
– ident: CR4
– ident: CR14
– ident: CR16
– volume: 312
  start-page: 310
  year: 2018
  end-page: 323
  ident: CR6
  article-title: Graph autoencoder-based unsupervised feature selection with broad and local data structure preservation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.117
– ident: CR30
– volume: 29
  start-page: 1394
  issue: 5
  year: 2018
  end-page: 1407
  ident: CR10
  article-title: Fast fine-grained image classification via weakly supervised discriminative localization
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2018.2834480
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 127
  ident: CR1
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– ident: CR29
– volume: 35
  start-page: 2916
  issue: 12
  year: 2013
  end-page: 2929
  ident: CR8
  article-title: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval
  publication-title: IEEE Trans Patt Anal Mach Intell
  doi: 10.1109/TPAMI.2012.193
– volume: 30
  start-page: 2083
  issue: 7
  year: 2018
  end-page: 2100
  ident: CR15
  article-title: Research of stacked denoising sparse autoencoder
  publication-title: Neur Comput Appl
  doi: 10.1007/s00521-016-2790-x
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR13
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: CR25
– ident: CR27
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: CR7
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 051221
  issue: 5
  year: 2018
  ident: CR3
  article-title: Multiscale fully convolutional network for image saliency
  publication-title: J Electron Imag
  doi: 10.1117/1.JEI.27.5.051221
– ident: CR21
– ident: CR19
– volume: 11
  start-page: 428
  issue: 10
  year: 2007
  end-page: 434
  ident: CR12
  article-title: Learning multiple layers of representation
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2007.09.004
– volume: 27
  start-page: 1487
  issue: 3
  year: 2018
  end-page: 1500
  ident: CR17
  article-title: Object-part attention model for fine-grained image classification
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2774041
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  ident: CR26
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: SMC-3
  start-page: 610
  issue: 6
  year: 1973
  end-page: 621
  ident: CR9
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 322
  start-page: 22
  year: 2018
  end-page: 37
  ident: CR23
  article-title: Deep-FS: a feature selection algorithm for deep Boltzmann machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.040
– ident: CR28
– ident: CR20
– volume: 11
  start-page: 428
  issue: 10
  year: 2007
  ident: 1551_CR12
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2007.09.004
– ident: 1551_CR25
– volume: 322
  start-page: 22
  year: 2018
  ident: 1551_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.040
– ident: 1551_CR29
– ident: 1551_CR19
– volume: 29
  start-page: 1394
  issue: 5
  year: 2018
  ident: 1551_CR10
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2018.2834480
– ident: 1551_CR16
  doi: 10.1109/ijcnn.2017.7965877
– ident: 1551_CR21
– volume: 27
  start-page: 051221
  issue: 5
  year: 2018
  ident: 1551_CR3
  publication-title: J Electron Imag
  doi: 10.1117/1.JEI.27.5.051221
– ident: 1551_CR4
  doi: 10.1109/acii.2013.90
– volume: 127
  start-page: 1235
  issue: 9
  year: 2019
  ident: 1551_CR11
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-019-01176-2
– volume: 82
  start-page: 54
  issue: 5
  year: 2018
  ident: 1551_CR18
  publication-title: Dig Signal Process
  doi: 10.1016/j.dsp.2018.06.004
– ident: 1551_CR14
– volume: 30
  start-page: 2295
  issue: 8
  year: 2017
  ident: 1551_CR22
  publication-title: IEEE Trans Neur Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2881143
– ident: 1551_CR20
  doi: 10.1109/ijcnn.2016.7727620
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 1551_CR26
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 249
  year: 2010
  ident: 1551_CR7
  publication-title: J Mach Learn Res
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 1551_CR13
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 1551_CR27
  doi: 10.1109/cvprw.2014.79
– volume: 35
  start-page: 2916
  issue: 12
  year: 2013
  ident: 1551_CR8
  publication-title: IEEE Trans Patt Anal Mach Intell
  doi: 10.1109/TPAMI.2012.193
– ident: 1551_CR30
  doi: 10.1109/acc.2016.7525420
– ident: 1551_CR28
  doi: 10.1109/ijcnn.2013.6707028
– volume: 27
  start-page: 1487
  issue: 3
  year: 2018
  ident: 1551_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2774041
– volume: 30
  start-page: 2083
  issue: 7
  year: 2018
  ident: 1551_CR15
  publication-title: Neur Comput Appl
  doi: 10.1007/s00521-016-2790-x
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 1551_CR2
  publication-title: IEEE Trans Patt Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 1551_CR1
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 24
  start-page: 2827
  issue: 9
  year: 2015
  ident: 1551_CR24
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2421443
– volume: SMC-3
  start-page: 610
  issue: 6
  year: 1973
  ident: 1551_CR9
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 312
  start-page: 310
  year: 2018
  ident: 1551_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.117
– volume: 49
  start-page: 507
  issue: 2
  year: 2018
  ident: 1551_CR5
  publication-title: Neur Process Lett
  doi: 10.1007/s11063-018-9828-2
SSID ssj0001619798
Score 2.2532625
Snippet Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the...
TP391.9; Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1005
SubjectTerms Classification
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Datasets
Deep learning
Electrical Engineering
Electronics and Microelectronics
Feature extraction
Image classification
Instrumentation
Machine learning
Networks
Neural networks
Object recognition
Traffic signs
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB509aAH3-L6IqDoxWraZJvkKOLiQUR84a2kaXZZ0Sp2VxZ_vZNs6ioi6KWHNp2WzOubTDIDsIsWTsdWsYh3UukunQi9IncMoUoYZoTPmN6di4sLeX-vLifgqD4L43e71ylJb6mdWqcsPmqjKp8eov9yqYNJmEJPJ12vhqvru_GiCoYDwve_TajvQSh5qKv5g8J3PzQGl5_5UH-Kp-zosvvF4bTn__2rCzAXsCU5HgnDIkzYcgnm674NJKjxEsx-KUK4DObKb4YNZ5BKEvpIdMlbTxNNKvvUi6rBi7MplS0IoklU_IIUDngiOaIH_WdXDbPATyACJr0nNFHEOFTutiF5oitw2z69OTmLQuuFyDCm-hGPtWQGwYlKY90yVkirjOKGpoXFAI8aLSTVlOLdJOc5b7EUcYQVmufo8dOcrUKjfC7tGpAWLRDVUQSSec5ZIVQSd2KptWZMGJOoJhzUjMhMqEvu2mM8Zi4-wenM_HRmYTqbsPc5_GVUkOO3gZs1V7Ogl1WWoEgIFzTKJuzXvBs__oXQThCE8cD3h2I4zE1mE-oWe9GUrf-Z3gbMuLdGe343odF_HdgtmDZv_V71uu0F-gNgcvAc
  priority: 102
  providerName: Springer Nature
Title Representation learning via a semi-supervised stacked distance autoencoder for image classification
URI https://link.springer.com/article/10.1631/FITEE.1900116
https://www.proquest.com/docview/2918726198
https://d.wanfangdata.com.cn/periodical/zjdxxbc-e202007005
Volume 21
WOSCitedRecordID wos000554736900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: RSV
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4N2MN4gLEfosAqS0zbyzKc2I3tJ8SmVpM2VVXZENpL5Ngu6gRpaVqE-Os5uy5hD-xlL35ITk6k73L35e58B_AeLZxOnWIJH-XSL6MEvSL3gFAlDDMiZEzPfoh-X56fq0EMuNWxrHJlE4OhthPjY-RHmUql8HRfHk-vEz81ymdX4wiNNdjwXRLSULp32sRYUFyEcbgZDSMJJY9tNnOWHvXQNnQ_o0P0uYi_3VLDNR_So-FQTzXS1cUj_9Pb_t83fwlbkXmSk6Wq7MAzV72CzUf9CF-DGYa62HgcqSJxpMQFuRlrokntrsZJvZh681I7S5BYog2wxHoOispD9GI-8Y0xrZsRJMNkfIXWihhP0H1FUtj0DfzqdX9-_ZbEKQyJYUzNE55qyQzyFJWnumOckE4ZxQ3NrcN_PWq0kFRTilezkpe8w3KkFE5oXqLzz0v2FtarSeV2gXSoRYJHkVOWJWdWqCwdpVJrzZgwJlMt-LQCoTCxRbmflHFZ-F8VxKwImBURsxZ8eBCfLntzPCV4sEKmiJ9oXTSwtODjCuXm9hMbHUYlaATv_tjb29IULqM-7otWbe_fj9uHF150WfN7AOvz2cK9g-fmZj6uZ23Y-NLtD4ZtWPsuknbQZ1wHnd-4Dk_P7gGdo_tH
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98EZsKWCJ16WhTuyN7QNCCLpqtcsKoYJ6C47trRbR7Haz2xZ-FL-RsddpyqHceuCSQ-I4D3_zzYw9ngF4jgynU6dYwke59IdRglqR-wGhShhmRFgx_ToQw6Hc31efVuB3sxfGh1U2nBiI2k6MnyPfylQqhTf35dvpUeKrRvnV1aaExhIWfffzBF22-s3uBxzfF1nW2957v5PEqgKJYUzNE55qyQzqXZWnumuckE4ZxQ3NrUPfhRotJNWU4tms5CXvshxVpBOal6jM8pJhv1fgKmdSeLnqi6Sd08HXE6H8bkZDCUTJY1rPnKVbPeSi7deogP3ax99qsLVtz5ZjwyaiaqSrg3P6rnfrf_tTt-FmtKzJu6Uo3IEVV92FtXP5Fu-B-RzifuN2q4rEkhkH5HisiSa1Oxwn9WLq6bN2lqDhjBxnifU2NgoH0Yv5xCf-tG5G0Ngn40NkY2K8A-IjrkKn9-HLpXzlA1itJpV7CKRLLRqwFG3msuTMCpWlo1RqrRkTxmSqA5vNoBcmpmD3lUB-FN4VQ4wUASNFxEgHXp41ny5zj1zUcKNBQhEpqC5aGHTgVYOq9vIFHT2LoGsb_vpuT09LU7iM-nltZO31fz_uKVzf2fs4KAa7w_4juOFvW8Y3b8DqfLZwj-GaOZ6P69mTID0Evl02CP8A6ZVRbw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_8KNI-VOsHvVbrQou-GG-T3ctm6VOpHhXlkFbFt7DZ3ciVGg-TE_Gvd3Zv41lEEHzJQ7JMws7XbzKzMwDf0MKp2EoW8TLN3KWM0CtyxxAqhWZa-Izp2ZEYDLLzc3k8A9_bszC-2r1NSU7ONLguTVXTHZnSq3jK4m4f1Xp_F32ZSyPMwjx3NfQuVP9zNv3BgqGB8LNwE-rnEWY89Nh8QuF_nzQFmg-5UX-ipypVdfHI-fQXX_XZS_A-YE7yYyIkH2DGVsuw2M5zIEG9l-Hdo-aEK6B_-yLZcDapImG-xAW5GSqiSG0vh1E9HjlbU1tDEGWiQTDEOECK5IgaN1euS6bBVyAyJsNLNF1EO7TuypM80VU47e-f_PwVhZEMkWZMNhGPVcY0ghaZxqqnrcis1JJrmhqLgR_VSmRUUYp3k4IXvMdSxBdWKF4gEkgLtgZz1VVlPwLpUYNojyLALArOjJBJXMaZUooxoXUiO7DTMiXXoV-5G5vxL3dxC25n7rczD9vZga2H5aNJo47nFq63HM6DvtZ5guIhXDCZdWC75eP08TOEvgahmC68-2tubwud24S6n8Bo4j69mN4mLBzv9fOjg8HhZ3jrCEzKgtdhrrke2w14o2-aYX39xcv5Pbx4--Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+learning+via+a+semi-supervised+stacked+distance+autoencoder+for+image+classification&rft.jtitle=Frontiers+of+information+technology+%26+electronic+engineering&rft.au=Hou%2C+Liang&rft.au=Luo%2C+Xiao-yi&rft.au=Wang%2C+Zi-yang&rft.au=Liang%2C+Jun&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-9184&rft.eissn=2095-9230&rft.volume=21&rft.issue=7&rft.spage=1005&rft.epage=1018&rft_id=info:doi/10.1631%2FFITEE.1900116
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxbc-e%2Fzjdxxbc-e.jpg