A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation
Predictive hotspot mapping plays a critical role in hotspot policing. Existing methods such as the popular kernel density estimation (KDE) do not consider the temporal dimension of crime. Building upon recent works in related fields, this article proposes a spatio-temporal framework for predictive h...
Gespeichert in:
| Veröffentlicht in: | Applied geography (Sevenoaks) Jg. 99; S. 89 - 97 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.10.2018
|
| Schlagworte: | |
| ISSN: | 0143-6228, 1873-7730 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Predictive hotspot mapping plays a critical role in hotspot policing. Existing methods such as the popular kernel density estimation (KDE) do not consider the temporal dimension of crime. Building upon recent works in related fields, this article proposes a spatio-temporal framework for predictive hotspot mapping and evaluation. Comparing to existing work in this scope, the proposed framework has four major features: (1) a spatio-temporal kernel density estimation (STKDE) method is applied to include the temporal component in predictive hotspot mapping, (2) a data-driven optimization technique, the likelihood cross-validation, is used to select the most appropriate bandwidths, (3) a statistical significance test is designed to filter out false positives in the density estimates, and (4) a new metric, the predictive accuracy index (PAI) curve, is proposed to evaluate predictive hotspots at multiple areal scales. The framework is illustrated in a case study of residential burglaries in Baton Rouge, Louisiana in 2011, and the results validate its utility.
•Predictive hotspot mapping plays a critical role in hotspot policing.•A spatio-temporal kernel density estimation (STKDE) method is developed.•The likelihood cross-validation is used to select the best bandwidths in STKDE.•A statistical significance test filters out false hotspots.•The predictive accuracy index (PAI) curve evaluates predictive hotspots.•A case study examines residential burglaries in Baton Rouge, Louisiana in 2011. |
|---|---|
| AbstractList | Predictive hotspot mapping plays a critical role in hotspot policing. Existing methods such as the popular kernel density estimation (KDE) do not consider the temporal dimension of crime. Building upon recent works in related fields, this article proposes a spatio-temporal framework for predictive hotspot mapping and evaluation. Comparing to existing work in this scope, the proposed framework has four major features: (1) a spatio-temporal kernel density estimation (STKDE) method is applied to include the temporal component in predictive hotspot mapping, (2) a data-driven optimization technique, the likelihood cross-validation, is used to select the most appropriate bandwidths, (3) a statistical significance test is designed to filter out false positives in the density estimates, and (4) a new metric, the predictive accuracy index (PAI) curve, is proposed to evaluate predictive hotspots at multiple areal scales. The framework is illustrated in a case study of residential burglaries in Baton Rouge, Louisiana in 2011, and the results validate its utility. Predictive hotspot mapping plays a critical role in hotspot policing. Existing methods such as the popular kernel density estimation (KDE) do not consider the temporal dimension of crime. Building upon recent works in related fields, this article proposes a spatio-temporal framework for predictive hotspot mapping and evaluation. Comparing to existing work in this scope, the proposed framework has four major features: (1) a spatio-temporal kernel density estimation (STKDE) method is applied to include the temporal component in predictive hotspot mapping, (2) a data-driven optimization technique, the likelihood cross-validation, is used to select the most appropriate bandwidths, (3) a statistical significance test is designed to filter out false positives in the density estimates, and (4) a new metric, the predictive accuracy index (PAI) curve, is proposed to evaluate predictive hotspots at multiple areal scales. The framework is illustrated in a case study of residential burglaries in Baton Rouge, Louisiana in 2011, and the results validate its utility. •Predictive hotspot mapping plays a critical role in hotspot policing.•A spatio-temporal kernel density estimation (STKDE) method is developed.•The likelihood cross-validation is used to select the best bandwidths in STKDE.•A statistical significance test filters out false hotspots.•The predictive accuracy index (PAI) curve evaluates predictive hotspots.•A case study examines residential burglaries in Baton Rouge, Louisiana in 2011. |
| Author | Wang, Fahui Hu, Yujie Zhu, Haojie Guin, Cecile |
| Author_xml | – sequence: 1 givenname: Yujie orcidid: 0000-0001-5814-0805 surname: Hu fullname: Hu, Yujie organization: School of Geosciences, University of South Florida, Tampa, FL 33620-5550, USA – sequence: 2 givenname: Fahui surname: Wang fullname: Wang, Fahui email: fwang@lsu.edu organization: Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA – sequence: 3 givenname: Cecile surname: Guin fullname: Guin, Cecile organization: Office of Social Service Research and Development (OSSRD), School of Social Work, Louisiana State University, Baton Rouge, LA 70803, USA – sequence: 4 givenname: Haojie surname: Zhu fullname: Zhu, Haojie organization: Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA |
| BookMark | eNqFkEFrGzEQhUVJoU7af9CDjrmsOyOtV-seAiEkaSDQS3sWijTrytmVFEl2yL_vOu6phwQezOV9j-E7ZSchBmLsK8ISAbtv26VJG4qbpQDslzAH8ANbYK9ko5SEE7YAbGXTCdF_YqelbAGgXa1wwfwlL8lUH5tKU4rZjPyRcqCROwrF1xdOpfrp0Ah8yGai55gf-RAzT5mct9XvidvsJ-J_Yi0pVj6ZlHzYcBMcp70Zd6_0Z_ZxMGOhL__uGft9c_3r6kdz__P27uryvrFSrmsj29623Xo1yBYfug4QQAhyOAxSOYe9QbAPwgEpawn7loRxQilBnRjWpKQ8Y-fH3ZTj027-Xk--WBpHEyjuihZCqhV2qjtUvx-rNsdSMg3a-vr6bM3GjxpBH_zqrT761Qe_GuYAznD7H5xmCya_vIddHDGaHew9ZV2sp2Bnl5ls1S76twf-AiFGmzI |
| CitedBy_id | crossref_primary_10_1016_j_compenvurbsys_2024_102089 crossref_primary_10_1080_13504509_2024_2309573 crossref_primary_10_3390_su12229662 crossref_primary_10_32604_cmc_2024_056971 crossref_primary_10_1111_sjtg_12293 crossref_primary_10_1016_j_ijid_2021_04_030 crossref_primary_10_3390_vetsci9030135 crossref_primary_10_1146_annurev_criminol_051520_012342 crossref_primary_10_1007_s00477_023_02420_5 crossref_primary_10_1109_ACCESS_2021_3132501 crossref_primary_10_4000_belgeo_57113 crossref_primary_10_1016_j_engappai_2025_112123 crossref_primary_10_1016_j_aei_2023_102351 crossref_primary_10_1016_j_aap_2020_105509 crossref_primary_10_1080_00330124_2020_1844571 crossref_primary_10_3390_ijgi11030160 crossref_primary_10_1016_j_ecoinf_2019_101031 crossref_primary_10_1016_j_seps_2025_102297 crossref_primary_10_1007_s11707_022_0973_6 crossref_primary_10_1016_j_asr_2025_07_043 crossref_primary_10_1109_ACCESS_2023_3322361 crossref_primary_10_1016_j_jclepro_2024_143787 crossref_primary_10_3390_ijgi11100529 crossref_primary_10_1080_13658816_2024_2399144 crossref_primary_10_1016_j_compenvurbsys_2021_101680 crossref_primary_10_3390_agriculture12071043 crossref_primary_10_1016_j_cities_2023_104575 crossref_primary_10_1080_10632921_2024_2442962 crossref_primary_10_1007_s10668_025_06328_8 crossref_primary_10_1186_s40163_020_00116_7 crossref_primary_10_3390_d15040478 crossref_primary_10_3390_agronomy12020332 crossref_primary_10_3390_ijerph17113763 crossref_primary_10_3390_ijgi14100367 crossref_primary_10_18261_issn_2703_7045_2021_01_02 crossref_primary_10_1109_ACCESS_2020_3022808 crossref_primary_10_1007_s11196_024_10211_6 crossref_primary_10_1016_j_jsr_2024_02_009 crossref_primary_10_3233_JIFS_191547 crossref_primary_10_1080_15614263_2023_2183202 crossref_primary_10_1007_s42979_023_01816_y crossref_primary_10_1109_ACCESS_2021_3068306 crossref_primary_10_1007_s00168_023_01220_7 crossref_primary_10_3390_biology14030225 crossref_primary_10_1007_s13198_025_02953_8 crossref_primary_10_1007_s11116_020_10091_2 crossref_primary_10_3390_urbansci9090359 crossref_primary_10_1080_13658816_2024_2310118 crossref_primary_10_3390_math10224368 crossref_primary_10_1007_s11524_024_00957_6 crossref_primary_10_3390_ijerph18105426 crossref_primary_10_1109_ACCESS_2025_3592668 crossref_primary_10_3390_land14040876 crossref_primary_10_1016_j_eswa_2021_115231 crossref_primary_10_1111_issj_12478 crossref_primary_10_1007_s00704_025_05590_0 crossref_primary_10_1371_journal_pone_0294020 crossref_primary_10_1016_j_chemosphere_2023_139752 crossref_primary_10_1007_s11356_022_22697_3 crossref_primary_10_3390_ijerph18094498 crossref_primary_10_3390_su10114179 crossref_primary_10_1111_tgis_12806 crossref_primary_10_1145_3699515 crossref_primary_10_1111_cgf_13969 crossref_primary_10_1016_j_apgeog_2022_102840 crossref_primary_10_3390_ijgi10030152 crossref_primary_10_1007_s41870_023_01160_7 crossref_primary_10_1111_1468_5973_12321 crossref_primary_10_5753_reic_2025_6037 crossref_primary_10_1016_j_jtrangeo_2018_12_002 crossref_primary_10_1093_ej_ueab045 crossref_primary_10_1016_j_rsase_2025_101489 crossref_primary_10_1080_13658816_2020_1719495 crossref_primary_10_3390_ijgi9030160 crossref_primary_10_1007_s10661_022_10043_6 crossref_primary_10_1016_j_apgeog_2022_102712 crossref_primary_10_1016_j_ocecoaman_2021_106010 crossref_primary_10_1057_s41284_024_00433_5 crossref_primary_10_1016_j_compag_2023_107935 crossref_primary_10_3390_s19214654 crossref_primary_10_1145_3766549 crossref_primary_10_1007_s10940_025_09623_9 crossref_primary_10_1177_1471082X241264690 crossref_primary_10_3390_buildings12020247 crossref_primary_10_3390_su14127242 crossref_primary_10_3390_land11040587 crossref_primary_10_3390_ijgi11070400 crossref_primary_10_1177_2399808320965569 crossref_primary_10_3390_ani14050708 crossref_primary_10_3390_ijerph192114350 crossref_primary_10_1016_j_spasta_2024_100824 crossref_primary_10_1057_s41300_024_00222_7 crossref_primary_10_1016_j_jcrimjus_2019_101625 crossref_primary_10_1016_j_tourman_2023_104723 crossref_primary_10_3390_ijgi8030112 crossref_primary_10_1016_j_eswa_2021_116115 crossref_primary_10_1016_j_jdeveco_2022_102975 crossref_primary_10_1016_j_physa_2020_124196 crossref_primary_10_3390_ijgi12060209 crossref_primary_10_1016_j_resconrec_2025_108234 crossref_primary_10_1016_j_csda_2025_108238 |
| Cites_doi | 10.1111/j.1745-9125.2011.00240.x 10.1080/13658816.2010.511223 10.1525/sop.2010.53.1.127 10.2193/0022-541X(2006)70[641:LCVLSC]2.0.CO;2 10.1057/palgrave.sj.8350066 10.1016/j.dss.2014.02.003 10.1080/24694452.2017.1293500 10.1007/s11292-008-9055-3 10.1016/S0143-6228(01)00008-X 10.1109/TVCG.2009.100 10.1111/tgis.12076 10.1109/TC.1976.1674577 10.1080/00330124.2016.1157498 10.1137/1114019 10.1093/oxfordjournals.bjc.a048449 10.1016/j.apgeog.2015.03.014 10.2307/2094589 10.1109/TVCG.2014.2346926 10.1037/0022-3514.89.1.62 10.1080/13658810903289478 10.1111/cag.12091 10.1111/j.1467-9671.2010.01194.x 10.1016/j.csda.2005.06.019 10.1108/PIJPSM-04-2013-0039 10.1016/j.compenvurbsys.2005.07.009 10.1016/0098-3004(95)00020-9 10.1093/bjc/azh036 10.1016/S0169-2070(03)00092-X 10.1016/j.csda.2003.10.014 10.1016/j.apgeog.2017.06.011 10.1080/13658816.2013.871285 10.1080/03610929708831995 10.1371/journal.pone.0017381 10.1016/j.jtrangeo.2015.03.002 10.1198/jasa.2011.ap09546 10.1080/13658816.2016.1159684 10.1057/palgrave.sj.8350068 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apgeog.2018.08.001 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1873-7730 |
| EndPage | 97 |
| ExternalDocumentID | 10_1016_j_apgeog_2018_08_001 S0143622818300560 |
| GeographicLocations | Louisiana |
| GeographicLocations_xml | – name: Louisiana |
| GroupedDBID | --K --M .~1 0R~ 13V 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABVA AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABKBG ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACHRH ACNTT ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNSAS CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HMY HVGLF HZ~ IHE J1W KCYFY KOM LY9 M3Y M41 MO0 MVM N9A NHB O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SES SEW SPCBC SSA SSB SSJ SSO SSS SSZ T5K TN5 UHS WH7 WUQ ZCA ZY4 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-348c4695f341b66010022ed1ff37dd18a10cb2d0e7cce184e2ad2772e62f9e733 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445983100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-6228 |
| IngestDate | Sat Sep 27 17:15:53 EDT 2025 Tue Nov 18 21:52:41 EST 2025 Sat Nov 29 07:25:34 EST 2025 Fri Feb 23 02:45:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Significance test Predictive accuracy index (PAI) curve Spatio-temporal kernel density estimation (STKDE) Crime hotspot prediction Optimal bandwidth Residential burglary Baton rouge |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-348c4695f341b66010022ed1ff37dd18a10cb2d0e7cce184e2ad2772e62f9e733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5814-0805 |
| PQID | 2237516763 |
| PQPubID | 24069 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2237516763 crossref_citationtrail_10_1016_j_apgeog_2018_08_001 crossref_primary_10_1016_j_apgeog_2018_08_001 elsevier_sciencedirect_doi_10_1016_j_apgeog_2018_08_001 |
| PublicationCentury | 2000 |
| PublicationDate | October 2018 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied geography (Sevenoaks) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Scott (bib57) 1992 Silverman (bib59) 1986; Vol. 26 Peterson, Krivo (bib50) 2010 Chainey, Tompson, Uhlig (bib10) 2008; 21 Ratcliffe, Rengert (bib52) 2008; 21 Farrell, Pease (bib23) 1994; 34 Kikuchi, Desmond (bib40) 2010; 53 Kelsall, Diggle (bib39) 1998; 47 Hall (bib30) 1987 Zhang, King, Hyndman (bib63) 2006; 50 Jefferson (bib36) 2018; 108 Duin (bib17) 1976; 25 Nelson, Bromley, Thomas (bib48) 2001; 21 Eck (bib18) 1993; 25 Clarke, Eck (bib12) 2003 Brantingham, Brantingham (bib5) 1981 Ratcliffe (bib51) 2010 Reaves (bib54) 2010 Li, Racine (bib42) 2007 Chainey (bib9) 2013; 60 de Smith, Goodchild, Longley (bib60) 2009 Brunsdon, Corcoran, Higgs (bib7) 2007; 31 Hu, Miller, Li (bib33) 2014; 18 Felson, Clarke (bib25) 1998 Gorr, Olligschlaeger, Thompson (bib29) 2003; 19 Bernasco, Johnson, Ruiter (bib2) 2015; 60 Zhang, Chen, Liu, Racine, Ong, Chen (bib62) 2011; 6 Flaxman (bib26) 2014 Peters, Meng (bib49) 2014 Horne, Garton (bib32) 2006; 70 Demšar, Virrantaus (bib16) 2010; 24 Cohen, Felson (bib14) 1979 Brunsdon (bib6) 1995; 21 Eck, Chainey, Cameron, Leitner, Wilson (bib19) 2005 Hart, Zandbergen (bib31) 2014; 37 Bushman, Wang, Anderson (bib8) 2005; 89 Nakaya, Yano (bib47) 2010; 14 Fotheringham, Brunsdon, Charlton (bib27) 2000 Johnson, Bowers, Birks, Pease (bib38) 2009 Bowers, Johnson, Pease (bib3) 2004; 44 Farrell, Pease (bib24) 2014 Shah, Bell, Wilson (bib58) 2014; 58 Gerber (bib28) 2014; 61 Hu, Wang (bib34) 2015; 44 Roongpiboonsopit, Karimi (bib55) 2010; 24 Hu, Wang (bib35) 2016; 106 Malik, Maciejewski, Towers, McCullough, Ebert (bib45) 2014 Eck, Weisburd (bib21) 2015 Braga (bib4) 2007 Johnson (bib37) 2008; 4 Adepeju, Rosser, Cheng (bib1) 2016; 30 Wang, Hu, Wang, Li (bib61) 2017; 69 Rummens, Hardyns, Pauwels (bib56) 2017; 86 Maciejewski, Rudolph, Hafen, Abusalah, Yakout, Ouzzani (bib44) 2010; 16 Kulldorff (bib41) 1997; 26 Ratcliffe, Taniguchi, Groff, Wood (bib53) 2011; 49 Epanechnikov (bib22) 1969; 14 Lukasczyk, Maciejewski, Garth, Hagen (bib43) 2015, November Clark, Lawson (bib13) 2004; 47 Delmelle, Dony, Casas, Jia, Tang (bib15) 2014; 28 Eck, Weisburd (bib20) 1995; Vol. 4 Mohler, Short, Brantingham, Schoenberg, Tita (bib46) 2011; 106 Hu (10.1016/j.apgeog.2018.08.001_bib34) 2015; 44 Lukasczyk (10.1016/j.apgeog.2018.08.001_bib43) 2015 Gerber (10.1016/j.apgeog.2018.08.001_bib28) 2014; 61 Maciejewski (10.1016/j.apgeog.2018.08.001_bib44) 2010; 16 Jefferson (10.1016/j.apgeog.2018.08.001_bib36) 2018; 108 Peterson (10.1016/j.apgeog.2018.08.001_bib50) 2010 Zhang (10.1016/j.apgeog.2018.08.001_bib62) 2011; 6 Shah (10.1016/j.apgeog.2018.08.001_bib58) 2014; 58 Duin (10.1016/j.apgeog.2018.08.001_bib17) 1976; 25 Ratcliffe (10.1016/j.apgeog.2018.08.001_bib53) 2011; 49 Horne (10.1016/j.apgeog.2018.08.001_bib32) 2006; 70 Hu (10.1016/j.apgeog.2018.08.001_bib35) 2016; 106 Clarke (10.1016/j.apgeog.2018.08.001_bib12) 2003 Clark (10.1016/j.apgeog.2018.08.001_bib13) 2004; 47 de Smith (10.1016/j.apgeog.2018.08.001_bib60) 2009 Kikuchi (10.1016/j.apgeog.2018.08.001_bib40) 2010; 53 Kelsall (10.1016/j.apgeog.2018.08.001_bib39) 1998; 47 Hu (10.1016/j.apgeog.2018.08.001_bib33) 2014; 18 Bernasco (10.1016/j.apgeog.2018.08.001_bib2) 2015; 60 Brunsdon (10.1016/j.apgeog.2018.08.001_bib7) 2007; 31 Chainey (10.1016/j.apgeog.2018.08.001_bib9) 2013; 60 Reaves (10.1016/j.apgeog.2018.08.001_bib54) 2010 Eck (10.1016/j.apgeog.2018.08.001_bib20) 1995; Vol. 4 Johnson (10.1016/j.apgeog.2018.08.001_bib37) 2008; 4 Eck (10.1016/j.apgeog.2018.08.001_bib21) 2015 Roongpiboonsopit (10.1016/j.apgeog.2018.08.001_bib55) 2010; 24 Peters (10.1016/j.apgeog.2018.08.001_bib49) 2014 Bushman (10.1016/j.apgeog.2018.08.001_bib8) 2005; 89 Delmelle (10.1016/j.apgeog.2018.08.001_bib15) 2014; 28 Hall (10.1016/j.apgeog.2018.08.001_bib30) 1987 Epanechnikov (10.1016/j.apgeog.2018.08.001_bib22) 1969; 14 Adepeju (10.1016/j.apgeog.2018.08.001_bib1) 2016; 30 Scott (10.1016/j.apgeog.2018.08.001_bib57) 1992 Silverman (10.1016/j.apgeog.2018.08.001_bib59) 1986; Vol. 26 Li (10.1016/j.apgeog.2018.08.001_bib42) 2007 Malik (10.1016/j.apgeog.2018.08.001_bib45) 2014 Ratcliffe (10.1016/j.apgeog.2018.08.001_bib51) 2010 Zhang (10.1016/j.apgeog.2018.08.001_bib63) 2006; 50 Flaxman (10.1016/j.apgeog.2018.08.001_bib26) 2014 Mohler (10.1016/j.apgeog.2018.08.001_bib46) 2011; 106 Brunsdon (10.1016/j.apgeog.2018.08.001_bib6) 1995; 21 Farrell (10.1016/j.apgeog.2018.08.001_bib23) 1994; 34 Felson (10.1016/j.apgeog.2018.08.001_bib25) 1998 Hart (10.1016/j.apgeog.2018.08.001_bib31) 2014; 37 Johnson (10.1016/j.apgeog.2018.08.001_bib38) 2009 Nelson (10.1016/j.apgeog.2018.08.001_bib48) 2001; 21 Chainey (10.1016/j.apgeog.2018.08.001_bib10) 2008; 21 Farrell (10.1016/j.apgeog.2018.08.001_bib24) 2014 Cohen (10.1016/j.apgeog.2018.08.001_bib14) 1979 Kulldorff (10.1016/j.apgeog.2018.08.001_bib41) 1997; 26 Brantingham (10.1016/j.apgeog.2018.08.001_bib5) 1981 Nakaya (10.1016/j.apgeog.2018.08.001_bib47) 2010; 14 Eck (10.1016/j.apgeog.2018.08.001_bib19) 2005 Demšar (10.1016/j.apgeog.2018.08.001_bib16) 2010; 24 Fotheringham (10.1016/j.apgeog.2018.08.001_bib27) 2000 Gorr (10.1016/j.apgeog.2018.08.001_bib29) 2003; 19 Rummens (10.1016/j.apgeog.2018.08.001_bib56) 2017; 86 Bowers (10.1016/j.apgeog.2018.08.001_bib3) 2004; 44 Ratcliffe (10.1016/j.apgeog.2018.08.001_bib52) 2008; 21 Wang (10.1016/j.apgeog.2018.08.001_bib61) 2017; 69 Braga (10.1016/j.apgeog.2018.08.001_bib4) 2007 Eck (10.1016/j.apgeog.2018.08.001_bib18) 1993; 25 |
| References_xml | – volume: 50 start-page: 3009 year: 2006 end-page: 3031 ident: bib63 article-title: A Bayesian approach to bandwidth selection for multivariate kernel density estimation publication-title: Computational Statistics & Data Analysis – volume: 18 start-page: 911 year: 2014 end-page: 935 ident: bib33 article-title: Detecting and analyzing mobility hotspots using surface networks publication-title: Transactions in GIS – volume: 108 start-page: 1 year: 2018 end-page: 16 ident: bib36 article-title: Predictable policing: Predictive crime mapping and geographies of policing and race publication-title: Annals of the American Association of Geographers – volume: 6 year: 2011 ident: bib62 article-title: Nonparametric evaluation of dynamic disease risk: A spatio-temporal kernel approach publication-title: PLoS One – volume: 106 start-page: 100 year: 2011 end-page: 108 ident: bib46 article-title: Self-exciting point process modeling of crime publication-title: Journal of the American Statistical Association – volume: 37 start-page: 305 year: 2014 end-page: 323 ident: bib31 article-title: Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting publication-title: Policing: An International Journal of Police Strategies & Management – volume: 21 start-page: 877 year: 1995 end-page: 894 ident: bib6 article-title: Estimating probability surfaces for geographical point data: An adaptive kernel algorithm publication-title: Computers & Geosciences – year: 1998 ident: bib25 article-title: Opportunity makes the thief. Police research series paper 98, policing and reducing crime unit. Research, Development and statistics directorate – year: 2014 ident: bib26 article-title: A general approach to prediction and forecasting crime rates with Gaussian processes – year: 2007 ident: bib42 article-title: Nonparametric econometrics: Theory and practice – year: 2015 ident: bib21 article-title: Crime places in crime theory – start-page: 36 year: 2015, November ident: bib43 article-title: Understanding hotspots: A topological visual analytics approach publication-title: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information Systems – volume: 26 start-page: 1481 year: 1997 end-page: 1496 ident: bib41 article-title: A spatial scan statistic publication-title: Communications in Statistics - Theory and Methods – volume: 14 start-page: 153 year: 1969 end-page: 158 ident: bib22 article-title: Non-parametric estimation of a multivariate probability density publication-title: Theory of Probability and Its Applications – volume: 31 start-page: 52 year: 2007 end-page: 75 ident: bib7 article-title: Visualising space and time in crime patterns: A comparison of methods publication-title: Computers, Environment and Urban Systems – volume: 47 start-page: 63 year: 2004 end-page: 78 ident: bib13 article-title: An evaluation of non-parametric relative risk estimators for disease maps publication-title: Computational Statistics & Data Analysis – volume: 30 start-page: 2133 year: 2016 end-page: 2154 ident: bib1 article-title: Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions-a crime case study publication-title: International Journal of Geographical Information Science – volume: Vol. 26 year: 1986 ident: bib59 publication-title: Density estimation for statistics and data analysis – volume: 106 start-page: 470 year: 2016 end-page: 479 ident: bib35 article-title: Temporal trends of intraurban commuting in Baton Rouge, 1990–2010 publication-title: Annals of the American Association of Geographers – volume: 21 start-page: 4 year: 2008 end-page: 28 ident: bib10 article-title: The utility of hotspot mapping for predicting spatial patterns of crime publication-title: Security Journal – year: 2009 ident: bib38 article-title: Predictive mapping of crime by ProMap: Accuracy, units of analysis, and the environmental backcloth. – year: 1992 ident: bib57 article-title: Multivariate density estimation: Theory, practice, and visualization – year: 2007 ident: bib4 article-title: Effects of hot spots policing on crime: A campbell collaboration systematic review – volume: 19 start-page: 579 year: 2003 end-page: 594 ident: bib29 article-title: Short-term forecasting of crime publication-title: International Journal of Forecasting – volume: 44 start-page: 641 year: 2004 end-page: 658 ident: bib3 article-title: Prospective hot-spotting: The future of crime mapping? publication-title: British Journal of Criminology – volume: 58 start-page: 400 year: 2014 end-page: 417 ident: bib58 article-title: Geocoding for public health research: Empirical comparison of two geocoding services applied to Canadian cities publication-title: The Canadian Geographer/Le Géographe Canadien – year: 2000 ident: bib27 article-title: Quantitative geography: Perspectives on spatial data analysis – volume: 86 start-page: 255 year: 2017 end-page: 261 ident: bib56 article-title: The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context publication-title: Applied Geography – year: 1981 ident: bib5 article-title: Environmental criminology – start-page: 5 year: 2010 end-page: 24 ident: bib51 article-title: Crime mapping: Spatial and temporal challenges publication-title: Handbook of quantitative criminology – start-page: 1863 year: 2014 end-page: 1872 ident: bib45 article-title: Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 34 start-page: 487 year: 1994 end-page: 498 ident: bib23 article-title: CRIM SEASONALITY: Domestic disputes and residential burglary in merseyside 1988–90 publication-title: The British Journal of Criminology – volume: 24 start-page: 1081 year: 2010 end-page: 1100 ident: bib55 article-title: Comparative evaluation and analysis of online geocoding services publication-title: International Journal of Geographical Information Science – volume: 89 start-page: 62 year: 2005 end-page: 66 ident: bib8 article-title: Is the curve relating temperature to aggression linear or curvilinear? Assaults and temperature in minneapolis reexamined publication-title: Journal of Personality and Social Psychology – volume: 44 start-page: 43 year: 2015 end-page: 52 ident: bib34 article-title: Decomposing excess commuting: A Monte Carlo simulation approach publication-title: Journal of Transport Geography – volume: 53 start-page: 127 year: 2010 end-page: 149 ident: bib40 article-title: A longitudinal analysis of neighborhood crime rates using latent growth curve modeling publication-title: Sociological Perspectives – year: 2009 ident: bib60 article-title: Geospatial analysis: A comprehensive guide to principles, techniques and software tools – start-page: 4371 year: 2014 end-page: 4381 ident: bib24 article-title: Repeat victimization publication-title: Encyclopedia of criminology and criminal justice – volume: 21 start-page: 249 year: 2001 end-page: 274 ident: bib48 article-title: Identifying micro-spatial and temporal patterns of violent crime and disorder in the British city centre publication-title: Applied Geography – volume: 60 start-page: 7 year: 2013 end-page: 19 ident: bib9 article-title: Examining the influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting spatial patterns of crime publication-title: Bulletin of the Geographical Society of Liege – volume: 4 start-page: 215 year: 2008 end-page: 240 ident: bib37 article-title: Repeat burglary victimisation: A tale of two theories publication-title: Journal of Experimental Criminology – start-page: 83 year: 2014 end-page: 88 ident: bib49 article-title: Spatio temporal density mapping of a dynamic phenomenon publication-title: GEOProcessing 2014: The sixth international conference on advanced geographic information Systems, applications, and services – year: 2010 ident: bib54 article-title: Local police departments, 2007 – start-page: 588 year: 1979 end-page: 608 ident: bib14 article-title: Social change and crime rate trends: A routine activity approach publication-title: American Sociological Review – volume: 70 start-page: 641 year: 2006 end-page: 648 ident: bib32 article-title: Likelihood cross-validation versus least squares cross-validation for choosing the smoothing parameter in kernel home-range analysis publication-title: Journal of Wildlife Management – volume: 25 start-page: 527 year: 1993 end-page: 546 ident: bib18 article-title: The threat of crime displacement publication-title: Criminal Justice Abstracts – volume: 61 start-page: 115 year: 2014 end-page: 125 ident: bib28 article-title: Predicting crime using Twitter and kernel density estimation publication-title: Decision Support Systems – volume: 28 start-page: 1107 year: 2014 end-page: 1127 ident: bib15 article-title: Visualizing the impact of space-time uncertainties on dengue fever patterns publication-title: International Journal of Geographical Information Science – volume: 25 start-page: 1175 year: 1976 end-page: 1179 ident: bib17 article-title: On the choice of smoothing parameters for Parzen estimators of probability density functions publication-title: IEEE Transactions on Computing C – volume: Vol. 4 year: 1995 ident: bib20 publication-title: Crime and place: Crime prevention studies – volume: 14 start-page: 223 year: 2010 end-page: 239 ident: bib47 article-title: Visualising crime clusters in a space-time cube: An exploratory data analysis approach using space-time kernel density estimation and scan statistics publication-title: Transactions in GIS – volume: 47 start-page: 559 year: 1998 end-page: 573 ident: bib39 article-title: Spatial variation in risk of disease: A nonparametric binary regression approach publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – volume: 16 start-page: 205 year: 2010 end-page: 220 ident: bib44 article-title: A visual analytics approach to understanding spatiotemporal hotspots publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 1491 year: 1987 end-page: 1519 ident: bib30 article-title: On Kullback-Leibler loss and density estimation publication-title: The Annals of Statistics – year: 2010 ident: bib50 article-title: Divergent social worlds: Neighborhood crime and the racial-spatial divide – volume: 60 start-page: 120 year: 2015 end-page: 129 ident: bib2 article-title: Learning where to offend: Effects of past on future burglary locations publication-title: Applied Geography – volume: 21 start-page: 58 year: 2008 end-page: 76 ident: bib52 article-title: Near-repeat patterns in Philadelphia shootings publication-title: Security Journal – year: 2005 ident: bib19 article-title: Mapping crime: Understanding hot spots – volume: 49 start-page: 795 year: 2011 end-page: 831 ident: bib53 article-title: The philadelphia foot patrol experiment: A randomized controlled trial of police patrol effectiveness in violent crime hotspots publication-title: Criminology – volume: 69 start-page: 22 year: 2017 end-page: 31 ident: bib61 article-title: Local indicator of colocation quotient with a statistical significance test: Examining spatial association of crime and facilities publication-title: The Professional Geographer – volume: 24 start-page: 1527 year: 2010 end-page: 1542 ident: bib16 article-title: Space–time density of trajectories: Exploring spatio-temporal patterns in movement data publication-title: International Journal of Geographical Information Science – year: 2003 ident: bib12 article-title: Become a problem-solving crime analyst: In 55 small steps – volume: 49 start-page: 795 issue: 3 year: 2011 ident: 10.1016/j.apgeog.2018.08.001_bib53 article-title: The philadelphia foot patrol experiment: A randomized controlled trial of police patrol effectiveness in violent crime hotspots publication-title: Criminology doi: 10.1111/j.1745-9125.2011.00240.x – year: 2009 ident: 10.1016/j.apgeog.2018.08.001_bib38 – volume: 24 start-page: 1527 issue: 10 year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib16 article-title: Space–time density of trajectories: Exploring spatio-temporal patterns in movement data publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2010.511223 – year: 2000 ident: 10.1016/j.apgeog.2018.08.001_bib27 – volume: 25 start-page: 527 issue: 3 year: 1993 ident: 10.1016/j.apgeog.2018.08.001_bib18 article-title: The threat of crime displacement publication-title: Criminal Justice Abstracts – volume: 53 start-page: 127 issue: 1 year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib40 article-title: A longitudinal analysis of neighborhood crime rates using latent growth curve modeling publication-title: Sociological Perspectives doi: 10.1525/sop.2010.53.1.127 – volume: 70 start-page: 641 issue: 3 year: 2006 ident: 10.1016/j.apgeog.2018.08.001_bib32 article-title: Likelihood cross-validation versus least squares cross-validation for choosing the smoothing parameter in kernel home-range analysis publication-title: Journal of Wildlife Management doi: 10.2193/0022-541X(2006)70[641:LCVLSC]2.0.CO;2 – volume: 21 start-page: 4 issue: 1 year: 2008 ident: 10.1016/j.apgeog.2018.08.001_bib10 article-title: The utility of hotspot mapping for predicting spatial patterns of crime publication-title: Security Journal doi: 10.1057/palgrave.sj.8350066 – start-page: 83 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib49 article-title: Spatio temporal density mapping of a dynamic phenomenon – volume: 60 start-page: 7 year: 2013 ident: 10.1016/j.apgeog.2018.08.001_bib9 article-title: Examining the influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting spatial patterns of crime publication-title: Bulletin of the Geographical Society of Liege – volume: 61 start-page: 115 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib28 article-title: Predicting crime using Twitter and kernel density estimation publication-title: Decision Support Systems doi: 10.1016/j.dss.2014.02.003 – volume: 47 start-page: 559 issue: 4 year: 1998 ident: 10.1016/j.apgeog.2018.08.001_bib39 article-title: Spatial variation in risk of disease: A nonparametric binary regression approach publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib54 – year: 2007 ident: 10.1016/j.apgeog.2018.08.001_bib4 – volume: 108 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.apgeog.2018.08.001_bib36 article-title: Predictable policing: Predictive crime mapping and geographies of policing and race publication-title: Annals of the American Association of Geographers doi: 10.1080/24694452.2017.1293500 – volume: 4 start-page: 215 issue: 3 year: 2008 ident: 10.1016/j.apgeog.2018.08.001_bib37 article-title: Repeat burglary victimisation: A tale of two theories publication-title: Journal of Experimental Criminology doi: 10.1007/s11292-008-9055-3 – volume: 21 start-page: 249 issue: 3 year: 2001 ident: 10.1016/j.apgeog.2018.08.001_bib48 article-title: Identifying micro-spatial and temporal patterns of violent crime and disorder in the British city centre publication-title: Applied Geography doi: 10.1016/S0143-6228(01)00008-X – year: 2009 ident: 10.1016/j.apgeog.2018.08.001_bib60 – volume: 16 start-page: 205 issue: 2 year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib44 article-title: A visual analytics approach to understanding spatiotemporal hotspots publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2009.100 – volume: 18 start-page: 911 issue: 6 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib33 article-title: Detecting and analyzing mobility hotspots using surface networks publication-title: Transactions in GIS doi: 10.1111/tgis.12076 – volume: 25 start-page: 1175 year: 1976 ident: 10.1016/j.apgeog.2018.08.001_bib17 article-title: On the choice of smoothing parameters for Parzen estimators of probability density functions publication-title: IEEE Transactions on Computing C doi: 10.1109/TC.1976.1674577 – year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib50 – start-page: 1491 year: 1987 ident: 10.1016/j.apgeog.2018.08.001_bib30 article-title: On Kullback-Leibler loss and density estimation publication-title: The Annals of Statistics – volume: 69 start-page: 22 issue: 1 year: 2017 ident: 10.1016/j.apgeog.2018.08.001_bib61 article-title: Local indicator of colocation quotient with a statistical significance test: Examining spatial association of crime and facilities publication-title: The Professional Geographer doi: 10.1080/00330124.2016.1157498 – volume: 14 start-page: 153 issue: 1 year: 1969 ident: 10.1016/j.apgeog.2018.08.001_bib22 article-title: Non-parametric estimation of a multivariate probability density publication-title: Theory of Probability and Its Applications doi: 10.1137/1114019 – start-page: 4371 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib24 article-title: Repeat victimization – year: 1998 ident: 10.1016/j.apgeog.2018.08.001_bib25 – volume: 34 start-page: 487 issue: 4 year: 1994 ident: 10.1016/j.apgeog.2018.08.001_bib23 article-title: CRIM SEASONALITY: Domestic disputes and residential burglary in merseyside 1988–90 publication-title: The British Journal of Criminology doi: 10.1093/oxfordjournals.bjc.a048449 – year: 2003 ident: 10.1016/j.apgeog.2018.08.001_bib12 – volume: 60 start-page: 120 year: 2015 ident: 10.1016/j.apgeog.2018.08.001_bib2 article-title: Learning where to offend: Effects of past on future burglary locations publication-title: Applied Geography doi: 10.1016/j.apgeog.2015.03.014 – start-page: 588 year: 1979 ident: 10.1016/j.apgeog.2018.08.001_bib14 article-title: Social change and crime rate trends: A routine activity approach publication-title: American Sociological Review doi: 10.2307/2094589 – start-page: 1863 issue: 12 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib45 article-title: Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2014.2346926 – volume: 89 start-page: 62 issue: 1 year: 2005 ident: 10.1016/j.apgeog.2018.08.001_bib8 article-title: Is the curve relating temperature to aggression linear or curvilinear? Assaults and temperature in minneapolis reexamined publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.89.1.62 – year: 1992 ident: 10.1016/j.apgeog.2018.08.001_bib57 – volume: 24 start-page: 1081 issue: 7 year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib55 article-title: Comparative evaluation and analysis of online geocoding services publication-title: International Journal of Geographical Information Science doi: 10.1080/13658810903289478 – volume: 58 start-page: 400 issue: 4 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib58 article-title: Geocoding for public health research: Empirical comparison of two geocoding services applied to Canadian cities publication-title: The Canadian Geographer/Le Géographe Canadien doi: 10.1111/cag.12091 – volume: 14 start-page: 223 issue: 3 year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib47 article-title: Visualising crime clusters in a space-time cube: An exploratory data analysis approach using space-time kernel density estimation and scan statistics publication-title: Transactions in GIS doi: 10.1111/j.1467-9671.2010.01194.x – volume: 50 start-page: 3009 issue: 11 year: 2006 ident: 10.1016/j.apgeog.2018.08.001_bib63 article-title: A Bayesian approach to bandwidth selection for multivariate kernel density estimation publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2005.06.019 – start-page: 36 year: 2015 ident: 10.1016/j.apgeog.2018.08.001_bib43 article-title: Understanding hotspots: A topological visual analytics approach – volume: 37 start-page: 305 issue: 2 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib31 article-title: Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting publication-title: Policing: An International Journal of Police Strategies & Management doi: 10.1108/PIJPSM-04-2013-0039 – volume: 31 start-page: 52 issue: 1 year: 2007 ident: 10.1016/j.apgeog.2018.08.001_bib7 article-title: Visualising space and time in crime patterns: A comparison of methods publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2005.07.009 – volume: 21 start-page: 877 issue: 7 year: 1995 ident: 10.1016/j.apgeog.2018.08.001_bib6 article-title: Estimating probability surfaces for geographical point data: An adaptive kernel algorithm publication-title: Computers & Geosciences doi: 10.1016/0098-3004(95)00020-9 – volume: 44 start-page: 641 issue: 5 year: 2004 ident: 10.1016/j.apgeog.2018.08.001_bib3 article-title: Prospective hot-spotting: The future of crime mapping? publication-title: British Journal of Criminology doi: 10.1093/bjc/azh036 – volume: 19 start-page: 579 issue: 4 year: 2003 ident: 10.1016/j.apgeog.2018.08.001_bib29 article-title: Short-term forecasting of crime publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(03)00092-X – volume: 47 start-page: 63 issue: 1 year: 2004 ident: 10.1016/j.apgeog.2018.08.001_bib13 article-title: An evaluation of non-parametric relative risk estimators for disease maps publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2003.10.014 – volume: 106 start-page: 470 issue: 2 year: 2016 ident: 10.1016/j.apgeog.2018.08.001_bib35 article-title: Temporal trends of intraurban commuting in Baton Rouge, 1990–2010 publication-title: Annals of the American Association of Geographers – volume: 86 start-page: 255 year: 2017 ident: 10.1016/j.apgeog.2018.08.001_bib56 article-title: The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context publication-title: Applied Geography doi: 10.1016/j.apgeog.2017.06.011 – volume: Vol. 4 year: 1995 ident: 10.1016/j.apgeog.2018.08.001_bib20 – year: 2005 ident: 10.1016/j.apgeog.2018.08.001_bib19 – volume: 28 start-page: 1107 issue: 5 year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib15 article-title: Visualizing the impact of space-time uncertainties on dengue fever patterns publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2013.871285 – year: 2015 ident: 10.1016/j.apgeog.2018.08.001_bib21 – year: 2007 ident: 10.1016/j.apgeog.2018.08.001_bib42 – year: 1981 ident: 10.1016/j.apgeog.2018.08.001_bib5 – volume: 26 start-page: 1481 issue: 6 year: 1997 ident: 10.1016/j.apgeog.2018.08.001_bib41 article-title: A spatial scan statistic publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610929708831995 – volume: 6 issue: 3 year: 2011 ident: 10.1016/j.apgeog.2018.08.001_bib62 article-title: Nonparametric evaluation of dynamic disease risk: A spatio-temporal kernel approach publication-title: PLoS One doi: 10.1371/journal.pone.0017381 – volume: 44 start-page: 43 year: 2015 ident: 10.1016/j.apgeog.2018.08.001_bib34 article-title: Decomposing excess commuting: A Monte Carlo simulation approach publication-title: Journal of Transport Geography doi: 10.1016/j.jtrangeo.2015.03.002 – volume: 106 start-page: 100 issue: 493 year: 2011 ident: 10.1016/j.apgeog.2018.08.001_bib46 article-title: Self-exciting point process modeling of crime publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2011.ap09546 – volume: 30 start-page: 2133 issue: 11 year: 2016 ident: 10.1016/j.apgeog.2018.08.001_bib1 article-title: Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions-a crime case study publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2016.1159684 – volume: 21 start-page: 58 issue: 1–2 year: 2008 ident: 10.1016/j.apgeog.2018.08.001_bib52 article-title: Near-repeat patterns in Philadelphia shootings publication-title: Security Journal doi: 10.1057/palgrave.sj.8350068 – year: 2014 ident: 10.1016/j.apgeog.2018.08.001_bib26 – volume: Vol. 26 year: 1986 ident: 10.1016/j.apgeog.2018.08.001_bib59 – start-page: 5 year: 2010 ident: 10.1016/j.apgeog.2018.08.001_bib51 article-title: Crime mapping: Spatial and temporal challenges |
| SSID | ssj0004551 |
| Score | 2.5535853 |
| Snippet | Predictive hotspot mapping plays a critical role in hotspot policing. Existing methods such as the popular kernel density estimation (KDE) do not consider the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 89 |
| SubjectTerms | Baton rouge case studies crime Crime hotspot prediction Louisiana Optimal bandwidth Predictive accuracy index (PAI) curve Residential burglary Significance test Spatio-temporal kernel density estimation (STKDE) |
| Title | A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation |
| URI | https://dx.doi.org/10.1016/j.apgeog.2018.08.001 https://www.proquest.com/docview/2237516763 |
| Volume | 99 |
| WOSCitedRecordID | wos000445983100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004551 issn: 0143-6228 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZO9hexq6su6HB2Itx8V3WYyjJshGywVIIexGKLDdJU9tL4tIfsB--I0uys5bR7mEvJjhS7Ph8PjpH-vQdhD6Ag0vSLEzcENy_G-U0dbmgvis9Dq9WTiKRNSKuYzKZpLMZ_dbr_bJ7YS7XpCjSqyta_VdTwzkwtto6-w_mbn8UTsBnMDocwexwvJPh-862YUm7RnVq7ZzLTSHXTqa46hBzK12NC8MxtNSshm1YbdSqTcMlEkr131mUO8h6d84Fryq7mbGTB9-Pa20weyaNBLaKXL8rdaiSn2_3phtGdeP069WyWxQyU9ZDvqiXLR-o1uIGJ1Is123TH4um-4iXtr-ZsPDTlvrWzWGGbhKYPeHGCVPqVMcpdTVZ13hTXVzIjMv6mxseX08-rI55pf6h4uqljSarueIfAtuTr2x4Oh6z6WA2_Vj9dFXtMbVGbwqx3EOHAYkpuPfD_ufB7Mue6nys61qaG7dbMBue4M0L_y3EuTbYNxHM9DF6ZFIP3NeQeYJ6sniKHnyyFnuGln18DTpYQwcb6OAOOriFDgbo4A46uIEONtDBBjoYoIM76DxHp8PB9GTkmlIcrghDuoM3ORVRQuMcgp55opJ4iP1k5ud5SLLMT7nviXmQeZIIIf00kgHPAkjcZBLkVJIwfIEOirKQLxGG_NwLU8iio2AeeYTQOAv4PKZSQOoEw90RCu3TY8Lo1KtyKWtmCYkrpp85U8-cqSqqnn-E3LZXpXVabmlPrGGYiTV1DMkAWLf0fG_tyMAVq_U1Xsiy3jKItEnsJzBiv7pDm9foYfd2vEEHu00t36L74nK33G7eGQj-BoBQrlw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spatio-temporal+kernel+density+estimation+framework+for+predictive+crime+hotspot+mapping+and+evaluation&rft.jtitle=Applied+geography+%28Sevenoaks%29&rft.au=Hu%2C+Yujie&rft.au=Wang%2C+Fahui&rft.au=Guin%2C+Cecile&rft.au=Zhu%2C+Haojie&rft.date=2018-10-01&rft.issn=0143-6228&rft.volume=99+p.89-97&rft.spage=89&rft.epage=97&rft_id=info:doi/10.1016%2Fj.apgeog.2018.08.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-6228&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-6228&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-6228&client=summon |