A Noniterative Algorithm for the Multiproduct Production and Work Force Planning Problem
Discrete optimal control theory is used to develop an efficient noniterative algorithm for solving the multiproduct production and work force planning problems with a quadratic cost function. The quadratic cost models allow uncertainties to be handled directly because they minimize the expected cost...
Uloženo v:
| Vydáno v: | Operations research Ročník 40; číslo 3; s. 620 - 625 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum, MD
INFORMS
01.05.1992
Operations Research Society of America Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0030-364X, 1526-5463 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Discrete optimal control theory is used to develop an efficient noniterative algorithm for solving the multiproduct production and work force planning problems with a quadratic cost function. The quadratic cost models allow uncertainties to be handled directly because they minimize the expected cost if unbiased expected demand forecasts are given. A real-world problem may involve as many as 200,000 variables. The noniterative algorithm makes the computations, irrespective of the number of products, not only feasible but also extremely easy and efficient. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 |
| ISSN: | 0030-364X 1526-5463 |
| DOI: | 10.1287/opre.40.3.620 |