Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms

•The performance of bare soil images in different periods to predict soil organic matter (SOM) is different.•The performance of landsat-8 synthetic images in SOM mapping are better than sentinel-2 synthetic images.•The local regression method based on image partition algorithms can improve the accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catena (Giessen) Jg. 211; S. 106023
Hauptverfasser: Luo, Chong, Wang, Yiang, Zhang, Xinle, Zhang, Wenqi, Liu, Huanjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2022
Schlagworte:
ISSN:0341-8162, 1872-6887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The performance of bare soil images in different periods to predict soil organic matter (SOM) is different.•The performance of landsat-8 synthetic images in SOM mapping are better than sentinel-2 synthetic images.•The local regression method based on image partition algorithms can improve the accuracy of SOM mapping.•The mapping effect of SOM prediction model based on soil type partitioning is affected by the sample distribution. Accurate assessment of the spatial distribution of soil organic matter (SOM) is of great significance for regional sustainable development. However, due to the strong spatial variability in soil, there is still a lack of robust SOM mapping methods. The use of remote sensing satellite technology to map soil parameters has been effectively applied in many areas. Soil mapping in Northeast China with less cloud cover, higher planting intensity and longer bare soil period of cultivated land is expected. In this study, multiyear Landsat 8 and Sentinel-2 images of bare soil periods were used to generate median synthetic images according to different time intervals in Google Earth Engine (GEE). Then, the spectral index and image band were used as input variables, and the prediction accuracies of different combinations were evaluated by the random forest (RF) algorithm. Finally, the best combination of two partitioning methods (based on different soil types and cascade simple K-means clustering) was used for SOM prediction of local regression and mapping. The results show that 1) the best time window for SOM prediction in the Songnen Plain is in May, but precipitation will affect the prediction accuracy of SOM; 2) Sentinel-2 synthetic images are not superior to Landsat 8 synthetic images for SOM mapping, although Sentinel-2 has better temporal and spatial resolution; and 3) compared with the global regression model, the local regression method based on two partitioning methods can improve the accuracy of SOM mapping, but the actual mapping effect based on the soil type partitioning algorithms is affected by the distribution of soil samples. This study extends the application of GEE to soil mapping and improve the accuracy of large-scale regional SOM mapping by partitioning images.
AbstractList Accurate assessment of the spatial distribution of soil organic matter (SOM) is of great significance for regional sustainable development. However, due to the strong spatial variability in soil, there is still a lack of robust SOM mapping methods. The use of remote sensing satellite technology to map soil parameters has been effectively applied in many areas. Soil mapping in Northeast China with less cloud cover, higher planting intensity and longer bare soil period of cultivated land is expected. In this study, multiyear Landsat 8 and Sentinel-2 images of bare soil periods were used to generate median synthetic images according to different time intervals in Google Earth Engine (GEE). Then, the spectral index and image band were used as input variables, and the prediction accuracies of different combinations were evaluated by the random forest (RF) algorithm. Finally, the best combination of two partitioning methods (based on different soil types and cascade simple K-means clustering) was used for SOM prediction of local regression and mapping. The results show that 1) the best time window for SOM prediction in the Songnen Plain is in May, but precipitation will affect the prediction accuracy of SOM; 2) Sentinel-2 synthetic images are not superior to Landsat 8 synthetic images for SOM mapping, although Sentinel-2 has better temporal and spatial resolution; and 3) compared with the global regression model, the local regression method based on two partitioning methods can improve the accuracy of SOM mapping, but the actual mapping effect based on the soil type partitioning algorithms is affected by the distribution of soil samples. This study extends the application of GEE to soil mapping and improve the accuracy of large-scale regional SOM mapping by partitioning images.
•The performance of bare soil images in different periods to predict soil organic matter (SOM) is different.•The performance of landsat-8 synthetic images in SOM mapping are better than sentinel-2 synthetic images.•The local regression method based on image partition algorithms can improve the accuracy of SOM mapping.•The mapping effect of SOM prediction model based on soil type partitioning is affected by the sample distribution. Accurate assessment of the spatial distribution of soil organic matter (SOM) is of great significance for regional sustainable development. However, due to the strong spatial variability in soil, there is still a lack of robust SOM mapping methods. The use of remote sensing satellite technology to map soil parameters has been effectively applied in many areas. Soil mapping in Northeast China with less cloud cover, higher planting intensity and longer bare soil period of cultivated land is expected. In this study, multiyear Landsat 8 and Sentinel-2 images of bare soil periods were used to generate median synthetic images according to different time intervals in Google Earth Engine (GEE). Then, the spectral index and image band were used as input variables, and the prediction accuracies of different combinations were evaluated by the random forest (RF) algorithm. Finally, the best combination of two partitioning methods (based on different soil types and cascade simple K-means clustering) was used for SOM prediction of local regression and mapping. The results show that 1) the best time window for SOM prediction in the Songnen Plain is in May, but precipitation will affect the prediction accuracy of SOM; 2) Sentinel-2 synthetic images are not superior to Landsat 8 synthetic images for SOM mapping, although Sentinel-2 has better temporal and spatial resolution; and 3) compared with the global regression model, the local regression method based on two partitioning methods can improve the accuracy of SOM mapping, but the actual mapping effect based on the soil type partitioning algorithms is affected by the distribution of soil samples. This study extends the application of GEE to soil mapping and improve the accuracy of large-scale regional SOM mapping by partitioning images.
ArticleNumber 106023
Author Zhang, Wenqi
Liu, Huanjun
Wang, Yiang
Luo, Chong
Zhang, Xinle
Author_xml – sequence: 1
  givenname: Chong
  surname: Luo
  fullname: Luo, Chong
  email: luochong@iga.ac.cn
  organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 2
  givenname: Yiang
  surname: Wang
  fullname: Wang, Yiang
  email: 1376021909@qq.com
  organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 3
  givenname: Xinle
  surname: Zhang
  fullname: Zhang, Xinle
  email: zhangxinle@jlau.edu.cn
  organization: College of Information Technology, Jilin Agricultural University, Changchun 130118, China
– sequence: 4
  givenname: Wenqi
  surname: Zhang
  fullname: Zhang, Wenqi
  email: wenqi9094@163.com
  organization: School of Economics and Management, Jilin Agricultural University, Changchun 130118, China
– sequence: 5
  givenname: Huanjun
  surname: Liu
  fullname: Liu, Huanjun
  email: huanjunliu@yeah.net
  organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
BookMark eNqFkU9P3DAQxS1EJRbKN-DgI5cs_pM4hkOlChWKhNRD27M1OOPFq8RObW-l_fY4CqceyulJo_fejH5zTk5DDEjIFWdbzri62W8tFAywFUyIOlJMyBOy4boXjdK6PyUbJlveaK7EGTnPec8Ya_uOb0j4OUPxMNI54eBt8THQ6GiOfqQx7SB4SycoBRO1MdQlhR6yDzs6HcbijwiJ5mMor1iq0U-ww0whDHSGVPzStnhh3MXky-uUP5NPDsaMl-96QX4_fPt1_715_vH4dP_1ubFS3pZGaO169gLQSemUVkOVVjkFvXQW2dD1zrqBKT1YpjtlOWeDxb4TknMFCuUFuV575xT_HDAXM_lscRwhYDxkI5RUbUWgVLXerVabYs4JnbG-wHJ6SeBHw5lZIJu9WSGbBbJZIddw-094TpVCOn4U-7LGsDL46zGZbD0GW1-Q0BYzRP__gjdOOJ0a
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_117810
crossref_primary_10_1002_agj2_21525
crossref_primary_10_1016_j_rse_2024_114592
crossref_primary_10_1109_ACCESS_2023_3288814
crossref_primary_10_1007_s40333_023_0094_4
crossref_primary_10_12791_KSBEC_2024_33_4_352
crossref_primary_10_1016_j_rse_2022_113166
crossref_primary_10_3390_rs15123191
crossref_primary_10_1016_j_compag_2023_108466
crossref_primary_10_3390_rs16152731
crossref_primary_10_1016_j_catena_2023_107336
crossref_primary_10_1038_s41598_024_68424_5
crossref_primary_10_3390_rs14071701
crossref_primary_10_3390_agronomy14051067
crossref_primary_10_3390_rs14102295
crossref_primary_10_1007_s11368_025_04072_0
crossref_primary_10_1016_j_compag_2023_107928
crossref_primary_10_1016_j_still_2024_106270
crossref_primary_10_3390_rs17030553
crossref_primary_10_3390_rs17152547
crossref_primary_10_1016_j_still_2024_106358
crossref_primary_10_3390_agriculture14122145
crossref_primary_10_3390_app15148060
crossref_primary_10_1016_j_envres_2023_117570
crossref_primary_10_1016_j_geoderma_2022_115959
crossref_primary_10_1109_JSTARS_2023_3267102
crossref_primary_10_1016_j_isprsjprs_2023_06_003
crossref_primary_10_1016_j_eswa_2023_121469
crossref_primary_10_1016_j_isprsjprs_2023_07_020
crossref_primary_10_1016_j_catena_2023_107228
crossref_primary_10_3390_su15010469
crossref_primary_10_1016_j_catena_2024_107821
crossref_primary_10_1016_j_catena_2024_108014
crossref_primary_10_3389_fenvs_2024_1420557
crossref_primary_10_1016_j_compag_2023_107668
crossref_primary_10_3390_su15010323
Cites_doi 10.1111/ejss.12272
10.1016/j.catena.2014.09.004
10.1016/j.rse.2016.02.016
10.1016/j.rse.2020.112117
10.1038/nature10386
10.1021/ci034160g
10.1016/j.rse.2017.03.026
10.1016/S2095-3119(19)62871-6
10.18637/jss.v036.i03
10.1016/j.geoderma.2016.10.033
10.2136/sssaj1992.03615995005600030031x
10.1016/j.aasci.2016.09.015
10.1023/A:1010933404324
10.1016/j.jrurstud.2019.12.013
10.1016/j.still.2019.104544
10.1016/S0167-1987(02)00018-1
10.1016/j.rse.2016.03.025
10.3390/rs11242947
10.1016/j.rse.2018.04.047
10.1016/j.scitotenv.2020.137703
10.3390/rs10020352
10.1016/j.rse.2017.06.031
10.1016/j.geoderma.2019.04.003
10.13031/2013.31826
10.1016/j.geoderma.2019.07.010
10.1016/j.rse.2017.06.019
10.1016/j.rse.2014.12.014
10.1016/j.geoderma.2019.113896
10.1016/j.catena.2020.104703
10.3390/rs9121245
10.1016/j.rse.2018.10.031
10.1016/j.catena.2019.104259
10.1109/JSTARS.2020.3021052
10.1016/j.rse.2011.11.026
10.1016/j.agrformet.2015.12.062
10.1007/s10661-017-5881-y
10.1016/j.soilbio.2013.10.022
10.1007/s10661-008-0385-4
10.1016/j.geoderma.2018.01.023
10.2136/sssaj1999.03615995006300020010x
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.catena.2022.106023
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Sciences (General)
EISSN 1872-6887
ExternalDocumentID 10_1016_j_catena_2022_106023
S0341816222000091
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-288f70baa533f686d33f46f6a73fce0d57fcfd068dc0856c110dce7523116a6e3
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790443600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0341-8162
IngestDate Wed Oct 01 14:30:45 EDT 2025
Tue Nov 18 21:35:25 EST 2025
Sat Nov 29 07:23:11 EST 2025
Fri Feb 23 02:40:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Partitioning
Soil Organic Matter
Google Earth Engine
Multiyear synthetic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-288f70baa533f686d33f46f6a73fce0d57fcfd068dc0856c110dce7523116a6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636404766
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636404766
crossref_citationtrail_10_1016_j_catena_2022_106023
crossref_primary_10_1016_j_catena_2022_106023
elsevier_sciencedirect_doi_10_1016_j_catena_2022_106023
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Catena (Giessen)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Zhang, Zhang (b0120) 2009; 154
Vaudour, Gilliot, Bel, Lefevre, Chehdi (b0200) 2016; 49
Calinski, Harabasz (b0025) 1974; 3
Dong, Xiao, Menarguez, Zhang, Qin, Thau, Biradar, Moore (b0055) 2016; 185
Doxani, Vermote, Roger, Gascon, Adriaensen, Frantz, Hagolle, Hollstein, Kirches, Li, Louis, Mangin, Pahlevan, Pflug, Vanhellemont (b0065) 2018; 10
Demattê, Garcia (b0040) 1999; 63
Amani, Ghorbanian, Ahmadi, Kakooei, Moghimi, Mirmazloumi, Moghaddam, Mahdavi, Ghahremanloo, Parsian, Wu, Brisco (b0005) 2020; 13
Stevens, Ramirez-Lopez (b0185) 2014
Obalum, Chibuike, Peth, Ouyang (b0155) 2017; 189
Zhang, Liu, Zhang, Yu, Dou, Xie, Wang (b0225) 2018; 320
Žížala, Minařík, Zádorová (b0235) 2019; 11
Yang, Zhang, Xu, Shao, Wang, Liu, Wu, Ma, Bao, Zhang, Liu (b0220) 2020; 184
Demattê, Fongaro, Rizzo, Safanelli (b0045) 2018; 212
Fathololoumi, Vaezi, Alavipanah, Ghorbani, Saurette, Biswas (b0085) 2020; 721
Henderson, Baumgardner, Franzmeier, Stott, Coster (b0110) 1992; 56
Jin, Du, Liu, Wang, Song (b0115) 2016; 218-219
Shonk, Gaultney, Schulze, Van Scoyoc (b0175) 1991; 34
Foga, Scaramuzza, Guo, Zhu, Dilley, Beckmann, Schmidt, Dwyer, Joseph Hughes, Laue (b0090) 2017; 194
Franzluebbers (b0095) 2002; 66
Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (b0190) 2003; 43
Zhu, Wang, Woodcock (b0230) 2015; 159
Castaldi, Palombo, Santini, Pascucci, Pignatti, Casa (b0030) 2016; 179
Meng, Bao, Liu, Liu, Zhang, Zhang, Wang, Tang, Kong (b0140) 2020; 89
WRB, I.W.G., 2006. World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Reports 103.
Griffiths, Nendel, Hostert (b0105) 2019; 220
Conforti, Castrignanò, Robustelli, Scarciglia, Stelluti, Buttafuoco (b0035) 2015; 124
Silvero, Demattê, Amorim, Santos, Rizzo, Safanelli, Poppiel, Mendes, Bonfatti (b0180) 2021; 252
Dou, Wang, Liu, Zhang, Meng, Pan, Yu, Cui (b0060) 2019; 356
Nocita, Stevens, Toth, Panagos, van Wesemael, Montanarella (b0150) 2014; 68
Bao, Wu, Ye, Yang, Zhou (b0010) 2017; 288
Roy, Li, Zhang, Yan, Huang, Li (b0160) 2017; 199
Shi, Ji, Viscarra Rossel, Chen, Zhou (b0170) 2015; 66
Viechtbauer (b0205) 2010; 36
Luo, Liu, Fu, Guan, Ye, Zhang, Kong (b0135) 2020; 19
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (b0100) 2017; 202
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (b0070) 2012; 120
Nelson, D.W., Sommers, L., 1974. A rapid and accurate procedure for estimation of organic carbon in soils, Proceedings of the Indiana Academy of Science, pp. 456–462.
Fang, Xu, Guo, Hong (b0080) 2020; 74
Liu, H.J., Ning, D.H., Kang, R., Jin, H.N., Zhang, X.L., Sheng, L., 2017. A study on predicting model of organic matter contend incorporating soil moisture variation. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 37, 566–570.
Diek, Fornallaz, Schaepman, De Jong (b0050) 2017; 9
Fan, Lal, Zhang, Margenot, Wu, Wu, Zhang, Yao, Chen, Gao (b0075) 2020; 198
Ward, Chabrillat, Neumann, Foerster (b0210) 2019; 353
Urushadze, Blum, Kvrivishvili (b0195) 2016; 14
Bao, Meng, Ustin, Wang, Zhang, Liu, Tang (b0015) 2020; 195
Liu, Shen, Chen, Zhao, Biswas, Jia, Shi, Fang (b0130) 2019; 348
Breiman (b0020) 2001; 45
Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (b0165) 2011; 478
Žížala (10.1016/j.catena.2022.106023_b0235) 2019; 11
Nocita (10.1016/j.catena.2022.106023_b0150) 2014; 68
Calinski (10.1016/j.catena.2022.106023_b0025) 1974; 3
Doxani (10.1016/j.catena.2022.106023_b0065) 2018; 10
Viechtbauer (10.1016/j.catena.2022.106023_b0205) 2010; 36
Diek (10.1016/j.catena.2022.106023_b0050) 2017; 9
Svetnik (10.1016/j.catena.2022.106023_b0190) 2003; 43
Silvero (10.1016/j.catena.2022.106023_b0180) 2021; 252
Bao (10.1016/j.catena.2022.106023_b0015) 2020; 195
Demattê (10.1016/j.catena.2022.106023_b0040) 1999; 63
Roy (10.1016/j.catena.2022.106023_b0160) 2017; 199
Bao (10.1016/j.catena.2022.106023_b0010) 2017; 288
Drusch (10.1016/j.catena.2022.106023_b0070) 2012; 120
Liu (10.1016/j.catena.2022.106023_b0120) 2009; 154
Vaudour (10.1016/j.catena.2022.106023_b0200) 2016; 49
Dou (10.1016/j.catena.2022.106023_b0060) 2019; 356
Castaldi (10.1016/j.catena.2022.106023_b0030) 2016; 179
Franzluebbers (10.1016/j.catena.2022.106023_b0095) 2002; 66
10.1016/j.catena.2022.106023_b0215
Fathololoumi (10.1016/j.catena.2022.106023_b0085) 2020; 721
Amani (10.1016/j.catena.2022.106023_b0005) 2020; 13
Henderson (10.1016/j.catena.2022.106023_b0110) 1992; 56
Zhang (10.1016/j.catena.2022.106023_b0225) 2018; 320
Zhu (10.1016/j.catena.2022.106023_b0230) 2015; 159
Dong (10.1016/j.catena.2022.106023_b0055) 2016; 185
Meng (10.1016/j.catena.2022.106023_b0140) 2020; 89
Ward (10.1016/j.catena.2022.106023_b0210) 2019; 353
Yang (10.1016/j.catena.2022.106023_b0220) 2020; 184
Shi (10.1016/j.catena.2022.106023_b0170) 2015; 66
Urushadze (10.1016/j.catena.2022.106023_b0195) 2016; 14
Demattê (10.1016/j.catena.2022.106023_b0045) 2018; 212
Foga (10.1016/j.catena.2022.106023_b0090) 2017; 194
Jin (10.1016/j.catena.2022.106023_b0115) 2016; 218-219
Liu (10.1016/j.catena.2022.106023_b0130) 2019; 348
Luo (10.1016/j.catena.2022.106023_b0135) 2020; 19
Stevens (10.1016/j.catena.2022.106023_b0185) 2014
Conforti (10.1016/j.catena.2022.106023_b0035) 2015; 124
Gorelick (10.1016/j.catena.2022.106023_b0100) 2017; 202
Griffiths (10.1016/j.catena.2022.106023_b0105) 2019; 220
Obalum (10.1016/j.catena.2022.106023_b0155) 2017; 189
10.1016/j.catena.2022.106023_b0145
Fan (10.1016/j.catena.2022.106023_b0075) 2020; 198
Fang (10.1016/j.catena.2022.106023_b0080) 2020; 74
Breiman (10.1016/j.catena.2022.106023_b0020) 2001; 45
Schmidt (10.1016/j.catena.2022.106023_b0165) 2011; 478
Shonk (10.1016/j.catena.2022.106023_b0175) 1991; 34
10.1016/j.catena.2022.106023_b0125
References_xml – volume: 252
  start-page: 112117
  year: 2021
  ident: b0180
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison
  publication-title: Remote Sens. Environ.
– volume: 721
  start-page: 137703
  year: 2020
  ident: b0085
  article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran
  publication-title: Sci. Total Environ.
– volume: 66
  start-page: 95
  year: 2002
  end-page: 106
  ident: b0095
  article-title: Soil organic matter stratification ratio as an indicator of soil quality
  publication-title: Soil Tillage Res.
– reference: WRB, I.W.G., 2006. World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Reports 103.
– volume: 288
  start-page: 47
  year: 2017
  end-page: 55
  ident: b0010
  article-title: Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory
  publication-title: Geoderma
– volume: 348
  start-page: 37
  year: 2019
  end-page: 44
  ident: b0130
  article-title: Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment
  publication-title: Geoderma
– volume: 179
  start-page: 54
  year: 2016
  end-page: 65
  ident: b0030
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
– volume: 356
  start-page: 113896
  year: 2019
  ident: b0060
  article-title: Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain
  publication-title: China. Geoderma
– volume: 14
  start-page: 351
  year: 2016
  end-page: 355
  ident: b0195
  article-title: Classification of soils on sediments, sedimentary and andesitic rocks in Georgia by the WRB system
  publication-title: Ann. Agrar. Sci.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: b0070
  article-title: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0020
  article-title: Random forests
  publication-title: Machine Learning
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: b0100
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 212
  start-page: 161
  year: 2018
  end-page: 175
  ident: b0045
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 352
  year: 2018
  ident: b0065
  article-title: Atmospheric Correction Inter-Comparison Exercise
  publication-title: Remote Sensing
– volume: 198
  start-page: 104544
  year: 2020
  ident: b0075
  article-title: Variability and determinants of soil organic matter under different land uses and soil types in eastern China
  publication-title: Soil Tillage Res.
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: b0165
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 184
  start-page: 104259
  year: 2020
  ident: b0220
  article-title: Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China
  publication-title: Catena
– volume: 9
  start-page: 1245
  year: 2017
  ident: b0050
  article-title: Barest Pixel Composite for Agricultural Areas Using Landsat Time Series
  publication-title: Remote Sensing
– volume: 89
  start-page: 102111
  year: 2020
  ident: b0140
  article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 43
  start-page: 1947
  year: 2003
  end-page: 1958
  ident: b0190
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
– reference: Liu, H.J., Ning, D.H., Kang, R., Jin, H.N., Zhang, X.L., Sheng, L., 2017. A study on predicting model of organic matter contend incorporating soil moisture variation. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 37, 566–570.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b0025
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 19
  start-page: 1885
  year: 2020
  end-page: 1896
  ident: b0135
  article-title: Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments
  publication-title: J. Integrative Agric.
– volume: 154
  start-page: 147
  year: 2009
  end-page: 154
  ident: b0120
  article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China
  publication-title: Environ. Monit. Assess.
– volume: 185
  start-page: 142
  year: 2016
  end-page: 154
  ident: b0055
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sens. Environ.
– volume: 320
  start-page: 12
  year: 2018
  end-page: 22
  ident: b0225
  article-title: Allocate soil individuals to soil classes with topsoil spectral characteristics and decision trees
  publication-title: Geoderma
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  ident: b0205
  article-title: Conducting Meta-Analyses in R with the metafor Package
  publication-title: J. Stat. Softw.
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: b0230
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 60
  year: 2015
  end-page: 67
  ident: b0035
  article-title: Laboratory-based Vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content
  publication-title: Catena
– volume: 218-219
  start-page: 250
  year: 2016
  end-page: 260
  ident: b0115
  article-title: Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model
  publication-title: Agric. For. Meteorol.
– volume: 13
  start-page: 5326
  year: 2020
  end-page: 5350
  ident: b0005
  article-title: Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 63
  start-page: 327
  year: 1999
  end-page: 342
  ident: b0040
  article-title: Alteration of Soil Properties through a Weathering Sequence as Evaluated by Spectral Reflectance
  publication-title: Soil Sci. Soc. Am. J.
– volume: 56
  start-page: 865
  year: 1992
  end-page: 872
  ident: b0110
  article-title: High dimensional reflectance analysis of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
– volume: 49
  start-page: 24
  year: 2016
  end-page: 38
  ident: b0200
  article-title: Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 220
  start-page: 135
  year: 2019
  end-page: 151
  ident: b0105
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
– volume: 66
  start-page: 679
  year: 2015
  end-page: 687
  ident: b0170
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library
  publication-title: Eur. J. Soil Sci.
– volume: 194
  start-page: 379
  year: 2017
  end-page: 390
  ident: b0090
  article-title: Cloud detection algorithm comparison and validation for operational Landsat data products
  publication-title: Remote Sens. Environ.
– volume: 195
  start-page: 104703
  year: 2020
  ident: b0015
  article-title: Vis-SWIR spectral prediction model for soil organic matter with different grouping strategies
  publication-title: CATENA
– volume: 34
  start-page: 1978
  year: 1991
  end-page: 1984
  ident: b0175
  article-title: Spectroscopic sensing of soil organic matter content
  publication-title: Trans. ASAE
– volume: 353
  start-page: 297
  year: 2019
  end-page: 307
  ident: b0210
  article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database
  publication-title: Geoderma
– volume: 11
  start-page: 2947
  year: 2019
  ident: b0235
  article-title: Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions
  publication-title: Remote Sens.
– volume: 189
  start-page: 176
  year: 2017
  ident: b0155
  article-title: Soil organic matter as sole indicator of soil degradation
  publication-title: Environ. Monit. Assess.
– volume: 74
  start-page: 111
  year: 2020
  end-page: 123
  ident: b0080
  article-title: Identifying determinants of straw open field burning in northeast China: Toward greening agriculture base in newly industrializing countries
  publication-title: J. Rural Stud.
– reference: Nelson, D.W., Sommers, L., 1974. A rapid and accurate procedure for estimation of organic carbon in soils, Proceedings of the Indiana Academy of Science, pp. 456–462.
– volume: 68
  start-page: 337
  year: 2014
  end-page: 347
  ident: b0150
  article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach
  publication-title: Soil Biol. Biochem.
– volume: 199
  start-page: 25
  year: 2017
  end-page: 38
  ident: b0160
  article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
– start-page: 3
  year: 2014
  ident: b0185
  article-title: An introduction to the prospectr package. R Package Vignette
  publication-title: Report No.: R Package Version
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.catena.2022.106023_b0025
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 66
  start-page: 679
  issue: 4
  year: 2015
  ident: 10.1016/j.catena.2022.106023_b0170
  article-title: Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12272
– volume: 124
  start-page: 60
  year: 2015
  ident: 10.1016/j.catena.2022.106023_b0035
  article-title: Laboratory-based Vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content
  publication-title: Catena
  doi: 10.1016/j.catena.2014.09.004
– volume: 185
  start-page: 142
  year: 2016
  ident: 10.1016/j.catena.2022.106023_b0055
  article-title: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.016
– volume: 252
  start-page: 112117
  year: 2021
  ident: 10.1016/j.catena.2022.106023_b0180
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112117
– volume: 478
  start-page: 49
  issue: 7367
  year: 2011
  ident: 10.1016/j.catena.2022.106023_b0165
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 43
  start-page: 1947
  year: 2003
  ident: 10.1016/j.catena.2022.106023_b0190
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– volume: 194
  start-page: 379
  year: 2017
  ident: 10.1016/j.catena.2022.106023_b0090
  article-title: Cloud detection algorithm comparison and validation for operational Landsat data products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.026
– volume: 19
  start-page: 1885
  issue: 7
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0135
  article-title: Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments
  publication-title: J. Integrative Agric.
  doi: 10.1016/S2095-3119(19)62871-6
– volume: 36
  start-page: 1
  year: 2010
  ident: 10.1016/j.catena.2022.106023_b0205
  article-title: Conducting Meta-Analyses in R with the metafor Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i03
– volume: 49
  start-page: 24
  year: 2016
  ident: 10.1016/j.catena.2022.106023_b0200
  article-title: Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 288
  start-page: 47
  year: 2017
  ident: 10.1016/j.catena.2022.106023_b0010
  article-title: Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.033
– volume: 56
  start-page: 865
  issue: 3
  year: 1992
  ident: 10.1016/j.catena.2022.106023_b0110
  article-title: High dimensional reflectance analysis of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030031x
– volume: 14
  start-page: 351
  issue: 4
  year: 2016
  ident: 10.1016/j.catena.2022.106023_b0195
  article-title: Classification of soils on sediments, sedimentary and andesitic rocks in Georgia by the WRB system
  publication-title: Ann. Agrar. Sci.
  doi: 10.1016/j.aasci.2016.09.015
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.catena.2022.106023_b0020
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 74
  start-page: 111
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0080
  article-title: Identifying determinants of straw open field burning in northeast China: Toward greening agriculture base in newly industrializing countries
  publication-title: J. Rural Stud.
  doi: 10.1016/j.jrurstud.2019.12.013
– volume: 198
  start-page: 104544
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0075
  article-title: Variability and determinants of soil organic matter under different land uses and soil types in eastern China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104544
– volume: 66
  start-page: 95
  issue: 2
  year: 2002
  ident: 10.1016/j.catena.2022.106023_b0095
  article-title: Soil organic matter stratification ratio as an indicator of soil quality
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(02)00018-1
– ident: 10.1016/j.catena.2022.106023_b0145
– volume: 179
  start-page: 54
  year: 2016
  ident: 10.1016/j.catena.2022.106023_b0030
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.025
– volume: 11
  start-page: 2947
  issue: 24
  year: 2019
  ident: 10.1016/j.catena.2022.106023_b0235
  article-title: Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions
  publication-title: Remote Sens.
  doi: 10.3390/rs11242947
– volume: 212
  start-page: 161
  year: 2018
  ident: 10.1016/j.catena.2022.106023_b0045
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.047
– volume: 721
  start-page: 137703
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0085
  article-title: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137703
– volume: 10
  start-page: 352
  issue: 3
  year: 2018
  ident: 10.1016/j.catena.2022.106023_b0065
  article-title: Atmospheric Correction Inter-Comparison Exercise
  publication-title: Remote Sensing
  doi: 10.3390/rs10020352
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.catena.2022.106023_b0100
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 348
  start-page: 37
  year: 2019
  ident: 10.1016/j.catena.2022.106023_b0130
  article-title: Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.003
– volume: 34
  start-page: 1978
  year: 1991
  ident: 10.1016/j.catena.2022.106023_b0175
  article-title: Spectroscopic sensing of soil organic matter content
  publication-title: Trans. ASAE
  doi: 10.13031/2013.31826
– volume: 353
  start-page: 297
  year: 2019
  ident: 10.1016/j.catena.2022.106023_b0210
  article-title: A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.010
– volume: 199
  start-page: 25
  year: 2017
  ident: 10.1016/j.catena.2022.106023_b0160
  article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.019
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.catena.2022.106023_b0230
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– volume: 356
  start-page: 113896
  year: 2019
  ident: 10.1016/j.catena.2022.106023_b0060
  article-title: Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain
  publication-title: China. Geoderma
  doi: 10.1016/j.geoderma.2019.113896
– volume: 195
  start-page: 104703
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0015
  article-title: Vis-SWIR spectral prediction model for soil organic matter with different grouping strategies
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104703
– volume: 9
  start-page: 1245
  year: 2017
  ident: 10.1016/j.catena.2022.106023_b0050
  article-title: Barest Pixel Composite for Agricultural Areas Using Landsat Time Series
  publication-title: Remote Sensing
  doi: 10.3390/rs9121245
– volume: 220
  start-page: 135
  year: 2019
  ident: 10.1016/j.catena.2022.106023_b0105
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.031
– volume: 184
  start-page: 104259
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0220
  article-title: Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104259
– volume: 13
  start-page: 5326
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0005
  article-title: Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3021052
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.catena.2022.106023_b0070
  article-title: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– ident: 10.1016/j.catena.2022.106023_b0215
– volume: 218-219
  start-page: 250
  year: 2016
  ident: 10.1016/j.catena.2022.106023_b0115
  article-title: Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.12.062
– volume: 189
  start-page: 176
  year: 2017
  ident: 10.1016/j.catena.2022.106023_b0155
  article-title: Soil organic matter as sole indicator of soil degradation
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-5881-y
– volume: 68
  start-page: 337
  year: 2014
  ident: 10.1016/j.catena.2022.106023_b0150
  article-title: Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.10.022
– volume: 89
  start-page: 102111
  year: 2020
  ident: 10.1016/j.catena.2022.106023_b0140
  article-title: Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 3
  issue: 1
  year: 2014
  ident: 10.1016/j.catena.2022.106023_b0185
  article-title: An introduction to the prospectr package. R Package Vignette
  publication-title: Report No.: R Package Version
– volume: 154
  start-page: 147
  issue: 1-4
  year: 2009
  ident: 10.1016/j.catena.2022.106023_b0120
  article-title: Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-008-0385-4
– volume: 320
  start-page: 12
  year: 2018
  ident: 10.1016/j.catena.2022.106023_b0225
  article-title: Allocate soil individuals to soil classes with topsoil spectral characteristics and decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.01.023
– volume: 63
  start-page: 327
  issue: 2
  year: 1999
  ident: 10.1016/j.catena.2022.106023_b0040
  article-title: Alteration of Soil Properties through a Weathering Sequence as Evaluated by Spectral Reflectance
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.03615995006300020010x
– ident: 10.1016/j.catena.2022.106023_b0125
SSID ssj0004751
Score 2.5402272
Snippet •The performance of bare soil images in different periods to predict soil organic matter (SOM) is different.•The performance of landsat-8 synthetic images in...
Accurate assessment of the spatial distribution of soil organic matter (SOM) is of great significance for regional sustainable development. However, due to the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106023
SubjectTerms agricultural land
algorithms
catenas
China
cloud cover
Google Earth Engine
Internet
Landsat
Multiyear synthetic
Partitioning
prediction
regression analysis
Soil Organic Matter
soil types
sustainable development
Title Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms
URI https://dx.doi.org/10.1016/j.catena.2022.106023
https://www.proquest.com/docview/2636404766
Volume 211
WOSCitedRecordID wos000790443600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqDgQviA0Q40tG4gGEghonsZ3HCY0BQhMSQ5SnyHVslilzStNO63_P-SNJtQoNkHhJI6uJ094v57vz3e8QeqGVnFFO00iQMo9SydKIKzqLZGz53rJYZkK7ZhPs-JhPp_nn0Wjd1cJc1MwYfnmZz_-rqGEMhG1LZ_9C3P1NYQDOQehwBLHD8Y8Eb5sM2zD4fGH3YDqDsG2qOrRwkq_PHammS1O3qQArFy9wqYVry-vTrg2YhZbJtToXlgPCkQnYqbrorah_NItqeRqoznumA7idcIGHylKSm40ww6eVj8meNmGpdEF8r2i-A0T7wT6CPa1MrbZGvynzs9oMVYCXO2S4uPjZVg2Nr9tK44jHQScrr4Y5IxHlYSkOepp4rbyl83344cwyfsKPfGMnhkE68XXMV9i0v9jp7GyEOPMYHOcdwrKcj9HOwYfD6cehqJa53p3943V1ly45cHuu39k1V1Z4Z7ac3EV3gr-BDzxOdtFImT1060gFpvI9dPPI9XaGs92g51v8MpCRv7qHTIATHuCEG40tnHCAE_ZwwgFO2MEJ93DCPZywhxMGOOFNOOEBTvfR13eHJ2_fR6FHRySTJF9GhHPNJjMhwG3Q8NKX8JFSTQVLtFSTMmNa6nJCeSnBuKcSrM1SKpaBWxFTQVXyAI1NY9RDhJlQschKcPdimdrdYqWUTnWuZ3muCeH7KOn-4UIGAnvbR6UuukzFs8LLpbByKbxc9lHUXzX3BC7XfJ91wiuCEeqNywLwds2VzztZF6Cj7cabMKpZtQWhCU0BUJQ--ue7P0a3h1fqCRovFyv1FN2QF8uqXTwL4P0FaQi8Cw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+organic+matter+content+using+multiyear+synthetic+images+and+partitioning+algorithms&rft.jtitle=Catena+%28Giessen%29&rft.au=Luo%2C+Chong&rft.au=Wang%2C+Yiang&rft.au=Zhang%2C+Xinle&rft.au=Zhang%2C+Wenqi&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=0341-8162&rft.eissn=1872-6887&rft.volume=211&rft_id=info:doi/10.1016%2Fj.catena.2022.106023&rft.externalDocID=S0341816222000091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon