Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD

Wind speed prediction is a crucial aspect in the utilization of wind energy. In this paper, a wind speed prediction model based on an outlier-robust ensemble deep random vector functional link network (ORedRVFL) and arithmetic optimization algorithm-optimized variational mode decomposition (AOA-VMD)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 296; s. 131173
Hlavní autoři: Zhang, Chu, Li, Zhengbo, Ge, Yida, Liu, Qianlong, Suo, Leiming, Song, Shihao, Peng, Tian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2024
Témata:
ISSN:0360-5442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wind speed prediction is a crucial aspect in the utilization of wind energy. In this paper, a wind speed prediction model based on an outlier-robust ensemble deep random vector functional link network (ORedRVFL) and arithmetic optimization algorithm-optimized variational mode decomposition (AOA-VMD) is designed. First, the penalty factor and the number of mode decompositions of VMD are optimized using the AOA algorithm and the original data are decomposed using the optimized VMD. Then the decomposed data is predicted using the ensemble deep random vector functional link network (edRVFL) model. The edRVFL uses rich intermediate features for the final decision, which can make the final result closer to the real data. In order to strengthen the anti-interference ability to the outliers, this paper robustly improves the edRVFL model, and the improved model is called ORedRVFL. ORedRVFL reduces the impact of outliers by introducing regularization and norm to balance the relationship between training error and weights. The experiments have proved that the model proposed in this paper outperforms other models in terms of anti-interference ability and prediction accuracy. •An outlier-robust edRVRFL prediction model is developed.•Use VMD to decompose the data and enhance the model prediction capability.•Fuzzy entropy is used as a criterion for data aggregation.•AOA optimizes the VMD hyperparameters to enhance the decomposition effect of VMD.
AbstractList Wind speed prediction is a crucial aspect in the utilization of wind energy. In this paper, a wind speed prediction model based on an outlier-robust ensemble deep random vector functional link network (ORedRVFL) and arithmetic optimization algorithm-optimized variational mode decomposition (AOA-VMD) is designed. First, the penalty factor and the number of mode decompositions of VMD are optimized using the AOA algorithm and the original data are decomposed using the optimized VMD. Then the decomposed data is predicted using the ensemble deep random vector functional link network (edRVFL) model. The edRVFL uses rich intermediate features for the final decision, which can make the final result closer to the real data. In order to strengthen the anti-interference ability to the outliers, this paper robustly improves the edRVFL model, and the improved model is called ORedRVFL. ORedRVFL reduces the impact of outliers by introducing regularization and norm to balance the relationship between training error and weights. The experiments have proved that the model proposed in this paper outperforms other models in terms of anti-interference ability and prediction accuracy.
Wind speed prediction is a crucial aspect in the utilization of wind energy. In this paper, a wind speed prediction model based on an outlier-robust ensemble deep random vector functional link network (ORedRVFL) and arithmetic optimization algorithm-optimized variational mode decomposition (AOA-VMD) is designed. First, the penalty factor and the number of mode decompositions of VMD are optimized using the AOA algorithm and the original data are decomposed using the optimized VMD. Then the decomposed data is predicted using the ensemble deep random vector functional link network (edRVFL) model. The edRVFL uses rich intermediate features for the final decision, which can make the final result closer to the real data. In order to strengthen the anti-interference ability to the outliers, this paper robustly improves the edRVFL model, and the improved model is called ORedRVFL. ORedRVFL reduces the impact of outliers by introducing regularization and norm to balance the relationship between training error and weights. The experiments have proved that the model proposed in this paper outperforms other models in terms of anti-interference ability and prediction accuracy. •An outlier-robust edRVRFL prediction model is developed.•Use VMD to decompose the data and enhance the model prediction capability.•Fuzzy entropy is used as a criterion for data aggregation.•AOA optimizes the VMD hyperparameters to enhance the decomposition effect of VMD.
ArticleNumber 131173
Author Peng, Tian
Li, Zhengbo
Ge, Yida
Liu, Qianlong
Suo, Leiming
Song, Shihao
Zhang, Chu
Author_xml – sequence: 1
  givenname: Chu
  surname: Zhang
  fullname: Zhang, Chu
  email: zhangchuhust@foxmail.com
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
– sequence: 2
  givenname: Zhengbo
  surname: Li
  fullname: Li, Zhengbo
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
– sequence: 3
  givenname: Yida
  surname: Ge
  fullname: Ge, Yida
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
– sequence: 4
  givenname: Qianlong
  surname: Liu
  fullname: Liu, Qianlong
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
– sequence: 5
  givenname: Leiming
  surname: Suo
  fullname: Suo, Leiming
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
– sequence: 6
  givenname: Shihao
  surname: Song
  fullname: Song, Shihao
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
– sequence: 7
  givenname: Tian
  orcidid: 0000-0002-1811-2313
  surname: Peng
  fullname: Peng, Tian
  email: husthydropt@126.com
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huai'an, 223003, China
BookMark eNqFkU1P3DAQhn2gUvnoP-DgI5ds7djJxj0grSgUJBCXtlfLHxPWS2IH2wHRX8FPxtv01EN78sia5x3NM0fowAcPCJ1SsqKEtp93K_AQH15XNan5ijJK1-wAHRLWkqrhvP6IjlLaEUKaTohD9Hbpt8ob5x9w2oaYqwxxxC_OW5wmAIunCNaZ7ILHWqXyUQrlcZjz4CBWMeg5ZQw-wagHwBZgwlF5G0b8DCaHiPvZ_-bVgAfnH7GH_BLiYxmSt3hzv6nClN3ofpXsn3dfT9CHXg0JPv15j9GPq8vvF9fV7f23m4vNbWUYE7miGgy3a91aLjhXpiv7rYUwbcNq0qu268BAz0VrmlYzrq0iQtAeWMtr3VjNjtHZkjvF8DRDynJ0ycAwKA9hTpLRhq0p6TpSWr8srSaGlCL00ris9ivlqNwgKZF79XInF_Vyr14u6gvM_4Kn6EYVX_-HnS8YFAfPxbRMxoE35RixaJU2uH8HvAOeM6c4
CitedBy_id crossref_primary_10_1016_j_neucom_2025_129491
crossref_primary_10_1016_j_est_2025_115392
crossref_primary_10_3390_en18164215
crossref_primary_10_1016_j_energy_2024_133826
crossref_primary_10_1007_s00477_025_02945_x
crossref_primary_10_3390_buildings15183367
crossref_primary_10_1016_j_compeleceng_2025_110219
crossref_primary_10_1016_j_compeleceng_2025_110517
crossref_primary_10_1016_j_enconman_2025_119819
crossref_primary_10_1016_j_renene_2025_123527
crossref_primary_10_1016_j_energy_2024_132161
crossref_primary_10_1016_j_swevo_2025_101977
crossref_primary_10_3390_pr13092888
crossref_primary_10_1016_j_eswa_2025_128523
crossref_primary_10_1016_j_measurement_2025_118194
crossref_primary_10_1016_j_apenergy_2024_124708
crossref_primary_10_3390_app14219650
crossref_primary_10_1016_j_measurement_2024_115328
crossref_primary_10_1016_j_renene_2024_121085
crossref_primary_10_1016_j_renene_2024_122191
crossref_primary_10_1016_j_compeleceng_2024_110040
crossref_primary_10_1016_j_enconman_2024_118821
crossref_primary_10_1088_1361_6501_adf65e
crossref_primary_10_1007_s43236_025_01134_x
crossref_primary_10_1016_j_energy_2024_132228
crossref_primary_10_1063_5_0245781
crossref_primary_10_3390_pr13061763
crossref_primary_10_1016_j_energy_2024_133978
crossref_primary_10_1016_j_compeleceng_2024_109820
crossref_primary_10_1016_j_oceaneng_2025_121422
crossref_primary_10_1016_j_ijhydene_2025_151304
crossref_primary_10_1016_j_energy_2024_132928
crossref_primary_10_1016_j_energy_2024_132152
crossref_primary_10_1016_j_enbuild_2024_115143
Cites_doi 10.1016/j.egyr.2023.05.034
10.1016/j.egyr.2022.08.271
10.1016/j.buildenv.2023.110446
10.1016/j.renene.2016.03.103
10.1016/j.asoc.2022.108814
10.1162/neco.1997.9.8.1735
10.1016/j.energy.2023.128947
10.1016/j.renene.2022.09.114
10.1016/j.renene.2022.12.123
10.1016/j.patcog.2021.107978
10.1016/j.cma.2020.113609
10.1016/j.renene.2020.09.109
10.1016/j.jclepro.2023.138386
10.1109/TSP.2013.2288675
10.1109/TNSRE.2007.897025
10.1016/j.energy.2021.119887
10.1016/j.energy.2023.127865
10.1016/j.renene.2018.02.092
10.1016/j.eswa.2023.119878
10.1016/j.energy.2022.123848
10.1016/j.ecoinf.2023.102270
10.1016/j.enconman.2018.10.089
10.1016/j.energy.2016.06.075
10.1016/j.energy.2022.126419
10.1016/j.enconman.2022.115815
10.1016/j.enconman.2021.114919
10.1016/j.energy.2022.124250
10.1016/j.energy.2023.127526
10.1016/j.egyr.2023.05.181
10.1016/j.renene.2016.08.009
10.1016/j.asoc.2018.01.030
10.1016/j.apenergy.2018.10.080
10.1016/j.neucom.2014.09.022
10.1016/j.enconman.2019.111889
10.1016/j.energy.2023.126738
10.1016/j.energy.2022.126283
10.1016/j.energy.2023.129588
10.1016/j.enconman.2021.115102
10.1016/j.enconman.2023.116760
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.131173
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_131173
S0360544224009460
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-1bec4d7b6d4944ac8360799c65320fa688ecef496c56b34bda0991fe3642b5db3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001227448200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 11:02:50 EDT 2025
Sat Nov 29 06:35:54 EST 2025
Tue Nov 18 22:25:27 EST 2025
Sat Sep 14 18:11:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Anti-interference ability
Arithmetic optimization algorithm
Wind speed prediction
Ensemble deep random vector functional link network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-1bec4d7b6d4944ac8360799c65320fa688ecef496c56b34bda0991fe3642b5db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1811-2313
PQID 3153710880
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153710880
crossref_citationtrail_10_1016_j_energy_2024_131173
crossref_primary_10_1016_j_energy_2024_131173
elsevier_sciencedirect_doi_10_1016_j_energy_2024_131173
PublicationCentury 2000
PublicationDate 2024-06-01
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiong, Meng, Xiong, Ma, Lou, Wang (bib2) 2022; 8
Liu, Mi, Li (bib5) 2018; 123
Li, Song, Wang, Wang, Jia (bib23) 2022; 251
Zheng, Lu, Zhou (bib11) 2023; 239
Joseph, Deo, Prasad, Salcedo-Sanz, Raj, Soar (bib14) 2023; 204
Wang, Zhu, Cheng, Zhou, Zhang, Xu (bib9) 2023; 420
Lin, Li, Shi, Sheng, Sun, Wang (bib29) 2023; 77
Chen, Wang, Xie, Yu (bib38) 2007; 15
Peng, Zhang, Zhou, Nazir (bib12) 2021; 221
Hu, Wang, Tao (bib22) 2021; 164
Yang, Guo, Huang (bib3) 2023; 282
Yaghoubirad, Azizi, Farajollahi, Ahmadi (bib10) 2023; 281
Yang, Zhou, Wu, Ding, Wang (bib30) 2022; 122
Zhang, Peng, Pan, Liu (bib31) 2019; 180
Zhang, Wang (bib15) 2023; 278
Qian, Pei, Zareipour, Chen (bib24) 2019; 235
Gao, Guo, Mei, Sha, Guo, Sun (bib28) 2023; 9
Dirk (bib34) 1999
Shi, Katuwal, Suganthan, Tanveer (bib35) 2021; 117
Hochreiter, Schmidhuber (bib40) 1997; 9
Wang, Zhang, Wu, Wang (bib4) 2016; 94
Hua, Zhang, Peng, Ji, Shahzad Nazir (bib6) 2022; 252
Jiang, Che, Wang (bib17) 2021; 250
Wang, Wu (bib25) 2016; 112
Soukissian, Karathanasi (bib33) 2016; 99
Suo, Peng, Song, Zhang, Wang, Fu (bib20) 2023; 276
Chung, Gulcehre, Cho, Bengio (bib41) 2014
Chakravarty, Demirhan, Baser (bib32) 2022; 266
Gao, Wang, Chen, Zhang, Zhou, Wu (bib8) 2023; 9
Yu, Niu, Gao, Wang, Sun, Li (bib27) 2023; 269
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (bib39) 2021; 376
Zhong, Xu, Xian, He, Zhai, Zhou (bib26) 2024; 286
Zhang, Luo (bib36) 2015; 151
Li, Lin, Tseng, Tan, Lim (bib1) 2018; 65
Wang, Zhu, Zhang, Cheng, Zhou (bib16) 2023; 265
Xiong, Peng, Tao, Zhang, Song, Nazir (bib19) 2023; 266
Zhang, Ma, Hua, Sun, Nazir, Peng (bib21) 2022; 254
Duan, Chang, Chen, Wang, Zuo, Bai (bib13) 2022; 200
Wahbah, Feng, El-Fouly, Zahawi (bib7) 2019; 199
Shang, Chen, Chen, Guo, Yang (bib18) 2023; 223
Dragomiretskiy, Zosso (bib37) 2014; 62
Shi (10.1016/j.energy.2024.131173_bib35) 2021; 117
Wang (10.1016/j.energy.2024.131173_bib16) 2023; 265
Shang (10.1016/j.energy.2024.131173_bib18) 2023; 223
Zhang (10.1016/j.energy.2024.131173_bib15) 2023; 278
Gao (10.1016/j.energy.2024.131173_bib28) 2023; 9
Suo (10.1016/j.energy.2024.131173_bib20) 2023; 276
Hu (10.1016/j.energy.2024.131173_bib22) 2021; 164
Abualigah (10.1016/j.energy.2024.131173_bib39) 2021; 376
Peng (10.1016/j.energy.2024.131173_bib12) 2021; 221
Soukissian (10.1016/j.energy.2024.131173_bib33) 2016; 99
Yaghoubirad (10.1016/j.energy.2024.131173_bib10) 2023; 281
Lin (10.1016/j.energy.2024.131173_bib29) 2023; 77
Duan (10.1016/j.energy.2024.131173_bib13) 2022; 200
Yu (10.1016/j.energy.2024.131173_bib27) 2023; 269
Dirk (10.1016/j.energy.2024.131173_bib34) 1999
Yang (10.1016/j.energy.2024.131173_bib3) 2023; 282
Zheng (10.1016/j.energy.2024.131173_bib11) 2023; 239
Zhang (10.1016/j.energy.2024.131173_bib31) 2019; 180
Zhang (10.1016/j.energy.2024.131173_bib21) 2022; 254
Zhang (10.1016/j.energy.2024.131173_bib36) 2015; 151
Zhong (10.1016/j.energy.2024.131173_bib26) 2024; 286
Hochreiter (10.1016/j.energy.2024.131173_bib40) 1997; 9
Wahbah (10.1016/j.energy.2024.131173_bib7) 2019; 199
Yang (10.1016/j.energy.2024.131173_bib30) 2022; 122
Li (10.1016/j.energy.2024.131173_bib1) 2018; 65
Li (10.1016/j.energy.2024.131173_bib23) 2022; 251
Wang (10.1016/j.energy.2024.131173_bib4) 2016; 94
Wang (10.1016/j.energy.2024.131173_bib9) 2023; 420
Xiong (10.1016/j.energy.2024.131173_bib19) 2023; 266
Chen (10.1016/j.energy.2024.131173_bib38) 2007; 15
Hua (10.1016/j.energy.2024.131173_bib6) 2022; 252
Chung (10.1016/j.energy.2024.131173_bib41) 2014
Wang (10.1016/j.energy.2024.131173_bib25) 2016; 112
Liu (10.1016/j.energy.2024.131173_bib5) 2018; 123
Qian (10.1016/j.energy.2024.131173_bib24) 2019; 235
Chakravarty (10.1016/j.energy.2024.131173_bib32) 2022; 266
Gao (10.1016/j.energy.2024.131173_bib8) 2023; 9
Joseph (10.1016/j.energy.2024.131173_bib14) 2023; 204
Jiang (10.1016/j.energy.2024.131173_bib17) 2021; 250
Dragomiretskiy (10.1016/j.energy.2024.131173_bib37) 2014; 62
Xiong (10.1016/j.energy.2024.131173_bib2) 2022; 8
References_xml – volume: 266
  year: 2023
  ident: bib19
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy
– volume: 112
  start-page: 208
  year: 2016
  end-page: 220
  ident: bib25
  article-title: On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation
  publication-title: Energy
– volume: 239
  year: 2023
  ident: bib11
  article-title: Weather image-based short-term dense wind speed forecast with a ConvLSTM-LSTM deep learning model
  publication-title: Build Environ
– volume: 65
  start-page: 333
  year: 2018
  end-page: 348
  ident: bib1
  article-title: A maximum power point tracking method for PV system with improved gravitational search algorithm
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 6114
  year: 2023
  end-page: 6134
  ident: bib8
  article-title: Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimization
  publication-title: Energy Rep
– volume: 251
  year: 2022
  ident: bib23
  article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD
  publication-title: Energy
– volume: 278
  year: 2023
  ident: bib15
  article-title: Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting
  publication-title: Energy
– volume: 235
  start-page: 939
  year: 2019
  end-page: 953
  ident: bib24
  article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications
  publication-title: Appl Energy
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: bib37
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
– volume: 250
  year: 2021
  ident: bib17
  article-title: Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial correlation
  publication-title: Energy Convers Manag
– volume: 180
  start-page: 338
  year: 2019
  end-page: 357
  ident: bib31
  article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine
  publication-title: Energy Convers Manag
– volume: 151
  start-page: 1519
  year: 2015
  end-page: 1527
  ident: bib36
  article-title: Outlier-robust extreme learning machine for regression problems
  publication-title: Neurocomputing
– volume: 266
  year: 2022
  ident: bib32
  article-title: Robust wind speed estimation with modified fuzzy regression functions with a noise cluster
  publication-title: Energy Convers Manag
– volume: 117
  year: 2021
  ident: bib35
  article-title: Random vector functional link neural network based ensemble deep learning
  publication-title: Pattern Recogn
– volume: 281
  year: 2023
  ident: bib10
  article-title: Deep learning-based multistep ahead wind speed and power generation forecasting using direct method
  publication-title: Energy Convers Manag
– start-page: 87
  year: 1999
  end-page: 97
  ident: bib34
  article-title: Random vector functional link (RVFL) networks
  publication-title: Neural networks for conditional probability estimation: forecasting beyond point predictions
– volume: 99
  start-page: 1287
  year: 2016
  end-page: 1298
  ident: bib33
  article-title: On the use of robust regression methods in wind speed assessment
  publication-title: Renew Energy
– volume: 276
  year: 2023
  ident: bib20
  article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm
  publication-title: Energy
– volume: 282
  year: 2023
  ident: bib3
  article-title: Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process
  publication-title: Energy
– volume: 265
  year: 2023
  ident: bib16
  article-title: A novel prediction model for wind power based on improved long short-term memory neural network
  publication-title: Energy
– volume: 223
  year: 2023
  ident: bib18
  article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism
  publication-title: Expert Syst Appl
– volume: 200
  start-page: 788
  year: 2022
  end-page: 808
  ident: bib13
  article-title: A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error
  publication-title: Renew Energy
– volume: 252
  year: 2022
  ident: bib6
  article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction
  publication-title: Energy Convers Manag
– volume: 221
  year: 2021
  ident: bib12
  article-title: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
  publication-title: Energy
– volume: 376
  year: 2021
  ident: bib39
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
– volume: 420
  year: 2023
  ident: bib9
  article-title: A novel wind power prediction model improved with feature enhancement and autoregressive error compensation
  publication-title: J Clean Prod
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: bib4
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
– volume: 8
  start-page: 11181
  year: 2022
  end-page: 11191
  ident: bib2
  article-title: Multi-branch wind power prediction based on optimized variational mode decomposition
  publication-title: Energy Rep
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib40
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 9
  start-page: 335
  year: 2023
  end-page: 344
  ident: bib28
  article-title: Short-term wind power forecasting based on SSA-VMD-LSTM
  publication-title: Energy Rep
– volume: 199
  year: 2019
  ident: bib7
  article-title: Wind speed probability density estimation using root-transformed local linear regression
  publication-title: Energy Convers Manag
– volume: 254
  year: 2022
  ident: bib21
  article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction
  publication-title: Energy
– volume: 286
  year: 2024
  ident: bib26
  article-title: DTTM: a deep temporal transfer model for ultra-short-term online wind power forecasting
  publication-title: Energy
– volume: 164
  start-page: 729
  year: 2021
  end-page: 751
  ident: bib22
  article-title: Wind speed forecasting based on variational mode decomposition and improved echo state network
  publication-title: Renew Energy
– volume: 122
  year: 2022
  ident: bib30
  article-title: Robustified extreme learning machine regression with applications in outlier-blended wind-speed forecasting
  publication-title: Appl Soft Comput
– volume: 15
  start-page: 266
  year: 2007
  end-page: 272
  ident: bib38
  article-title: Characterization of surface EMG signal based on fuzzy entropy
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 123
  start-page: 694
  year: 2018
  end-page: 705
  ident: bib5
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew Energy
– volume: 204
  start-page: 39
  year: 2023
  end-page: 58
  ident: bib14
  article-title: Near real-time wind speed forecast model with bidirectional LSTM networks
  publication-title: Renew Energy
– volume: 77
  year: 2023
  ident: bib29
  article-title: Forecasting of wind speed under wind-fire coupling scenarios by combining HS-VMD and AM-LSTM
  publication-title: Ecol Inf
– volume: 269
  year: 2023
  ident: bib27
  article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism
  publication-title: Energy
– year: 2014
  ident: bib41
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 9
  start-page: 6114
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib8
  article-title: Multi-step wind speed prediction based on LSSVM combined with ESMD and fractional-order beetle swarm optimization
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.05.034
– volume: 8
  start-page: 11181
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib2
  article-title: Multi-branch wind power prediction based on optimized variational mode decomposition
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.08.271
– volume: 239
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib11
  article-title: Weather image-based short-term dense wind speed forecast with a ConvLSTM-LSTM deep learning model
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2023.110446
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.energy.2024.131173_bib4
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 122
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib30
  article-title: Robustified extreme learning machine regression with applications in outlier-blended wind-speed forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108814
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.energy.2024.131173_bib40
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 282
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib3
  article-title: Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128947
– volume: 200
  start-page: 788
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib13
  article-title: A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.09.114
– volume: 204
  start-page: 39
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib14
  article-title: Near real-time wind speed forecast model with bidirectional LSTM networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.12.123
– volume: 117
  year: 2021
  ident: 10.1016/j.energy.2024.131173_bib35
  article-title: Random vector functional link neural network based ensemble deep learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.107978
– volume: 376
  year: 2021
  ident: 10.1016/j.energy.2024.131173_bib39
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 164
  start-page: 729
  year: 2021
  ident: 10.1016/j.energy.2024.131173_bib22
  article-title: Wind speed forecasting based on variational mode decomposition and improved echo state network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.09.109
– volume: 420
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib9
  article-title: A novel wind power prediction model improved with feature enhancement and autoregressive error compensation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.138386
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.energy.2024.131173_bib37
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 15
  start-page: 266
  issue: 2
  year: 2007
  ident: 10.1016/j.energy.2024.131173_bib38
  article-title: Characterization of surface EMG signal based on fuzzy entropy
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2007.897025
– volume: 221
  year: 2021
  ident: 10.1016/j.energy.2024.131173_bib12
  article-title: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119887
– volume: 278
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib15
  article-title: Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127865
– volume: 123
  start-page: 694
  year: 2018
  ident: 10.1016/j.energy.2024.131173_bib5
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.02.092
– volume: 223
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib18
  article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119878
– volume: 251
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib23
  article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123848
– volume: 77
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib29
  article-title: Forecasting of wind speed under wind-fire coupling scenarios by combining HS-VMD and AM-LSTM
  publication-title: Ecol Inf
  doi: 10.1016/j.ecoinf.2023.102270
– volume: 180
  start-page: 338
  year: 2019
  ident: 10.1016/j.energy.2024.131173_bib31
  article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.10.089
– volume: 112
  start-page: 208
  year: 2016
  ident: 10.1016/j.energy.2024.131173_bib25
  article-title: On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.075
– year: 2014
  ident: 10.1016/j.energy.2024.131173_bib41
– volume: 266
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib19
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126419
– volume: 266
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib32
  article-title: Robust wind speed estimation with modified fuzzy regression functions with a noise cluster
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.115815
– volume: 250
  year: 2021
  ident: 10.1016/j.energy.2024.131173_bib17
  article-title: Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial correlation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114919
– start-page: 87
  year: 1999
  ident: 10.1016/j.energy.2024.131173_bib34
  article-title: Random vector functional link (RVFL) networks
– volume: 254
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib21
  article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124250
– volume: 276
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib20
  article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127526
– volume: 9
  start-page: 335
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib28
  article-title: Short-term wind power forecasting based on SSA-VMD-LSTM
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.05.181
– volume: 99
  start-page: 1287
  year: 2016
  ident: 10.1016/j.energy.2024.131173_bib33
  article-title: On the use of robust regression methods in wind speed assessment
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.08.009
– volume: 65
  start-page: 333
  year: 2018
  ident: 10.1016/j.energy.2024.131173_bib1
  article-title: A maximum power point tracking method for PV system with improved gravitational search algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.01.030
– volume: 235
  start-page: 939
  year: 2019
  ident: 10.1016/j.energy.2024.131173_bib24
  article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.10.080
– volume: 151
  start-page: 1519
  year: 2015
  ident: 10.1016/j.energy.2024.131173_bib36
  article-title: Outlier-robust extreme learning machine for regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.022
– volume: 199
  year: 2019
  ident: 10.1016/j.energy.2024.131173_bib7
  article-title: Wind speed probability density estimation using root-transformed local linear regression
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111889
– volume: 269
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib27
  article-title: A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126738
– volume: 265
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib16
  article-title: A novel prediction model for wind power based on improved long short-term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126283
– volume: 286
  year: 2024
  ident: 10.1016/j.energy.2024.131173_bib26
  article-title: DTTM: a deep temporal transfer model for ultra-short-term online wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129588
– volume: 252
  year: 2022
  ident: 10.1016/j.energy.2024.131173_bib6
  article-title: Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115102
– volume: 281
  year: 2023
  ident: 10.1016/j.energy.2024.131173_bib10
  article-title: Deep learning-based multistep ahead wind speed and power generation forecasting using direct method
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2023.116760
SSID ssj0005899
Score 2.5742998
Snippet Wind speed prediction is a crucial aspect in the utilization of wind energy. In this paper, a wind speed prediction model based on an outlier-robust ensemble...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131173
SubjectTerms algorithms
Anti-interference ability
Arithmetic optimization algorithm
arithmetics
energy
Ensemble deep random vector functional link network
prediction
wind power
wind speed
Wind speed prediction
Title Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD
URI https://dx.doi.org/10.1016/j.energy.2024.131173
https://www.proquest.com/docview/3153710880
Volume 296
WOSCitedRecordID wos001227448200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvEwwmxgAZibcoVZs4Fz9WowgQDJAGKrxEsePQTG1StU2p-BX8Bf4p59i5kE0w9sBLFFmO6_Z8Pef4y7kQ8gzEHDrSk9g1wLOZ4J4tQt-3PTYKVOonXqqGutlEcHoaTqf8fa_3s86F2c6DPA93O778r6KGMRA2ps5eQ9zNojAA9yB0uILY4fpPgp_kM6yhgTTBDHxrG3Wv9S1DfnwJpgqrAiSZaRCOJiyxdDyyhZFBYCLtVSHK9caC061amKwqtbTAoCXFwtpqit9CW1hRiPj-18pNKLnhdMfvxnYBemiRfYe1P7193uH-TaYhljjdmaj6hodomOuTWdlECelQgy8zlX8VRRMppCnYz1lLJbzJShz6AEifF5UlrogMh7UBV00C1xAwwjrK2eG_q1esDWQ6n1zS_IaEOB8o_UUG-AGDdnq30PYFA9iEJdYRb-eRWSXCVSKzyg2y5wQeD_tkb_xqMn3dxhGFuklps_s6P1MHEV7ezZ_8nwuegHZvzu6Q_epcQscGT3dJT-UH5Fadtr4-IIeTNiUSJlY2YX2P_GgAR1vAUQQc1YCjLeCoBhyFmzinXcDRGnAUAUcN4KgBHG0BRxFwtAIcRcDRDuAoAO4--fhicnby0q76fNjSdfnGHoEeYUkg_IRxxmKJeUUB59LHpiVp7Iehkipl3JeeL1wmkhiONaNUuXB2Fl4i3EPSz4tcPSDUF8yPmSO5J102TIJQCE8OY8kEOLapCo-IW__6kayK4GMvlnn0N9kfEbt5ammKwFwxP6gFG1WOrHFQI0DrFU8-rXEQgZ7Hl3dxropyHbngmsBpAMztw2vu5pjcbv9uj0h_syrVY3JTbjfZevWkgvMvbmLRJQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+short-term+wind+speed+prediction+based+on+an+outlier-robust+ensemble+deep+random+vector+functional+link+network+with+AOA-optimized+VMD&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Chu&rft.au=Li%2C+Zhengbo&rft.au=Ge%2C+Yida&rft.au=Liu%2C+Qianlong&rft.date=2024-06-01&rft.issn=0360-5442&rft.volume=296&rft.spage=131173&rft_id=info:doi/10.1016%2Fj.energy.2024.131173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2024_131173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon