Two Expectation-Maximization algorithms for Boolean Factor Analysis

Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 130; s. 83 - 97
Hlavní autoři: Frolov, Alexander A., Husek, Dusan, Polyakov, Pavel Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 23.04.2014
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a general generative model of binary data for Boolean Factor Analysis and introduce two new Expectation-Maximization Boolean Factor Analysis algorithms which maximize the likelihood of a Boolean Factor Analysis solution. To show the maturity of our solutions we propose an informational measure of Boolean Factor Analysis efficiency. Using the so-called bars problem benchmark, we compare the efficiencies of the proposed algorithms to that of Dendritic Inhibition Neural Network, Maximal Causes Analysis, and Boolean Matrix Factorization. Last mentioned methods were taken as related methods as they are supposed to be the most efficient in bars problem benchmark. Then we discuss the peculiarities of the two methods we proposed and the three related methods in performing Boolean Factor Analysis.
AbstractList Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a general generative model of binary data for Boolean Factor Analysis and introduce two new Expectation-Maximization Boolean Factor Analysis algorithms which maximize the likelihood of a Boolean Factor Analysis solution. To show the maturity of our solutions we propose an informational measure of Boolean Factor Analysis efficiency. Using the so-called bars problem benchmark, we compare the efficiencies of the proposed algorithms to that of Dendritic Inhibition Neural Network, Maximal Causes Analysis, and Boolean Matrix Factorization. Last mentioned methods were taken as related methods as they are supposed to be the most efficient in bars problem benchmark. Then we discuss the peculiarities of the two methods we proposed and the three related methods in performing Boolean Factor Analysis.
Author Polyakov, Pavel Y.
Husek, Dusan
Frolov, Alexander A.
Author_xml – sequence: 1
  givenname: Alexander A.
  surname: Frolov
  fullname: Frolov, Alexander A.
  organization: Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5a, 117 485 Moscow, Russia
– sequence: 2
  givenname: Dusan
  surname: Husek
  fullname: Husek, Dusan
  email: dusan@cs.cas.cz
  organization: Institute of Computer Science, Academy of Science of the Czech Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic
– sequence: 3
  givenname: Pavel Y.
  surname: Polyakov
  fullname: Polyakov, Pavel Y.
  organization: FEI VSB – TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
BookMark eNqFkE9LAzEUxINUsK1-Aw979LJr_nSzGw9CLa0Kipd6DsnbVFN2NzXZauunN3U9eVAYeDyYGZjfCA1a1xqEzgnOCCb8cp21ZguuySgmNMNReX6EhqQsaFrSkg_QEAuap5QReoJGIawxJgWhYohmyw-XzHcbA53qrGvTR7Wzjf38fhJVvzhvu9cmJCvnkxvnaqPaZKGgi--0VfU-2HCKjleqDubs547R82K-nN2lD0-397PpQwqMiS4lYsKgxAR4xXVZVFrxqgBF9YRoyrXAAoBpxsFEDwPgkGstWKkLMTFxCxuji753493b1oRONjaAqWvVGrcNkhSC0TKPU6P1qreCdyF4s5Jg-4GdV7aWBMsDObmWPTl5ICdxVJ7H8ORXeONto_z-v9h1HzORwbs1XgawpgVTWR_xysrZvwu-AJV6jSI
CitedBy_id crossref_primary_10_1371_journal_pone_0124088
crossref_primary_10_1016_j_neucom_2015_10_075
crossref_primary_10_1109_TNNLS_2015_2412686
crossref_primary_10_1109_ACCESS_2021_3107189
Cites_doi 10.1109/TNN.2009.2016090
10.1016/S0925-2312(02)00847-0
10.1109/TKDE.2008.53
10.1007/978-94-011-5014-9_12
10.1016/S0925-2312(02)00512-X
10.1007/978-3-540-77046-6_29
10.1109/TNN.2007.891664
10.1098/rstb.1971.0078
10.1016/j.neucom.2007.09.017
10.1162/089976602320264033
10.1016/j.neucom.2011.05.011
10.1016/j.neucom.2008.11.033
10.1111/j.2517-6161.1977.tb01600.x
10.1088/0954-898X/12/3/301
10.1017/S0033291700031470
10.1038/44565
10.1016/S0893-6080(99)00046-5
10.1162/neco.1995.7.1.51
10.1016/S0925-2312(01)00675-0
10.1016/j.neucom.2007.07.038
10.1017/S0033291700003585
10.1007/BF02331346
10.1016/j.jcss.2009.05.002
10.1098/rspb.1970.0040
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2012.02.055
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 97
ExternalDocumentID 10_1016_j_neucom_2012_02_055
S0925231213006954
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-1943c801c6d6b87dba6d7ca2b41b26b909cc3b36ce01c3cc6c5bb938b794e1873
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333233200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sun Nov 09 12:44:45 EST 2025
Sat Nov 29 04:38:52 EST 2025
Tue Nov 18 21:16:28 EST 2025
Fri Feb 23 02:27:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimension reduction
Binary Matrix Factorization
Boolean Factor Analysis
Binary data model
Neural networks
Bars problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-1943c801c6d6b87dba6d7ca2b41b26b909cc3b36ce01c3cc6c5bb938b794e1873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793285092
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1793285092
crossref_citationtrail_10_1016_j_neucom_2012_02_055
crossref_primary_10_1016_j_neucom_2012_02_055
elsevier_sciencedirect_doi_10_1016_j_neucom_2012_02_055
PublicationCentury 2000
PublicationDate 2014-04-23
PublicationDateYYYYMMDD 2014-04-23
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-23
  day: 23
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hodge, Austin (bib23) 2002; 48
Weber, Scharfetter (bib3) 1984; 14
Frolov, Husek, Muraviev, Polyakov (bib29) 2007; 18
Foldiak (bib8) 1990; 64
Kussul (bib16) 1992
Kabán, Bingham (bib33) 2008; 71
Saund (bib1) 1995; 7
Oh, Kim, Pedrycz, Joo (bib24) 2011
Hoyer (bib19) 2004; 5
A.A. Frolov, D. Husek, H. Rezankova, V. Snasel, P. Polyakov, Clustering variables by classical approaches and neural network Boolean factor analysis, in: IEEE International Joint Conference on Neural Networks, IJCNN '08, pp. 3742–3746.
Barlow (bib13) 1985
Spratling (bib9) 2006; 7
D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, P. Polyakov, Comparison of neural network boolean factor analysis method with some other dimension reduction methods on bars problem, in: Second International Conference on Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, vol. 4815, Springer, 2007, pp. 235–243.
Belohlavek, Vychodil (bib12) 2010; 76
Hyvarinen, Raju (bib32) 2002; 49
Veiel (bib4) 1985; 15
Ganter, Wille, Wille (bib18) 1999
Barlow (bib14) 2001; 12
Snasel, Platos, Kromer, Husek, Frolov (bib26) 2007; 17
Spratling, Johnson (bib10) 2002; 14
Neal, Hinton (bib7) 1998; 89
Marr (bib15) 1970; 176
Liu, Zhou (bib27) 2011
Doya (bib22) 1999; 12
Miettinen, Mielikainen, Gionis, Das, Mannila (bib17) 2008; 20
Spratling, Johnson (bib11) 2003; 52
Stadlthanner, Theis, Lang, Puntonet, Gorriz (bib30) 2008; 71
Lee, Seung (bib20) 1999; 401
Lücke, Sahani (bib2) 2008; 9
Frolov, Husek, Polyakov (bib5) 2009; 20
Marr (bib21) 1971; 262
Zeng, Luo, Li (bib31) 2010; 73
Dempster, Laird, Rubin (bib6) 1977; 39
Kussul (10.1016/j.neucom.2012.02.055_bib16) 1992
Neal (10.1016/j.neucom.2012.02.055_bib7) 1998; 89
Hoyer (10.1016/j.neucom.2012.02.055_bib19) 2004; 5
Stadlthanner (10.1016/j.neucom.2012.02.055_bib30) 2008; 71
Zeng (10.1016/j.neucom.2012.02.055_bib31) 2010; 73
Dempster (10.1016/j.neucom.2012.02.055_bib6) 1977; 39
Snasel (10.1016/j.neucom.2012.02.055_bib26) 2007; 17
Belohlavek (10.1016/j.neucom.2012.02.055_bib12) 2010; 76
Ganter (10.1016/j.neucom.2012.02.055_bib18) 1999
Foldiak (10.1016/j.neucom.2012.02.055_bib8) 1990; 64
Liu (10.1016/j.neucom.2012.02.055_bib27) 2011
Lücke (10.1016/j.neucom.2012.02.055_bib2) 2008; 9
Oh (10.1016/j.neucom.2012.02.055_bib24) 2011
Weber (10.1016/j.neucom.2012.02.055_bib3) 1984; 14
Lee (10.1016/j.neucom.2012.02.055_bib20) 1999; 401
Veiel (10.1016/j.neucom.2012.02.055_bib4) 1985; 15
Barlow (10.1016/j.neucom.2012.02.055_bib14) 2001; 12
Hyvarinen (10.1016/j.neucom.2012.02.055_bib32) 2002; 49
Frolov (10.1016/j.neucom.2012.02.055_bib5) 2009; 20
Spratling (10.1016/j.neucom.2012.02.055_bib11) 2003; 52
Hodge (10.1016/j.neucom.2012.02.055_bib23) 2002; 48
Kabán (10.1016/j.neucom.2012.02.055_bib33) 2008; 71
Saund (10.1016/j.neucom.2012.02.055_bib1) 1995; 7
Marr (10.1016/j.neucom.2012.02.055_bib21) 1971; 262
10.1016/j.neucom.2012.02.055_bib28
Barlow (10.1016/j.neucom.2012.02.055_bib13) 1985
10.1016/j.neucom.2012.02.055_bib25
Doya (10.1016/j.neucom.2012.02.055_bib22) 1999; 12
Spratling (10.1016/j.neucom.2012.02.055_bib9) 2006; 7
Miettinen (10.1016/j.neucom.2012.02.055_bib17) 2008; 20
Spratling (10.1016/j.neucom.2012.02.055_bib10) 2002; 14
Marr (10.1016/j.neucom.2012.02.055_bib15) 1970; 176
Frolov (10.1016/j.neucom.2012.02.055_bib29) 2007; 18
References_xml – start-page: 37
  year: 1985
  end-page: 46
  ident: bib13
  article-title: Cerebral cortex as model builder
  publication-title: Models of the Visual Cortex
– volume: 73
  start-page: 684
  year: 2010
  end-page: 689
  ident: bib31
  article-title: An associative sparse coding neural network and applications
  publication-title: Neurocomputing
– volume: 20
  start-page: 1348
  year: 2008
  end-page: 1362
  ident: bib17
  article-title: The discrete basis problem
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 76
  start-page: 3
  year: 2010
  end-page: 20
  ident: bib12
  article-title: Discovery of optimal factors in binary data via a novel method of matrix decomposition
  publication-title: Journal of Computer and System Sciences
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib20
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 12
  start-page: 961
  year: 1999
  end-page: 974
  ident: bib22
  article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
  publication-title: Neural Networks
– reference: A.A. Frolov, D. Husek, H. Rezankova, V. Snasel, P. Polyakov, Clustering variables by classical approaches and neural network Boolean factor analysis, in: IEEE International Joint Conference on Neural Networks, IJCNN '08, pp. 3742–3746.
– volume: 18
  start-page: 698
  year: 2007
  end-page: 707
  ident: bib29
  article-title: Boolean factor analysis by attractor neural network
  publication-title: IEEE Transactions on Neural Networks
– volume: 89
  start-page: 355
  year: 1998
  end-page: 368
  ident: bib7
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in Graphical Models
– volume: 49
  start-page: 151
  year: 2002
  end-page: 162
  ident: bib32
  article-title: Imposing sparsity on the mixing matrix in independent component analysis
  publication-title: Neurocomputing
– year: 2011
  ident: bib24
  article-title: Design of k-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution
  publication-title: Neurocomputing
– volume: 14
  start-page: 315
  year: 1984
  end-page: 325
  ident: bib3
  article-title: The syndrome concept
  publication-title: Psychological Medicine
– volume: 9
  start-page: 1227
  year: 2008
  end-page: 1267
  ident: bib2
  article-title: Maximal causes for non-linear component extraction
  publication-title: The Journal of Machine Learning Research
– volume: 262
  start-page: 23
  year: 1971
  end-page: 81
  ident: bib21
  article-title: Simple memory
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990)
– volume: 5
  start-page: 1457
  year: 2004
  end-page: 1469
  ident: bib19
  article-title: Non-negative matrix factorization with sparseness constrains
  publication-title: Journal of Machine Learning Research
– reference: D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, P. Polyakov, Comparison of neural network boolean factor analysis method with some other dimension reduction methods on bars problem, in: Second International Conference on Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, vol. 4815, Springer, 2007, pp. 235–243.
– volume: 12
  start-page: 241
  year: 2001
  end-page: 253
  ident: bib14
  article-title: Redundancy reduction revisited
  publication-title: Network
– year: 2011
  ident: bib27
  article-title: Rank-two residue iteration method for nonnegative matrix factorization
  publication-title: Neurocomputing
– volume: 176
  start-page: 161
  year: 1970
  end-page: 234
  ident: bib15
  article-title: A theory for cerebral neocortex
  publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences (1934–1990)
– volume: 14
  start-page: 2157
  year: 2002
  end-page: 2179
  ident: bib10
  article-title: Preintegration lateral inhibition enhances unsupervised learning
  publication-title: Neural Computation
– volume: 17
  start-page: 675
  year: 2007
  ident: bib26
  article-title: On the road to genetic Boolean matrix factorization
  publication-title: Neural Network World
– volume: 71
  start-page: 2356
  year: 2008
  end-page: 2376
  ident: bib30
  article-title: Hybridizing sparse component analysis with genetic algorithms for microarray analysis
  publication-title: Neurocomputing
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib6
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 64
  start-page: 165
  year: 1990
  end-page: 170
  ident: bib8
  article-title: Forming sparse representations by local anti-Hebbian learning
  publication-title: Biological Cybernetics
– volume: 52
  start-page: 389
  year: 2003
  end-page: 395
  ident: bib11
  article-title: Exploring the functional significance of dendritic inhibition in cortical pyramidal cells
  publication-title: Neurocomputing
– year: 1992
  ident: bib16
  article-title: Associative Neuron-like Structures
– volume: 7
  start-page: 51
  year: 1995
  end-page: 71
  ident: bib1
  article-title: A multiple cause mixture model for unsupervised learning
  publication-title: Neural Computation
– volume: 7
  start-page: 793
  year: 2006
  end-page: 815
  ident: bib9
  article-title: Learning image components for object recognition
  publication-title: Journal of Machine Learning Research
– volume: 15
  start-page: 623
  year: 1985
  end-page: 628
  ident: bib4
  article-title: Psychopathology and boolean factor analysis
  publication-title: Psychological Medicine
– volume: 71
  start-page: 2291
  year: 2008
  end-page: 2308
  ident: bib33
  article-title: Factorisation and denoising of 0-1 data
  publication-title: Neurocomputing
– volume: 20
  start-page: 1073
  year: 2009
  end-page: 1086
  ident: bib5
  article-title: Recurrent neural network based Boolean factor analysis and its application to automatic terms and documents categorization
  publication-title: IEEE Transactions on Neural Networks
– volume: 48
  start-page: 819
  year: 2002
  end-page: 846
  ident: bib23
  article-title: Hierarchical word clustering – automatic thesaurus generation
  publication-title: Neurocomputing
– year: 1999
  ident: bib18
  article-title: Formal Concept Analysis
– volume: 20
  start-page: 1073
  year: 2009
  ident: 10.1016/j.neucom.2012.02.055_bib5
  article-title: Recurrent neural network based Boolean factor analysis and its application to automatic terms and documents categorization
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2016090
– volume: 52
  start-page: 389
  year: 2003
  ident: 10.1016/j.neucom.2012.02.055_bib11
  article-title: Exploring the functional significance of dendritic inhibition in cortical pyramidal cells
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00847-0
– volume: 20
  start-page: 1348
  year: 2008
  ident: 10.1016/j.neucom.2012.02.055_bib17
  article-title: The discrete basis problem
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.53
– volume: 89
  start-page: 355
  year: 1998
  ident: 10.1016/j.neucom.2012.02.055_bib7
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in Graphical Models
  doi: 10.1007/978-94-011-5014-9_12
– year: 2011
  ident: 10.1016/j.neucom.2012.02.055_bib24
  article-title: Design of k-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution
  publication-title: Neurocomputing
– volume: 49
  start-page: 151
  year: 2002
  ident: 10.1016/j.neucom.2012.02.055_bib32
  article-title: Imposing sparsity on the mixing matrix in independent component analysis
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00512-X
– volume: 9
  start-page: 1227
  year: 2008
  ident: 10.1016/j.neucom.2012.02.055_bib2
  article-title: Maximal causes for non-linear component extraction
  publication-title: The Journal of Machine Learning Research
– ident: 10.1016/j.neucom.2012.02.055_bib28
  doi: 10.1007/978-3-540-77046-6_29
– volume: 18
  start-page: 698
  year: 2007
  ident: 10.1016/j.neucom.2012.02.055_bib29
  article-title: Boolean factor analysis by attractor neural network
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2007.891664
– volume: 262
  start-page: 23
  year: 1971
  ident: 10.1016/j.neucom.2012.02.055_bib21
  article-title: Simple memory
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990)
  doi: 10.1098/rstb.1971.0078
– ident: 10.1016/j.neucom.2012.02.055_bib25
– start-page: 37
  year: 1985
  ident: 10.1016/j.neucom.2012.02.055_bib13
  article-title: Cerebral cortex as model builder
– year: 1992
  ident: 10.1016/j.neucom.2012.02.055_bib16
– volume: 71
  start-page: 2356
  year: 2008
  ident: 10.1016/j.neucom.2012.02.055_bib30
  article-title: Hybridizing sparse component analysis with genetic algorithms for microarray analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.09.017
– volume: 7
  start-page: 793
  year: 2006
  ident: 10.1016/j.neucom.2012.02.055_bib9
  article-title: Learning image components for object recognition
  publication-title: Journal of Machine Learning Research
– volume: 14
  start-page: 2157
  year: 2002
  ident: 10.1016/j.neucom.2012.02.055_bib10
  article-title: Preintegration lateral inhibition enhances unsupervised learning
  publication-title: Neural Computation
  doi: 10.1162/089976602320264033
– year: 2011
  ident: 10.1016/j.neucom.2012.02.055_bib27
  article-title: Rank-two residue iteration method for nonnegative matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.011
– volume: 73
  start-page: 684
  year: 2010
  ident: 10.1016/j.neucom.2012.02.055_bib31
  article-title: An associative sparse coding neural network and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.11.033
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.neucom.2012.02.055_bib6
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 12
  start-page: 241
  year: 2001
  ident: 10.1016/j.neucom.2012.02.055_bib14
  article-title: Redundancy reduction revisited
  publication-title: Network
  doi: 10.1088/0954-898X/12/3/301
– volume: 15
  start-page: 623
  year: 1985
  ident: 10.1016/j.neucom.2012.02.055_bib4
  article-title: Psychopathology and boolean factor analysis
  publication-title: Psychological Medicine
  doi: 10.1017/S0033291700031470
– year: 1999
  ident: 10.1016/j.neucom.2012.02.055_bib18
– volume: 5
  start-page: 1457
  year: 2004
  ident: 10.1016/j.neucom.2012.02.055_bib19
  article-title: Non-negative matrix factorization with sparseness constrains
  publication-title: Journal of Machine Learning Research
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.neucom.2012.02.055_bib20
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 12
  start-page: 961
  year: 1999
  ident: 10.1016/j.neucom.2012.02.055_bib22
  article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(99)00046-5
– volume: 7
  start-page: 51
  year: 1995
  ident: 10.1016/j.neucom.2012.02.055_bib1
  article-title: A multiple cause mixture model for unsupervised learning
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.1.51
– volume: 48
  start-page: 819
  year: 2002
  ident: 10.1016/j.neucom.2012.02.055_bib23
  article-title: Hierarchical word clustering – automatic thesaurus generation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00675-0
– volume: 71
  start-page: 2291
  year: 2008
  ident: 10.1016/j.neucom.2012.02.055_bib33
  article-title: Factorisation and denoising of 0-1 data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.07.038
– volume: 14
  start-page: 315
  year: 1984
  ident: 10.1016/j.neucom.2012.02.055_bib3
  article-title: The syndrome concept
  publication-title: Psychological Medicine
  doi: 10.1017/S0033291700003585
– volume: 64
  start-page: 165
  year: 1990
  ident: 10.1016/j.neucom.2012.02.055_bib8
  article-title: Forming sparse representations by local anti-Hebbian learning
  publication-title: Biological Cybernetics
  doi: 10.1007/BF02331346
– volume: 76
  start-page: 3
  year: 2010
  ident: 10.1016/j.neucom.2012.02.055_bib12
  article-title: Discovery of optimal factors in binary data via a novel method of matrix decomposition
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/j.jcss.2009.05.002
– volume: 17
  start-page: 675
  year: 2007
  ident: 10.1016/j.neucom.2012.02.055_bib26
  article-title: On the road to genetic Boolean matrix factorization
  publication-title: Neural Network World
– volume: 176
  start-page: 161
  year: 1970
  ident: 10.1016/j.neucom.2012.02.055_bib15
  article-title: A theory for cerebral neocortex
  publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences (1934–1990)
  doi: 10.1098/rspb.1970.0040
SSID ssj0017129
Score 2.1285806
Snippet Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 83
SubjectTerms Algorithms
Bars
Bars problem
Benchmarking
Binary data
Binary data model
Binary Matrix Factorization
Boolean algebra
Boolean Factor Analysis
Dimension reduction
Factor analysis
Mathematical models
Neural networks
Title Two Expectation-Maximization algorithms for Boolean Factor Analysis
URI https://dx.doi.org/10.1016/j.neucom.2012.02.055
https://www.proquest.com/docview/1793285092
Volume 130
WOSCitedRecordID wos000333233200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlpSAhLsioiZM4PlZLKx5L6aEr9WbFE3fp0k1KX5R_z_iRdMtqtcsBqYoqy04iz5fxeDzzDSFvBCQczY6YCpXENBYTQXOVaBpPTB6niHEjBLbYBB8MsvFYDFutL3UuzGbGyzLbbsX8v4oa21DYJnX2H8Td3BQb8D8KHa8odrzeTPC_KktgDO6QnX7Nt9Nzn235Lp-dVovp6rujYTCZDjPjiu_bqjsNQ8lFi9Wyd4Ct_eC9Ct1zQ65QGCQ1XoT-ApXoZi9jZgeYpbYq98PFAKBhNfud_3BDhvnGB-5790Noo1ZchnDtR4wSbAj3Vao_a3FK0VWq8curi8a9pLidD-HsfanXJooHnxRZLlXH4bvPkz34Jvsnx8dy1BuP3s5_UlNCzBy1-3oqt8hBxBORtclB91Nv_Lk5VOJh5KgX_RvXmZQ23O_yg6-yVP5as60hMrpP7vodRNB1kn9AWrp8SO7V1TkCr6wfkSMEQnAVEIIdEAIEQuCBEDggBDUQHpOTfm909JH6khkUGBMrGoqYARodkBapynih8rTgkEcqDlWUKtERAEyxFDT2YQApJEoJlin8LHWYcfaEtMuq1E9JYIglFYtCnRa4i1RxxnQKLIMC-CQVk84hYfX0SPB88qasyUzWgYNn0k2qNJMqO_hLkkNCm1Fzx6dyTX9ez7z0NqGz9SQi55qRr2tBSVSZ5hwsL3W1XkqzJkUZWsrRsxv0eU7u7HD_grRXi7V-SW7DZjVdLl55jP0BHAiP_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Expectation-Maximization+algorithms+for+Boolean+Factor+Analysis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Frolov%2C+Alexander&rft.au=Husek%2C+Dusan&rft.au=Polyakov%2C+Pavel&rft.date=2014-04-23&rft.issn=0925-2312&rft.volume=130&rft.spage=83&rft.epage=97&rft_id=info:doi/10.1016%2Fj.neucom.2012.02.055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon