An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation

In a high solar-power-penetration power grid, photovoltaic (PV) power generation requires to run in a flexible power point tracking (FPPT) mode. However, traditional hierarchical control-based FPPT strategy ignores the dynamic economic performance of PV power generation. To address this issue, an ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 283; S. 128993
Hauptverfasser: Liu, Xiangjie, Zhu, Zheng, Kong, Xiaobing, Ma, Lele, Lee, Kwang Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.11.2023
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a high solar-power-penetration power grid, photovoltaic (PV) power generation requires to run in a flexible power point tracking (FPPT) mode. However, traditional hierarchical control-based FPPT strategy ignores the dynamic economic performance of PV power generation. To address this issue, an advanced FPPT strategy based on economic model predictive control (EMPC) is proposed to achieve higher dynamic economic performance. This strategy integrates the PV voltage reference calculation, PV voltage control, and pulse width modulation into one optimal control framework, utilizing the economic indices of the PV power generation system (PVPGS) as the cost function to achieve its economic optimization and power tracking. Due to the strong nonlinearity in the PVPGS, the EMPC optimization problem is non-convex, leading to a local optimum. A mixed integer nonlinear programming algorithm is developed, which utilizes a finite number of converter switching states for obtaining the global optimum. Simulations demonstrate that the EMPC-based FPPT strategy enhances the dynamic economic performance compared to the hierarchical control-based FPPT strategy. •An economic model predictive control strategy is proposed for PV power generation.•A converter-based model for the PV power generation system is constructed.•An efficient algorithm is proposed to solve online non-convex optimization problem.•The proposed scheme enhances dynamic economic performance for PV power generation.
AbstractList In a high solar-power-penetration power grid, photovoltaic (PV) power generation requires to run in a flexible power point tracking (FPPT) mode. However, traditional hierarchical control-based FPPT strategy ignores the dynamic economic performance of PV power generation. To address this issue, an advanced FPPT strategy based on economic model predictive control (EMPC) is proposed to achieve higher dynamic economic performance. This strategy integrates the PV voltage reference calculation, PV voltage control, and pulse width modulation into one optimal control framework, utilizing the economic indices of the PV power generation system (PVPGS) as the cost function to achieve its economic optimization and power tracking. Due to the strong nonlinearity in the PVPGS, the EMPC optimization problem is non-convex, leading to a local optimum. A mixed integer nonlinear programming algorithm is developed, which utilizes a finite number of converter switching states for obtaining the global optimum. Simulations demonstrate that the EMPC-based FPPT strategy enhances the dynamic economic performance compared to the hierarchical control-based FPPT strategy.
In a high solar-power-penetration power grid, photovoltaic (PV) power generation requires to run in a flexible power point tracking (FPPT) mode. However, traditional hierarchical control-based FPPT strategy ignores the dynamic economic performance of PV power generation. To address this issue, an advanced FPPT strategy based on economic model predictive control (EMPC) is proposed to achieve higher dynamic economic performance. This strategy integrates the PV voltage reference calculation, PV voltage control, and pulse width modulation into one optimal control framework, utilizing the economic indices of the PV power generation system (PVPGS) as the cost function to achieve its economic optimization and power tracking. Due to the strong nonlinearity in the PVPGS, the EMPC optimization problem is non-convex, leading to a local optimum. A mixed integer nonlinear programming algorithm is developed, which utilizes a finite number of converter switching states for obtaining the global optimum. Simulations demonstrate that the EMPC-based FPPT strategy enhances the dynamic economic performance compared to the hierarchical control-based FPPT strategy. •An economic model predictive control strategy is proposed for PV power generation.•A converter-based model for the PV power generation system is constructed.•An efficient algorithm is proposed to solve online non-convex optimization problem.•The proposed scheme enhances dynamic economic performance for PV power generation.
ArticleNumber 128993
Author Liu, Xiangjie
Ma, Lele
Lee, Kwang Y.
Kong, Xiaobing
Zhu, Zheng
Author_xml – sequence: 1
  givenname: Xiangjie
  orcidid: 0000-0002-9116-518X
  surname: Liu
  fullname: Liu, Xiangjie
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China
– sequence: 2
  givenname: Zheng
  orcidid: 0009-0004-5104-7578
  surname: Zhu
  fullname: Zhu, Zheng
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China
– sequence: 3
  givenname: Xiaobing
  surname: Kong
  fullname: Kong, Xiaobing
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China
– sequence: 4
  givenname: Lele
  surname: Ma
  fullname: Ma, Lele
  email: malele@ncepu.edu.cn
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China
– sequence: 5
  givenname: Kwang Y.
  surname: Lee
  fullname: Lee, Kwang Y.
  organization: Department of Electrical and Computer Engineering, Baylor University, Waco, 76798, TX, USA
BookMark eNqFkLtOwzAUhj0UibbwBgweWVLsOEkbBqSq4iZVYoHZsp2T4uLYwXYLfXtcwsQAy_GR_ouOvwkaWWcBoQtKZpTQ6mo7Awt-c5jlJGczmi_qmo3QmLCKZGVR5KdoEsKWEFImZYzC0mJQzrpOK9y5BgzuPTRaRb0HnIToncmkCNDg1sCnlgZw7z7Ap6ltxNEL9abtBoe0RdgccOuS9uqi2zsTRaod7JvjXSJqZ8_QSStMgPOfd4pe7m6fVw_Z-un-cbVcZ4qxOmaUStXIikItKS0KyRjIvGRNWZKWVG2lKG0LRiTLS1lBIUUtWKFqUlNB5Xwu2BRdDr29d-87CJF3OigwRlhwu8AZLdmczqt6kazFYFXeheCh5b3XnfAHTgk_cuVbPnDlR6584Jpi179iSsfvPyYY2vwXvhnCkBjsNXgelAarEn0PKvLG6b8LvgDZl513
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_126418
crossref_primary_10_1016_j_energy_2025_134844
crossref_primary_10_1007_s43236_024_00917_y
crossref_primary_10_1016_j_icheatmasstransfer_2024_107534
crossref_primary_10_1016_j_renene_2024_120688
crossref_primary_10_1016_j_solener_2024_112798
crossref_primary_10_1016_j_enconman_2025_119805
crossref_primary_10_1007_s00202_024_02784_z
Cites_doi 10.1016/j.solener.2017.02.017
10.1016/j.ijepes.2021.107075
10.1016/j.apenergy.2011.06.024
10.1016/j.rser.2017.07.043
10.1109/TIE.2020.2998743
10.1016/j.disopt.2006.10.011
10.1016/j.solener.2017.12.016
10.1016/j.solener.2019.01.028
10.1016/j.renene.2019.12.131
10.1016/j.energy.2021.121646
10.1016/j.solener.2018.12.074
10.1109/TPEL.2018.2869172
10.1109/TPEL.2017.2724544
10.1109/TIE.2017.2779412
10.1109/TPEL.2017.2764321
10.1016/j.energy.2019.115881
10.1109/TPEL.2020.2970447
10.1109/TPEL.2021.3049275
10.1016/j.energy.2022.126278
10.1016/j.renene.2021.12.011
10.1016/j.energy.2016.07.024
10.1016/j.rser.2022.113046
10.1109/TSTE.2021.3132057
10.1016/j.ijepes.2020.106732
10.1016/j.energy.2020.118592
10.1109/TPEL.2018.2883320
10.1016/j.ijepes.2020.106645
10.1109/TII.2012.2192282
10.1109/TIE.2006.878328
10.1016/j.solener.2013.09.001
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2023.128993
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_128993
S0360544223023873
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073136; 61833011; 62203170
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0190900
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023JC002; 2023YQ002
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-11bcdb61e9b1144b33eb253d550f06f6c11f430b325b6e4ba9a34c9091a1b77a3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122586800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Oct 02 10:37:39 EDT 2025
Tue Nov 18 22:33:45 EST 2025
Sat Nov 29 07:21:00 EST 2025
Tue Jul 16 14:15:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Photovoltaic power generation
Flexible power point tracking
Economic model predictive control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-11bcdb61e9b1144b33eb253d550f06f6c11f430b325b6e4ba9a34c9091a1b77a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9116-518X
0009-0004-5104-7578
PQID 3153717698
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153717698
crossref_primary_10_1016_j_energy_2023_128993
crossref_citationtrail_10_1016_j_energy_2023_128993
elsevier_sciencedirect_doi_10_1016_j_energy_2023_128993
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Huang, Du, Chen (b11) 2011; 88
Tafti, Sangwongwanich, Yang, Pou, Konstantinou, Blaabjerg (b20) 2019; 34
Necaibia, Kelaiaia, Labar, Necaibia, Castronuovo (b29) 2019; 180
Al Nabulsi, Dhaouadi (b12) 2012; 8
Zhao, Zhou, Gao, Ma, Qin (b27) 2017; 144
Abusorrah, Al-Hindawi, Al-Turki, Mandal, Giaouris, Banerjee (b30) 2013; 98
Yin, Su (b13) 2021; 131
Kumaresan, Tafti, Kandasamy, Farivar, Pou, Subbaiyan (b22) 2021; 36
(b5) 2023
Gao, Hu, Yin (b7) 2023; 264
(b6) 2023
Issaadi, Issaadi, Khireddine (b8) 2019; 187
Zheng, Du, Wang, Klemeš, Liao, Liang (b1) 2023; 172
Tafti, Maswood, Konstantinou, Pou, Blaabjerg (b18) 2018; 33
Bonami, Biegler, Conn, Cornuejols, Grossmann, Laird (b33) 2008; 5
Pal, Mukherjee (b31) 2020; 212
Hou, Ke, Huang (b15) 2021; 237
Ayop, Tan (b32) 2018; 160
Feldmann, Oliveira (b14) 2021; 127
Mutoh, Ohno, Inoue (b25) 2006; 53
Gomez-Merchan, Vazquez, Alcaide, Tafti, Leon, Pou (b21) 2021; 68
Vanti, Bana, D’Arco, Amin (b24) 2022; 13
Cai, Xiang, Wei (b26) 2018; 65
Perez, Perez, Rábago, Putnam (b4) 2019; 180
Tafti, Townsend, Konstantinou, Pou (b19) 2019; 34
Tafti, Konstantinou, Townsend, Farivar, Sangwongwanich, Yang (b9) 2020; 35
Kumar, Ghosh, Naidu, Kamal, Saket, Nagar (b28) 2021; 128
Sheik Mohammed, Devaraj, Imthias Ahamed (b10) 2016; 112
Hacke, Lokanath, Williams, Vasan, Sochor, TamizhMani (b17) 2018; 82
(b16) 2018
Li, Gao, Li, Zhou (b2) 2022; 185
Lashab, Sera, Guerrero, Mathe, Bouzid (b23) 2018; 33
Sharadga, Hajimirza, Balog (b3) 2020; 150
Ayop (10.1016/j.energy.2023.128993_b32) 2018; 160
Li (10.1016/j.energy.2023.128993_b2) 2022; 185
Necaibia (10.1016/j.energy.2023.128993_b29) 2019; 180
Hacke (10.1016/j.energy.2023.128993_b17) 2018; 82
Lashab (10.1016/j.energy.2023.128993_b23) 2018; 33
(10.1016/j.energy.2023.128993_b6) 2023
Gao (10.1016/j.energy.2023.128993_b7) 2023; 264
Gomez-Merchan (10.1016/j.energy.2023.128993_b21) 2021; 68
Vanti (10.1016/j.energy.2023.128993_b24) 2022; 13
Tafti (10.1016/j.energy.2023.128993_b20) 2019; 34
Yin (10.1016/j.energy.2023.128993_b13) 2021; 131
Perez (10.1016/j.energy.2023.128993_b4) 2019; 180
Al Nabulsi (10.1016/j.energy.2023.128993_b12) 2012; 8
Sharadga (10.1016/j.energy.2023.128993_b3) 2020; 150
Lin (10.1016/j.energy.2023.128993_b11) 2011; 88
Cai (10.1016/j.energy.2023.128993_b26) 2018; 65
Abusorrah (10.1016/j.energy.2023.128993_b30) 2013; 98
(10.1016/j.energy.2023.128993_b5) 2023
Sheik Mohammed (10.1016/j.energy.2023.128993_b10) 2016; 112
Issaadi (10.1016/j.energy.2023.128993_b8) 2019; 187
Tafti (10.1016/j.energy.2023.128993_b19) 2019; 34
Bonami (10.1016/j.energy.2023.128993_b33) 2008; 5
Zheng (10.1016/j.energy.2023.128993_b1) 2023; 172
Kumar (10.1016/j.energy.2023.128993_b28) 2021; 128
Pal (10.1016/j.energy.2023.128993_b31) 2020; 212
Kumaresan (10.1016/j.energy.2023.128993_b22) 2021; 36
Tafti (10.1016/j.energy.2023.128993_b9) 2020; 35
Feldmann (10.1016/j.energy.2023.128993_b14) 2021; 127
Tafti (10.1016/j.energy.2023.128993_b18) 2018; 33
Hou (10.1016/j.energy.2023.128993_b15) 2021; 237
(10.1016/j.energy.2023.128993_b16) 2018
Zhao (10.1016/j.energy.2023.128993_b27) 2017; 144
Mutoh (10.1016/j.energy.2023.128993_b25) 2006; 53
References_xml – volume: 36
  start-page: 9419
  year: 2021
  end-page: 9429
  ident: b22
  article-title: Flexible power point tracking for solar photovoltaic systems using secant method
  publication-title: IEEE Trans Power Electron
– volume: 131
  year: 2021
  ident: b13
  article-title: Multi-step depth model predictive control for photovoltaic power systems based on maximum power point tracking techniques
  publication-title: Int J Electr Power Energy Syst
– volume: 68
  start-page: 5909
  year: 2021
  end-page: 5920
  ident: b21
  article-title: Binary search based flexible power point tracking algorithm for photovoltaic systems
  publication-title: IEEE Trans Ind Electron
– volume: 65
  start-page: 5601
  year: 2018
  end-page: 5610
  ident: b26
  article-title: Decentralized coordination control of multiple photovoltaic sources for DC bus voltage regulating and power sharing
  publication-title: IEEE Trans Ind Electron
– volume: 160
  start-page: 322
  year: 2018
  end-page: 335
  ident: b32
  article-title: Design of boost converter based on maximum power point resistance for photovoltaic applications
  publication-title: Sol Energy
– volume: 180
  start-page: 412
  year: 2019
  end-page: 422
  ident: b4
  article-title: Overbuilding & curtailment: The cost-effective enablers of firm PV generation
  publication-title: Sol Energy
– volume: 82
  start-page: 1097
  year: 2018
  end-page: 1112
  ident: b17
  article-title: A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols
  publication-title: Renew Sustain Energy Rev
– volume: 127
  year: 2021
  ident: b14
  article-title: Operational and control approach for PV power plants to provide inertial response and primary frequency control support to power system black-start
  publication-title: Int J Electr Power Energy Syst
– volume: 237
  year: 2021
  ident: b15
  article-title: A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe
  publication-title: Energy
– volume: 34
  start-page: 5038
  year: 2019
  end-page: 5042
  ident: b19
  article-title: A multi-mode flexible power point tracking algorithm for photovoltaic power plants
  publication-title: IEEE Trans Power Electron
– volume: 144
  start-page: 767
  year: 2017
  end-page: 779
  ident: b27
  article-title: A novel global maximum power point tracking strategy (GMPPT) based on optimal current control for photovoltaic systems adaptive to variable environmental and partial shading conditions
  publication-title: Sol Energy
– year: 2023
  ident: b6
  article-title: Statistical bulletin of national economic and social development of the people’s Republic of China in 2022
– start-page: 1
  year: 2018
  end-page: 138
  ident: b16
  article-title: IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces
  publication-title: IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003)
– volume: 34
  start-page: 5451
  year: 2019
  end-page: 5463
  ident: b20
  article-title: An adaptive control scheme for flexible power point tracking in photovoltaic systems
  publication-title: IEEE Trans Power Electron
– volume: 264
  year: 2023
  ident: b7
  article-title: Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems
  publication-title: Energy
– volume: 187
  year: 2019
  ident: b8
  article-title: New intelligent control strategy by robust neural network algorithm for real time detection of an optimized maximum power tracking control in photovoltaic systems
  publication-title: Energy
– volume: 53
  start-page: 1055
  year: 2006
  end-page: 1065
  ident: b25
  article-title: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems
  publication-title: IEEE Trans Ind Electron
– volume: 172
  year: 2023
  ident: b1
  article-title: A hybrid framework for forecasting power generation of multiple renewable energy sources
  publication-title: Renew Sustain Energy Rev
– volume: 185
  start-page: 86
  year: 2022
  end-page: 95
  ident: b2
  article-title: Effect of the temperature difference between land and lake on photovoltaic power generation
  publication-title: Renew Energy
– volume: 128
  year: 2021
  ident: b28
  article-title: Load voltage-based MPPT technique for standalone PV systems using adaptive step
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 791
  year: 2022
  end-page: 802
  ident: b24
  article-title: Single-stage grid-connected PV system with finite control set model predictive control and an improved maximum power point tracking
  publication-title: IEEE Trans Sustain Energy
– volume: 88
  start-page: 4840
  year: 2011
  end-page: 4847
  ident: b11
  article-title: Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method
  publication-title: Appl Energy
– volume: 35
  start-page: 9342
  year: 2020
  end-page: 9356
  ident: b9
  article-title: Extended functionalities of photovoltaic systems with flexible power point tracking: Recent advances
  publication-title: IEEE Trans Power Electron
– volume: 212
  year: 2020
  ident: b31
  article-title: Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition
  publication-title: Energy
– volume: 112
  start-page: 1096
  year: 2016
  end-page: 1106
  ident: b10
  article-title: A novel hybrid maximum power point tracking technique using perturb & observe algorithm and learning automata for solar PV system
  publication-title: Energy
– volume: 33
  start-page: 7273
  year: 2018
  end-page: 7287
  ident: b23
  article-title: Discrete model-predictive-control-based maximum power point tracking for PV systems: Overview and evaluation
  publication-title: IEEE Trans Power Electron
– volume: 98
  start-page: 458
  year: 2013
  end-page: 471
  ident: b30
  article-title: Stability of a boost converter fed from photovoltaic source
  publication-title: Sol Energy
– volume: 5
  start-page: 186
  year: 2008
  end-page: 204
  ident: b33
  article-title: An algorithmic framework for convex mixed integer nonlinear programs
  publication-title: Discrete Optim
– volume: 8
  start-page: 573
  year: 2012
  end-page: 584
  ident: b12
  article-title: Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control
  publication-title: IEEE Trans Ind Inf
– volume: 150
  start-page: 797
  year: 2020
  end-page: 807
  ident: b3
  article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants
  publication-title: Renew Energy
– year: 2023
  ident: b5
  article-title: Renewable capacity statistics 2023
– volume: 180
  start-page: 152
  year: 2019
  end-page: 168
  ident: b29
  article-title: Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter
  publication-title: Sol Energy
– volume: 33
  start-page: 4088
  year: 2018
  end-page: 4101
  ident: b18
  article-title: A general constant power generation algorithm for photovoltaic systems
  publication-title: IEEE Trans Power Electron
– volume: 144
  start-page: 767
  year: 2017
  ident: 10.1016/j.energy.2023.128993_b27
  article-title: A novel global maximum power point tracking strategy (GMPPT) based on optimal current control for photovoltaic systems adaptive to variable environmental and partial shading conditions
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.02.017
– volume: 131
  year: 2021
  ident: 10.1016/j.energy.2023.128993_b13
  article-title: Multi-step depth model predictive control for photovoltaic power systems based on maximum power point tracking techniques
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107075
– volume: 88
  start-page: 4840
  issue: 12
  year: 2011
  ident: 10.1016/j.energy.2023.128993_b11
  article-title: Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.06.024
– volume: 82
  start-page: 1097
  year: 2018
  ident: 10.1016/j.energy.2023.128993_b17
  article-title: A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.07.043
– volume: 68
  start-page: 5909
  issue: 7
  year: 2021
  ident: 10.1016/j.energy.2023.128993_b21
  article-title: Binary search based flexible power point tracking algorithm for photovoltaic systems
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2998743
– volume: 5
  start-page: 186
  issue: 2
  year: 2008
  ident: 10.1016/j.energy.2023.128993_b33
  article-title: An algorithmic framework for convex mixed integer nonlinear programs
  publication-title: Discrete Optim
  doi: 10.1016/j.disopt.2006.10.011
– volume: 160
  start-page: 322
  year: 2018
  ident: 10.1016/j.energy.2023.128993_b32
  article-title: Design of boost converter based on maximum power point resistance for photovoltaic applications
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.12.016
– volume: 180
  start-page: 152
  year: 2019
  ident: 10.1016/j.energy.2023.128993_b29
  article-title: Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.01.028
– volume: 150
  start-page: 797
  issn: 09601481
  year: 2020
  ident: 10.1016/j.energy.2023.128993_b3
  article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.12.131
– volume: 237
  year: 2021
  ident: 10.1016/j.energy.2023.128993_b15
  article-title: A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121646
– volume: 180
  start-page: 412
  year: 2019
  ident: 10.1016/j.energy.2023.128993_b4
  article-title: Overbuilding & curtailment: The cost-effective enablers of firm PV generation
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.12.074
– volume: 34
  start-page: 5451
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2023.128993_b20
  article-title: An adaptive control scheme for flexible power point tracking in photovoltaic systems
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2018.2869172
– volume: 33
  start-page: 4088
  issue: 5
  year: 2018
  ident: 10.1016/j.energy.2023.128993_b18
  article-title: A general constant power generation algorithm for photovoltaic systems
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2017.2724544
– volume: 65
  start-page: 5601
  issue: 7
  year: 2018
  ident: 10.1016/j.energy.2023.128993_b26
  article-title: Decentralized coordination control of multiple photovoltaic sources for DC bus voltage regulating and power sharing
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2779412
– volume: 33
  start-page: 7273
  issue: 8
  year: 2018
  ident: 10.1016/j.energy.2023.128993_b23
  article-title: Discrete model-predictive-control-based maximum power point tracking for PV systems: Overview and evaluation
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2017.2764321
– volume: 187
  year: 2019
  ident: 10.1016/j.energy.2023.128993_b8
  article-title: New intelligent control strategy by robust neural network algorithm for real time detection of an optimized maximum power tracking control in photovoltaic systems
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115881
– volume: 35
  start-page: 9342
  issue: 9
  year: 2020
  ident: 10.1016/j.energy.2023.128993_b9
  article-title: Extended functionalities of photovoltaic systems with flexible power point tracking: Recent advances
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2020.2970447
– volume: 36
  start-page: 9419
  issue: 8
  year: 2021
  ident: 10.1016/j.energy.2023.128993_b22
  article-title: Flexible power point tracking for solar photovoltaic systems using secant method
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2021.3049275
– volume: 264
  issn: 0360-5442
  year: 2023
  ident: 10.1016/j.energy.2023.128993_b7
  article-title: Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126278
– volume: 185
  start-page: 86
  year: 2022
  ident: 10.1016/j.energy.2023.128993_b2
  article-title: Effect of the temperature difference between land and lake on photovoltaic power generation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.12.011
– volume: 112
  start-page: 1096
  year: 2016
  ident: 10.1016/j.energy.2023.128993_b10
  article-title: A novel hybrid maximum power point tracking technique using perturb & observe algorithm and learning automata for solar PV system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.024
– volume: 172
  year: 2023
  ident: 10.1016/j.energy.2023.128993_b1
  article-title: A hybrid framework for forecasting power generation of multiple renewable energy sources
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.113046
– volume: 13
  start-page: 791
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2023.128993_b24
  article-title: Single-stage grid-connected PV system with finite control set model predictive control and an improved maximum power point tracking
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2021.3132057
– start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2023.128993_b16
  article-title: IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces
– volume: 128
  year: 2021
  ident: 10.1016/j.energy.2023.128993_b28
  article-title: Load voltage-based MPPT technique for standalone PV systems using adaptive step
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106732
– year: 2023
  ident: 10.1016/j.energy.2023.128993_b5
– volume: 212
  year: 2020
  ident: 10.1016/j.energy.2023.128993_b31
  article-title: Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118592
– year: 2023
  ident: 10.1016/j.energy.2023.128993_b6
– volume: 34
  start-page: 5038
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2023.128993_b19
  article-title: A multi-mode flexible power point tracking algorithm for photovoltaic power plants
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2018.2883320
– volume: 127
  year: 2021
  ident: 10.1016/j.energy.2023.128993_b14
  article-title: Operational and control approach for PV power plants to provide inertial response and primary frequency control support to power system black-start
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106645
– volume: 8
  start-page: 573
  issn: 1941-0050
  issue: 3
  year: 2012
  ident: 10.1016/j.energy.2023.128993_b12
  article-title: Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2012.2192282
– volume: 53
  start-page: 1055
  issn: 0278-0046
  issue: 4
  year: 2006
  ident: 10.1016/j.energy.2023.128993_b25
  article-title: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2006.878328
– volume: 98
  start-page: 458
  year: 2013
  ident: 10.1016/j.energy.2023.128993_b30
  article-title: Stability of a boost converter fed from photovoltaic source
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.09.001
SSID ssj0005899
Score 2.473381
Snippet In a high solar-power-penetration power grid, photovoltaic (PV) power generation requires to run in a flexible power point tracking (FPPT) mode. However,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128993
SubjectTerms algorithms
econometric models
Economic model predictive control
economic performance
electric potential difference
Flexible power point tracking
Photovoltaic power generation
power generation
solar energy
system optimization
Title An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation
URI https://dx.doi.org/10.1016/j.energy.2023.128993
https://www.proquest.com/docview/3153717698
Volume 283
WOSCitedRecordID wos001122586800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQvCAYTY4CMxNuUKrGdix8rVASoTDwMVO0lih1nTTel1ZpO_Qf87R3fknVcxh54iSrrxHX6fT0-ds53jND7jBeh1FU-SVglAeNlGcAyqAgyMCdCxawyqrQfk_T4OJtO-bfB4KfXwlxdpE2TbTZ8-V-hhjYAW0tn7wF31yk0wGcAHa4AO1z_CfhRc6Sc2tiec6PrAJS18Ws-Mz3Qk1d5VOlqmFo6tdRnpcG1blp9aIQ8t7sMpoyEzehczhbtAlxZW0C31vzMVKzugPXb-1ZMqKuYbmzifLfVMKnXGtEpMPJsXneMOp2Z5tOZcrOoUeJYHwS2WqDWtX81se5EuUd22xWEat2eFWx2Mq0wiBnbcsEkozecaKQXgfS3_t1uNcyHyjzLUH_BsDffLqd9a5rrkg99Xts8t73kupfc9vIA7ZI05uDhd0efx9MvfbZQZo4i7UbvVZgmVfDX0fwpyrk135sg5uQpeuJWH3hkWfMMDVSzhx55cfpqD-2Pe-EjGDrPv3qOVqMGe1phQyvc0wpv0Qp7WmHDE2xohT2tsKcVBnbgm7Ry5j2tXqDvH8cnHz4F7sCOQFLKW4BayFIkkeICltlMUKoEiWkJq-AqTKpERlHFaCgoiUWimCh4QZnkELIWkUjTgu6jnWbRqJcIxzxUpIhISZRkKilFJBiTutglK6kM-QGi_gfOpatmrw9Vucj_Bu8BCrq7lraayx32qccudxGpjTRzIOQdd77zUOfgsPVbuKJRi_UqpxBjpFGa8OzVPUdziB73_6jXaKe9XKs36KG8auvV5VvH2GsPYr-G
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+economic+model+predictive+control-based+flexible+power+point+tracking+strategy+for+photovoltaic+power+generation&rft.jtitle=Energy+%28Oxford%29&rft.au=Liu%2C+Xiangjie&rft.au=Zhu%2C+Zheng&rft.au=Kong%2C+Xiaobing&rft.au=Ma%2C+Lele&rft.date=2023-11-15&rft.issn=0360-5442&rft.volume=283&rft.spage=128993&rft_id=info:doi/10.1016%2Fj.energy.2023.128993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_128993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon